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The projectively Hurewicz property is t-invariant

Alexander V. Osipova

aKrasovskii Institute of Mathematics and Mechanics, Ural Federal University, Yekaterinburg, Russia

Abstract. A space X is projectively Hurewicz provided every separable metrizable continuous image of X is
Hurewicz.

In this paper we prove that the projectively Hurewicz property is t-invariant, i.e., if Cp(X) is homeomor-
phic to Cp(Y) and X is projectively Hurewicz, then Y is projectively Hurewicz, too.

1. Introduction

Let P be a topological property. A.V. Arhangel’skii calls X projectively P if every second countable
continuous image of X is P [1, 3]. The projective selection principles were introduced and first time
considered in [5]. Lj.D.R. Kočinac characterized the classical covering properties of Menger, Rothberger,
Hurewicz and Gerlits-Nagy in term of continuous images inRω. Characterizations of the classical covering
properties in terms a selection principle restricted to countable covers by cozero sets are given in [4]. In
[8, 9] we obtained the functional characterizations of all projective versions of the selection properties in
the Scheepers Diagram.

Let us recall that a topological space is Hurewicz if for every sequence (Un : n ∈N) of open covers of X,
there is a sequence (Vn : n ∈ N) such that for every n,Vn is a finite subfamily ofUn and every point of X
is contained in

⋃
Vn for all but finitely many n’s.

Recall that if Cp(X) and Cp(Y) are homeomorphic (linearly homeomorphic, uniform homeomorphic),
we say that the spaces X and Y are t-equivalent (l-equivalent, u-equivalent). The properties preserved by
t-equivalence (l-equivalence, u-equivalence) we call t-invariant (l-invariant, u-invariant) [2].

The following interesting results were obtained:
• (Lj.D.R. Kočinac) A space is Hurewicz if and only if it is Lindelöf and projectively Hurewicz [5].
• (L. Zdomskyy) The Hurewicz property is l-invariant (Corollary 7 in [12]).
• (N.V. Velichko) The Lindelöf property is l-invariant [11].
• (M. Krupski) The projectively Hurewicz property is l-invariant (Theorem 1.5 in [7]).
In this paper we prove that the projectively Hurewicz property is t-invariant.
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2. Main definitions and notation

Throughout this paper, all spaces are assumed to be Tychonoff. The set of positive integers is denoted
by N. Let R be the real line, we put I = [0, 1] ⊂ R, and let Q be the rational numbers. For a space X,
we denote by Cp(X) the space of all real-valued continuous functions on X with the topology of pointwise
convergence. The symbol 0 stands for the constant function to 0. Since Cp(X) is a homogenous space we
may always consider the point 0 when studying local properties of this space.

A basic open neighborhood of 0 is of the form [F, (−ϵ, ϵ)] = { f ∈ C(X) : f (F) ⊂ (−ϵ, ϵ)}, where F is a finite
subset of X and ϵ > 0.

We recall that a subset of X that is the complete preimage of zero for a certain function from C(X) is
called a zero-set. A subset O ⊆ X is called a cozero-set (or functionally open) of X if X \O is a zero-set.

Many topological properties are characterized in terms of the following classical selection principles.
LetA and B be sets consisting of families of subsets of an infinite set X. Then:

S f in(A,B) is the selection hypothesis: for each sequence (An : n ∈N) of elements ofA there is a sequence
(Bn : n ∈N) of finite sets such that for each n, Bn ⊆ An, and

⋃
n∈N Bn ∈ B.

U f in(A,B) is the selection hypothesis: whenever U1, U2, ... ∈ A and none contains a finite subcover,
there are finite sets Fn ⊆ Un, n ∈N, such that {

⋃
Fn : n ∈N} ∈ B.

In this paper, by a cover we mean a nontrivial one, that is,U is a cover of X if X =
⋃
U and X <U.

An open coverU of a space X is:
• an ω-cover if every finite subset of X is contained in a member ofU.
• a γ-cover if it is infinite and each x ∈ X belongs to all but finitely many elements ofU.
• γF-shrinkable if U is a cozero γ-cover and there exists a γ-cover {FU : U ∈ U} of zero-sets of X with

FU ⊂ U for every U ∈ U.
• ω-groupable if there is a partition of the cover into finite parts such that for each finite set F ⊆ X and all

but finitely many parts P of the partition, there is a set U ∈ Pwith F ⊆ U [6].
For a topological space X we denote:
• O— the family of all open covers of X;
• O

ω
cz — the family of all countable cozero covers of the space X;

• Γ— the family of all open γ-covers of the space X;
• Γcz — the family of all cozero γ-covers of the space X;
• Ω1r — the family of open ω-groupable covers of the space X;
• ΓF — the family of all cozero γF-shrinkable covers of the space X.
Since any infinite part of the γ-cover is also a γ-cover, we further assume that all γF-shrinkable covers

are countable.
Let us recall that a topological space X is Hurewicz if X has the property U f in(O,Γ).

3. The projectively Hurewicz property

A space X is projectively Hurewicz provided every separable metrizable continuous image of X is
Hurewicz.

In ([4], Theorem 30), M. Bonanzinga, F. Cammaroto, M. Matveev proved

Theorem 3.1. The following conditions are equivalent for a space X:

1. X is projectively U f in(O,Γ) [projectivelyHurewicz];
2. Every Lindelöf continuous image of X is Hurewicz;
3. for every continuous mapping f : X 7→ Rω, f (X) is Hurewicz;
4. for every continuous mapping f : X 7→ Rω, f (X) is bounded;
5. X satisfies U f in(Oωcz,Γ).

Proposition 3.2. (Proposition 31 in [4])
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1. Every σ-pseudocompact space is projectively Hurewicz.
2. Every space of cardinality less than b is projectively Hurewicz.
3. The projectively Hurewicz property is preserved by continuous images, by countably unions, by C∗-embedded

zero-sets, and by cozero sets.

Definition 3.3. Let S = {Sn : n ∈ N} be a family of subsets of a space X and x ∈ X. Then S weakly converges
to x if for every neighborhood W of x there is a sequence (sn : n ∈ N) such that sn ∈ Sn for each n ∈ N and
there is n′ such that sn ∈W for each n > n′.

Let us recall that a subset A of X converges to x if A is infinite, x < A, and for each neighborhood U of x,
A \U is finite. We write x = lim A if A converges to x. Consider the following collections:
• Γx = {A ⊆ X : x = lim A};
• wΓx = the family of all subsets of X admitting a partition S = {Sn : n ∈N} such that for every n the set

Sn is finite and Sweakly converges to x.

Theorem 3.4. The following conditions are equivalent for a space X:

1. Cp(X) satisfies S f in(Γ0,wΓ0);
2. X satisfies S f in(ΓF,Ω1r);
3. X satisfies U f in(ΓF,Γ);
4. X satisfies U f in(Oωcz,Γ);
5. X is projectively Hurewicz.

Proof. (3) ⇔ (2). By Theorem 3.4 in [10], the equality U f in(O,Γ) = S f in(Γ,Ω1r) is true in the class of metric
separable spaces. Let X satisfies U f in(ΓF,Γ). By Theorem 5.4 in [9] and Theorem 3.1, U f in(ΓF,Γ) = U f in(Oωcz,Γ),
i.e., X is projectively Hurewicz.

Let (Un : n ∈ N) be a sequence of countable γF-shrinkable covers of X. For every n ∈ N and every
U ∈ Un fix a continuous function fU : X → R such that U = f−1

U [R \ {0}]. Put h =
∏
{ fU : U ∈ Un,n ∈ N}.

Then h is a continuous mapping from X onto h(X) ⊆ Rω, thus h(X) satisfies U f in(O,Γ) = S f in(Γ,Ω1r). Let
h(Un) = {h(U) : U ∈ Un}. Since (h(Un) : n ∈ N) be a sequence of γ-covers of h(X) we get (2). Since a
continuous metrizable image of a space satisfying the property S f in(ΓF,Ω1r) is a space with this property
and S f in(ΓF,Ω1r) = S f in(Γ,Ω1r) for metrizable spaces, the implication (2)⇒ (3) is proved similarly.

(4)⇔ (5). By Theorem 3.1.
(5)⇒ (3). By Theorem 5.4 in [9] (or Theorem 4.1 in [8]).
(3)⇒ (4). Let (Un : n ∈N) be a sequence of countable cozero covers of X. EnumerateUn = {Un

m : m ∈N}.
For n,m ∈ N, fix a continuous function fn,m : X → [0, 1] that witnesses Un

m being cozero, i.e. f−1(0, 1] =
Un

m. For every n,m, i ∈N, let us define
Wn

m,i = f−1
n,m( 1

i+1 , 1] and Hn
m,i = f−1

n,m[ 1
i+1 , 1].

Clearly, the set Wn
m,i is cozero and Hn

m,i is a zero-set. Note that

Wn
m,i ⊆ Hn

m,i ⊆Wn
m,i+1 ⊆ Un

m and Un
m =

∞⋃
i=1

Wn
m,i.

For k ∈ N, write Wn
k =
⋃
{Wn

m,i+1 : i,m ≤ k} and letWn = {Wn
1 ,W

n
2 , ...}. Observe thatWn ∈ ΓF because

Hn
k =
⋃
{Hn

m,i : i,m ≤ k} is a zero-set contained in Wn
k . Moreover the family {Hn

k : k ∈ N} is a γ-cover of X
since one readily checks that the family {

⋃
{Wn

m,i : i,m ≤ k} : k ∈N} is a γ-cover and
⋃
{Wn

m,i : i,m ≤ k} ⊆ Hn
k .

Now apply the property U f in(ΓF,Γ) to the sequence (Wn : n ∈ N) together with the fact thatWn is a finer
cover thatUn for all n.

(1)⇒ (2). Let {Vi : i ∈N} ∈ [ΓF]ω. Note that we assume that all γF-shrinkable covers are countable.
SinceVi = {Vi, j : j ∈ N} ∈ ΓF, there is {Fi, j : j ∈ N} ∈ Γ such that Fi, j is a zero-set in X and Fi, j ⊂ Vi, j ∈ Vi

for each j ∈N. Let Ti = { fi, j ∈ Cp(X) : fi, j(Fi, j) = 0 and fi, j(X \ Vi, j) = 1 for each i, j ∈N}. Since {Fi, j : j ∈N} is
a γ-cover, we have lim

j→∞
Ti = 0 for each i ∈N. By (1), there are finite subsets T′i of Ti and a partition of the set⋃

T′i into finite parts such that for each neighborhood O = [K, (−ϵ, ϵ)] of the function 0 where K is a finite
subset of X and ϵ > 0, and all but finitely many parts P of the partition, there is a function 1 ∈ Pwith 1 ∈ O.
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LetP = {{1l,1, ..., 1l,kl } : l ∈N}. Since 1l,m = fis, js for some is, js ∈N, we can consider Q = {Vl,m : Vl,m = Vis, js ,
fis, js (X \ Vis, js ) = 1, fis, js = 1l,m, l ∈ N}. Then Q has a partition Q = {{Vl,1, ...,Vl,kl } : l ∈ N} and, for any finite
subset K of X all but finitely many parts Q of the partition, there is Vl,k with K ⊆ Vl,k. Thus, Q ∈ Ω1r.

(2) ⇒ (1). Let Ti ∈ Γ0 for each i ∈ N. By passing to a countable infinite subset, we can without loss of
generality assume that each Ti is countable. Enumerate Ti = { fi, j ∈ Cp(X) : j ∈N}.

For i, j define Vi, j = f−1
i, j ((− 1

i ,
1
i )) (we can without loss of generality assume that each Vi, j is non-empty),

and letVi = {Vi, j : j ∈N}.
Note that Vi, j is a cozero-set in X for each i, j ∈N.
Thus we have a mapping Φ :

⋃
Vi →

⋃
Ti such that Φ(Vi, j) = fi, j for i, j ∈N.

Since lim
j→∞

Ti = 0, for any finite subset F of X and ϵ > 0 (we can assume that ϵ < 1
i ), there is j′ ∈ N such

that fi, j ∈ [F, (−ϵ, ϵ)] for each j > j′. Thus, F ⊂ Vi, j for each j > j′. Thus,Vi ∈ Γcz.
For i, j define Fi, j = f−1

i, j ([− 1
i+1 ,

1
i+1 ]), and let Fi = {Fi, j : j ∈N}.

Then Fi, j ⊂ Vi, j for each j ∈ N and Fi ∈ Γ. Note also that Fi, j is a zero-set and Vi, j is a cozero-set in X for
each j ∈N. It follows thatVi ∈ ΓF.

By (2), there are finite subsets Di ⊂ Vi for each i ∈N such that
⋃

Di is a cozero ω-groupable cover of the
space X.

Let P = {Pk : k ∈ N} be a partition of the cover
⋃

Di into finite parts such that for each finite set F ⊂ X
and all but finitely many parts {Pk : k ∈N} of the partition, there is a set Vi(k), j(k) ∈ Pk with F ⊂ Vi(k), j(k).

For each k define Sk = { fV : Φ(V) = fV,V ∈ Pk}. The family S = {Sk : k ∈N} is a partition of
⋃
{ fi, j : Vi, j ∈

Di, i ∈N}. Then, for each finite set F ⊂ X and ϵ > 0, and all but finitely many parts of the partition S, there
is a function fi(k), j(k) ∈ Sk with fi(k), j(k) ∈ [F, (−ϵ, ϵ)]. Thus,

⋃
{ fi, j : fi, j ∈ Ti,Vi, j ∈ Di, i ∈ N} ∈ wΓ0 and Cp(X)

satisfies S f in(Γ0,wΓ0).

Note that the property S f in(Γx,wΓx) is a topological property. Thus, if Cp(X) is homeomorphic to Cp(Y)
and Cp(X) satisfies S f in(Γ0,wΓ0), then Cp(Y) satisfies S f in(Γ1,wΓ1) for each 1 ∈ Cp(Y).

Theorem 3.5. Suppose that Cp(X) and Cp(Y) are homeomorphic. Then X has the projectively Hurewicz property if
and only if Y has the projectively Hurewicz property.

Problem 3.6. Let P ∈ {Men1er,Rothber1er,Scheepers,S1(Γ,O)}. Will the projectively P property be t-invariant?

Conjecture 3.7. The projectively Scheepers Diagram is t-invariant, i.e., each projectively selection property in the
Scheepers Diagram is t-invariant.

If the conjecture is true, then, applying Velichko’s result, the Scheepers Diagram is l-invariant.
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