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Abstract. Considering soft computing, the Weierstrass data
(
ζ−1/2, ζ1/2

)
gives two different minimal surface

equations and figures. By using hard computing, we give the family of minimal and spacelike maximal
surfaces S(m,n) for natural numbers m and n in Euclidean and Minkowski 3-spaces E3, E2,1, respectively.
We obtain the classes and degrees of surfaces S(m,n). Considering the integral free form of Weierstrass, we
define some algebraic functions for S(m,n). Indicating several maximal surfaces of value (m,n) are algebraic,
we recall Weierstrass-type representations for maximal surfaces in E2,1, and give explicit parametrizations
for spacelike maximal surfaces of value (m,n). Finally, we compute the implicit equations, degree, and
class of the spacelike maximal surfaces S(0,1), S(1,1) and S(2,1) in terms of their cartesian or inhomogeneous
tangential coordinates in E2,1.

1. Introduction

Researchers and scientists, especially mathematicians and geometers, have been interested in explicit
(i.e., parametric) surfaces as well as implicit (i.e., algebraic) surfaces for centuries. Although some of them
have focused on explicit and implicit minimal surfaces.

Weierstrass [19] gave the explicit representation equations for the minimal surfaces. Lie [13] introduced
the algebraic minimal surfaces and presented them in a table. See also [1, 3, 4, 6–11, 14, 17] for the-algebraic-
minimal surfaces.

Minimal surfaces isometric to rotational surfaces in 3-dimensional Euclidean space E3 were introduced
by Bour [1] in 1862. All such minimal surfaces are given via the well-known Weierstrass representation for
minimal surfaces by choosing suitable data depending on a parameter m, as shown by Schwarz [17]. They
are called Bour’s minimal surfaces Bm of value m. Furthermore, when m is an integer greater than 1, Bm
becomes algebraic, that is, there is an implicit polynomial equation satisfied by the three coordinates ofBm,
see also [6, 14].

Kobayashi [12] considered an analogous Weierstrass-type representation for conformal spacelike max-
imal surfaces in Minkowski 3-space E2,1. In generally, contrary to minimal surfaces in Euclidean 3-space
E3, maximal surfaces have singularities. See [5, 18] for the singularities of the maximal surfaces.

We introduce the real parametric minimal surfaces via Weierstrass data (ζm, ζn) for ζ ∈ C, (m,n) ∈ N. If
(m,n) = (0, 0) , then we get the plane which is a first known minimal surface. Replacing natural numbers
(m,n) with its negatives (−m,−n), we then have the same real minimal surfaces, geometrically. Hence we
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Figure 1: Minimal surfaces S(−1/2,1/2) (u, v) Left csgn(iζ) = 1, Right csgn(iζ) = −1

can get the irreducible algebraic (i.e., implicit) surface equation of the parametric (i.e., explicit) minimal
surface equation.

On Weierstrass data (ζm, ζn) , choosing rational numbers, i.e., taking (m,n) =
(
p/q, r/s

)
,where gcd (m,n) =

1, gcd (r, s) = 1, we then again have minimal surface equation. See Ribaucour [16] for m = 1/2. The surface
may not got the algebraic equation, since it has the function csgn(iζ) =csgn(−v + iu), ζ = u + iv, i =

√
−1.

Here, sign function for real and complex expressions is defined by

csgn(ζ) =
{

1, Re(ζ) > 0 or Re(ζ) = 0 and Im(ζ) > 0,
−1, Re(ζ) < 0 or Re(ζ) = 0 and Im(ζ) < 0.

Recalling the signum function (signum) returns the ”sign” of a real or complex number, it is defined by
signum(ζ) = ζ/ |ζ|, for ζ , 0.

Computer algorithms are constructed by numbers 0 and 1. But, in fuzzy logic systems may not be 0
and/or 1. Fuzzy logic and soft computing techniques originated by Zadeh [21, 22]. Zadeh considered the
following:

”In traditional-hard-computing, the prime desiderata are precision, certainty, and rigor. By contrast, the point of
departure in soft computing is the thesis that precision and certainty carry a cost and that computation, reasoning,
and decision making should exploit–wherever possihlethe tolerance for imprecision and uncertainty.”

Fuzzy logic has similar to above functions, interestingly. For example,
(
ζ−1/2, ζ1/2

)
gives the following

minimal surface equation

S(−1/2,1/2) (u, v) =

 −(1/3)αu + α − (1/3)csgn(iζ)βv
(1/3)csgn(iζ)αu + csgn(iζ)β − (1/3)αv

2u

 ,
where α = (2λ1/2 + 2u)1/2, β = (2λ1/2

− 2u)1/2, λ = u2 + v2.Here, we can choose csgn(iζ) = −1 or 1. Therefore,
choosing the function csgn(ζ) = −1 or 1, we can obtain two different (not same, but symmetric) parametric
minimal surface eqs. of S(−1/2,1/2) (u, v) . See Figure 1 for two different minimal surfaces S(−1/2,1/2) (u, v) ,
taking csgn(iζ) = ±1.

In addition, we can compute two different algebraic equation (like as fuzzy logic, soft computing) of
the minimal surface S(−1/2,1/2) (u, v) by using elimination methods such as Gauss, Sylvester, Gröbner, FGb
of Faugere.

In this study, we opt for natural numbers (m,n) instead of rationals (p/q, r/s) to avoid the issue of
csgn(iζ) = ±1.

The aim of this work is to investigate the properties of minimal and spacelike maximal surfaces in
Euclidean and Minkowski 3-spaces. The Weierstrass data is used to obtain different surface equations and
figures. By utilizing both soft and hard computing techniques, the family of surfacesS(m,n) is explored, with
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a focus on determining their classes and degrees. Algebraic functions are defined for these surfaces using
the integral-free form of Weierstrass representation. The work also provides explicit parametrizations for
spacelike maximal surfaces and computes the implicit equations, degree, and class of specific surfaces, such
as S(0,1), S(1,1), and S(2,1) in terms of their cartesian or inhomogeneous tangential coordinates in E2,1.

In section 2, we give the family of minimal surfaces S(m,n) for natural numbers m and n in E3.We obtain
the classes and degrees of surfacesS(1,1) andS(2,1) inE3 in Section 3. Via the integral free form of Weierstrass,
we reveal algebraic functions for S(m,n) in E3 in Section 4.

In Section 5 of this work, indicating several maximal surfaces of value (m,n) are algebraic, we recall
Weierstrass-type representations for maximal surfaces in E2,1, and give explicit parametrizations for space-
like maximal surfaces. In Section 6, we compute the degree, classe and algebraic equations of the maximal
surfaces S(0,1), S(1,1) and S(2,1) in terms of their cartesian or inhomogeneous tangential coordinates in E2,1.
With the help of Weierstrass-type integral free form for the maximal surfaces, we reveal some algebraic
functions in E2,1 in the last section.

2. The family of minimal surfaces S(m,n) in E3

We recall a Euclidean space as follows.

Definition 2.1. En =
(
{
−→x = (x1, · · · , xn)t

|xi ∈ R}, ⟨·, ·⟩
)

is the n-dimensional Euclidean space with Euclidean metric

⟨
−→x ,−→y ⟩ = x1y1 + · · · + xnyn.

We will often identify −→x and
−→
xt without further comment, and will use (m,n) for natural numbers m

and n.

Definition 2.2. LetU be an open subset of C. A minimal (or isotropic) curve is an analytic functionΨ : U → Cn

such that ⟨Ψ′ (ζ) ,Ψ′ (ζ)⟩ = 0, where ζ ∈ U, andΨ′ := ∂Ψ∂ζ . In addition, if
〈
Ψ′,Ψ′

〉
= |Ψ′|2 , 0, thenΨ is a regular

minimal curve.

We then have minimal surfaces in the associated family of a minimal curve, as given by the following
Weierstrass representation theorem for minimal surfaces.

Theorem 2.3. (K. Weierstrass [19]). Let 1 be a meromorphic function and let ω be a holomorphic function defined
on a simply connected open subsetU ⊂ C such that ω does not vanish onU. Therefore,

x(ζ) = Re
∫ 

(
1 − 12

)
ω

i
(
1 + 12

)
ω

21ω

 dζ

is a conformal immersion with mean curvature identically 0 (i.e., conformal minimal surface). Conversely, any
conformal minimal surface can be described in this manner.

Definition 2.4. A pair of a meromorphic function 1 and a holomorphic function ω, (ω, 1) is called Weierstrass data
for a minimal surface.

Lemma 2.5. The curve

c(m,n) (ζ) =


1

m+1ζ
m+1
−

1
m+2n+1ζ

m+2n+1

i
m+1ζ

m+1 + i
m+2n+1ζ

m+2n+1

2
m+n+1ζ

m+n+1

 (1)

is a minimal curve in C3, ζ ∈ C, i =
√
−1.
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We checked
〈
c′(m,n), c

′

(m,n)

〉
= 0, and then the minimal surface of value (m,n) in E3 is stated by

S(m,n) (ζ) = Re
∫
c′(m,n) (ζ) dζ. (2)

Lemma 2.6. The minimal surface S(m,n)is constructed by the Weierstrass data given by

(ω, 1) = (ζm, ζn) .

Therefore, the associated family of minimal surfaces is described by

S
(
r, θ; β

)
= Re

∫
e−iβc′(m,n)

= cos
(
β
)

Re
∫
c′(m,n) + sin

(
β
)

Im
∫
c′(m,n)

= cos
(
β
)
S(m,n) (r, θ) + sin

(
β
)
S
∗

(m,n) (r, θ) .

When β = 0 (resp., β = π/2),we have the surface S(m,n) (resp., the conjugate surface S∗(m,n)).
Taking ζ = reiθ,we obtain the following parametric equation of S(m,n):

S(m,n) (r, θ) =


rm+1 cos[(m+1)θ]

m+1 −
rm+2n+1 cos[(m+2n+1)θ]

m+2n+1

−
rm+1 sin[(m+1)θ]

m+1 −
rm+2n+1 sin[(m+2n+1)θ]

m+2n+1
2rm+n+1 cos[(m+n+1)θ]

m+n+1

 . (3)

Via the binomial formula, we find Sm,n (u, v):

x = Re

 1
m+1

[∑m+1
k=0

(m+1
k

)
um+1−k (iv)k

]
−

1
m+2n+1

[∑m+2n+1
k=0

(m+2n+1
k

)
um+2n+1−k (iv)k

]  ,
y = Re

 i
m+1

[∑m+1
k=0

(m+1
k

)
um+1−k (iv)k

]
+ i

m+2n+1

[∑m+2n+1
k=0

(m+2n+1
k

)
um+2n+1−k (iv)k

]  , (4)

z = Re

 2
m + n + 1

m+n+1∑
k=0

(m+n+1
k

)
um+n+1−k (iv)k


 ,

with Gauss map

1 =

(
2 Re (ζn)
λn + 1

,
2 Im (ζn)
λn + 1

,
λn
− 1

λn + 1

)
, (5)

where ζ = u + iv, |ζ| = λ = u2 + v2.
It is known that the surface of S(0,1) has class number 6, degree number 9, it is also an algebraic minimal

surface. See [3, 14] for expanded results.

3. Degree and class of surface S(m,n) in E3

By using polynomial elimination methods, we calculate the implicit equations, degree and class of S(1,1)
and S(2,1). Let us now see some definitions for these surfaces.

Definition 3.1. An algebraic function is a function z = h(x, y) which satisfies Q(x, y, h(x, y)) = 0, where Q(x, y, z)
is a polynomial in x, y, and z with integer coefficients. An algebraic function is a function that can be defined as the
root of a polynomial equation.
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Definition 3.2. A polynomial is named irreducible if it cannot be factored into nontrivial polynomials over the same
field.

Definition 3.3. The set of roots of a polynomial Q(x, y, z) = 0 gives an irreducible algebraic surface. An irreducible
algebraic surface Q(x, y, z) = 0 of surface

x (u, v) = (x(u, v), y(u, v), z(u, v))

is said to be of de1ree number n, when n = deg(Q).

Definition 3.4. The tangent plane at a point (u, v) on a surface x (u, v) is given by

Xx + Yy + Zz + P = 0, (6)

with the function P = P(u, v), and the following Gauss map

1 = (X(u, v),Y(u, v),Z(u, v)).

Definition 3.5. By using the following

a = X/P, b = Y/P, c = Z/P,

the surface in the inhomogeneous tangential coordinates is defined by

x̂ (u, v) = (a(u, v), b(u, v), c(u, v)).

Eliminating u, v, we can obtain an irreducible implicit equation Q̂(a, b, c) = 0 of x̂ (u, v) in inhomogeneous
tangential coordinates. See [2] for elinimation methods.

Definition 3.6. The maximum degree of the Q̂(a, b, c) = 0 gives the class number of surface x̂ (u, v) .

See [14], for details.

3.1. Degree and class of surface S(1,1) in E3

The simplest Weierstrass representation
(
ω, 1

)
= (ζ, ζ) gives the minimal surface of value (1, 1). In polar

coordinates, the parametric equations of S(1,1) are

S(1,1) (r, θ) =


r2

2 cos (2θ) − r4

4 cos(4θ)
−

r2

2 sin (2θ) − r4

4 sin (4θ)
2
3 r3 cos (3θ)

 , (7)

where r ∈ I ⊂ R, θ ∈ [0, 2π). The parametric form of the surface in (u, v) coordinates, is given by

S(1,1) (u, v) =

 −
u4

4 −
v4

4 +
3
2 u2v2 + u2

2 −
v2

2
−u3v + uv3

− uv
2
3 u3
− 2uv2

 =
 x(u, v)

y(u, v)
z(u, v)

 , (8)

where u, v ∈ R. Eliminating (u, v) of (8), we find the irreducible implicit equation of surface S(1,1) as follows

Q(1,1)(x, y, z) = 316z16
− 21738x4z6

− 22036x4y2z4

−21838x2y2z6 + 22135x2y4z4

+69 other lower degree terms.

Its degree number is 16. Therefore, Q(1,1)(x, y, z) = 0 is an algebraic minimal surface.
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Finding the class of surface S(1,1),we obtain the following function

P(u, v) =
(λ + 2)(3uv2

− u3)
6 (λ + 1)

,

where λ = u2 + v2. Then, in inhomogeneous tangential coordinates a, b, c,we find the following surface

Ŝ(1,1)(u, v) =
6

(λ + 2)(3uv2 − u3)

 2u
2v
λ − 1

 =
 a(u, v)

b(u, v)
c(u, v)

 .
Hence, the irreducible implicit equation of Ŝ(1,1)(u, v) is given by

Q̂(1,1)(a, b, c) = 9a8 + 72a7 + 144a6 + 288a5c2 + 192a3c4

+8a6c2
− 48a4b2c2

− 576ab2c4 + 81a2b6

+432a4b2
− 45a6b2

− 72a5b2 + 432a2b4

−360a3b4
− 216ab6 + 27a4b4 + 144b6

−576a3b2c2 + 72a2b4c2
− 864ab4c2.

Therefore, the class number of the algebraic minimal surface Q̂(1,1)(a, b, c) = 0 is 8.

3.2. Degree and class of surface S(2,1) in E3

The parametric form of S(2,1) is given by

S(2,1) (r, θ) =


r3

3 cos (3θ) − r5

5 cos(5θ)
−

r3

3 sin (3θ) − r5

5 sin (5θ)
1
2 r4 cos (4θ)

 , (9)

where r ∈ I ⊂ R, θ ∈ [0, 2π). In (u, v) coordinates, S(2,1) has the form as follows

S(2,1) (u, v) =


1
3 u3
− uv2

−
1
5 u5 + 2u3v2

− uv4

−u2v + 1
3 v3
− u4v + 2u2v3

−
1
5 v5

1
2 u4
− 3u2v2 + 1

2 v4

 , (10)

where u, v ∈ R. Eliminating u and v, we reveal the implicit equation of S(2,1)(u, v) as follows

Q(2,1)(x, y, z) = 250316z25
− 24031655x4z20 + 24131755x2y2z20

−24031655y4z20
− 2283185913x8z15

+233 other lower degree terms.

Hence, Q(2,1)(x, y, z) = 0 is an algebraic minimal surface. Its degree number is 25.
Obtaining the class of surface S(2,1),we have the following function

P(u, v) =
(3λ + 5)

(
v4 + 6u2v2

− u4
)

30(λ + 1)
.

Then, we compute the following surface in inhomogeneous tangential coordinates a, b, c,

Ŝ(2,1)(u, v) =
30

(3λ + 5) (v4 + 6u2v2 − u4)

 2u
2v
λ − 1

 ,
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where λ = u2 + v2.
Eliminating u and v, we have the following irreducible implicit equation of Ŝ(2,1)(u, v) in inhomogeneous

tangential coordinates a, b, c,

Q̂(2,1)(a, b, c) = 16a10 + 16b10 + 900a8c + 3600a6b2c

+15b8c2
− 180a2c2 + 416a4b6

− 900a8

−3600a2b6
− 3600a6b2 + 8640a2b2c5

−176a2b8
− 5400a4b4 + 416a6b4

−900b8c − 900b8 + 3600a2b6c + 15a8c2

−1440b4c5
− 1440a4c5

− 2400b6c3

+12000a4b2c3
− 176a8b2

− 180a6b2c2

−2400a6c3 + 12000a2b4c3
− 180a2b6c2

−9000a4b4c + 570a4b4c2.

Hence, the class number of the algebraic minimal surface Q̂(2,1)(a, b, c) = 0 is 10.

4. Integral free form in E3

We recall the following integral free form of Weierstrass [20].

Theorem 4.1. Integral free form of the Weierstrass representation is defined by x
y
z

 = Re


(
1 − w2

)
κ′′(w) + 2wκ′(w) − 2κ(w)

i
[(

1 + w2
)
κ′′(w) − 2wκ′(w) + 2κ(w)

]
2wκ′′(w) − 2κ′(w)

 ≡ Re

 ρ1 (w)
ρ2 (w)
ρ3 (w)

 , (11)

where the algebraic function κ = κ(w) and the functions ρi = ρi (w) are connected by the following relation

4κ =
(
w2
− 1

)
ρ1 − i

(
w2 + 1

)
ρ2 − 2wρ3 (12)

for w ∈ C.

On the other hand, integral free form equations (11) and (12) are suitable for algebraic minimal surfaces.
Then, we present the following:

Corollary 4.2. The algebraic function κ(w) = 1
6 w3 gives rise to minimal surface S(0,1).

Corollary 4.3. The algebraic function κ(w) = 1
24 w4 leads to minimal surface S(1,1).

Corollary 4.4. The algebraic function κ(w) = 1
60 w5 gives the minimal surface S(2,1).

Finally we give the following.

Conjecture 4.5. The algebraic function κ(w) = 1
(m+n+2)! w

m+n+2 describes the minimal surface S(m,n).

5. Spacelike maximal surfaces S(m,n) in E2,1

We briefly provide some notions of Minkowski space as follows.

Definition 5.1. En,1 =
(
{
−→x = (x1, · · · , xn, x0)t

|xi ∈ R}, ⟨·, ·⟩
)

is the (n + 1)-dimensional Lorentz-Minkowski (for
short, Minkowski) space with Lorentz metric

⟨
−→x ,−→y ⟩ = x1y1 + · · · + xnyn − x0y0.
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Definition 5.2. A vector −→x ∈ En,1 is called

spacelike if
〈
−→x ,−→x

〉
> 0, or −→x = 0,

timelike if
〈
−→x ,−→x

〉
< 0,

lightlike if
〈
−→x ,−→x

〉
= 0 and −→x , 0.

Definition 5.3. A surface in En,1 is called spacelike (resp. timelike, lightlike) if the induced metric on the tangent
planes is a positive definite Riemannian (resp. Lorentzian, degenerate) metric.

See [15] for details.
Kobayashi [12] found a Weierstrass-type representation for spacelike conformal maximal surfaces in

E2,1.

Theorem 5.4. Let 1 be a meromorphic function and let ω be a holomorphic function defined on a simply connected
open subsetU ⊂ C such that ω does not vanish onU. Then

x(ζ) = Re
∫ 

(
1 + 12

)
ω

i
(
1 − 12

)
ω

21ω

 dζ

is a spacelike conformal immersion with mean curvature identically 0 (i.e. spacelike conformal maximal surface).
Conversely, any spacelike conformal maximal surface can be described in this manner.

Definition 5.5. A pair of a meromorphic function 1 and a holomorphic function ω, (ω, 1) is called Weierstrass data
for a maximal surface.

We call maximal surfaces S(m,n) (m,n ∈ N) given by Weierstrass data (ω, 1) = (ζm, ζn) the spacelike
maximal surfaces of value (m,n). The parametrization of spacelike S(m,n) is given by

x = Re

 1
m+1

[∑m+1
k=0

(m+1
k

)
um+1−k (iv)k

]
+ 1

m+2n+1

[∑m+2n+1
k=0

(m+2n+1
k

)
um+2n+1−k (iv)k

]  ,
y = Re

 i
m+1

[∑m+1
k=0

(m+1
k

)
um+1−k (iv)k

]
−

i
m+2n+1

[∑m+2n+1
k=0

(m+2n+1
k

)
um+2n+1−k (iv)k

]  , (13)

z = Re

 2
m + n + 1

m+n+1∑
k=0

(m+n+1
k

)
um+n+1−k (iv)k




with Gauss map

1 =

(
2 Re (ζn)
1 − λn ,

2 Im (ζn)
1 − λn ,

1 + λn

1 − λn

)
,

where ζ = u + iv, |ζ| = λ = u2 + v2.

6. Degree and class of surfaces S(m,n) in E2,1

In E2,1, the tangent plane at a point (u, v) on a surface x (u, v) = (x(u, v), y(u, v), z(u, v)) given by

Xx + Yy − Zz + P = 0, (14)

where P = P(u, v), and the Gauss map of the surface x indicated by

1 = (X(u, v),Y(u, v),Z(u, v)).

Next, we calculate the explicit and implicit equations, degree and class numbers of the spacelike maximal
surfaces S(0,1), S(1,1), and S(2,1).
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6.1. Degree and class of spacelike S(0,1), S(1,1), S(2,1) in E2,1

From (13), the parametrization of spacelike maximal surface S(0,1) is given by

S(0,1) (u, v) =


1
3 u3
− uv2 + u

u2v − 1
3 v3
− v

u2
− v2

 ,
where u, v ∈ R. Q(m,n)(x, y, z) = 0 denotes the irreducible implicit equation that spacelike S(m,n) will satisfy.

We get the following algebraic eq. of the spacelike maximal surface S(0,1) (u, v):

Q(0,1)(x, y, z) = 64z9
− 432x2z6 + 432y2z6

− 1215x4z3

−6318x2y2z3 + 3888x2z5
− 1215y4z3

+3888y2z5
− 1152z7

− 729x6 + 2187x4y2

+4374x4z2
− 2187x2y4

− 6480x2z4 + 729y6

−4374y4z2 + 6480y2z4 + 729x4z − 1458x2y2z
−3888x2z3 + 729y4z − 3888y2z3 + 5184z5.

Its degree number is 9. Therefore, Q(0,1)(x, y, z) = 0 is an algebraic maximal surface.
Revealing the class number of S(0,1),we obtain

P(0,1)(u, v) = −
(λ − 3)(u2

− v2)
3(λ − 1)

,

where P(0,1)(u, v) indicates the function as in equation (14). The surface in inhomogeneous tangential
coordinates a, b, c, is given by

Ŝ(0,1)(u, v) =
3

(λ − 3)(u2 − v2)

 2u
2v
λ + 1

 ,
where λ = u2 + v2. In the inhomogeneous tangential coordinates a, b, c, we reveal the following algebraic
surface

Q̂(0,1)(a, b, c) = 4a6 + 9a4 + 9b4 + 6a2b2c2

−3b4c2
− 18b4c − 4a4b2

−12a2c3
− 4a2b4

− 3a4c2

+18a2b2
− 4a4b2 + 4b6

+12b2c3 + 18a4c.

Here, Q̂(0,1)(a, b, c) = 0 shows the irreducible algebraic equation for spacelike S(m,n) in terms of inhomoge-
neous tangential coordinates. Then, the class number of the algebraic surface Q̂(0,1)(a, b, c) = 0 is 6.

By using the similar techniques, we get the following parametric eqs.

S(1,1) (u, v) =


u4

4 +
v4

4 −
3
2 u2v2 + u2

2 −
v2

2
u3v − uv3

− uv
2
3 u3
− 2uv2

 ,
S(2,1) (u, v) =


1
3 u3
− uv2 + 1

5 u5
− 2u3v2 + uv4

−u2v + 1
3 v3 + u4v − 2u2v3 + 1

5 v5

1
2 u4
− 3u2v2 + 1

2 v4

 ,
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and the following algebraic eqs.

Q(1,1)(x, y, z) = −316z16

+29312x3z12

−29313xy2z12

+216387x6z8

+2153923x4y2z8

+69 other lower degree terms,

Q(2,1)(x, y, z) = −245316z25

+23631655x4z20

−273165181151x4y12z5

−23731755x2y2z20

−263155217x12y6z2

+233 other lower degree terms.

Their degree numbers are 16, 25, respectively. Therefore, Q(1,1)(x, y, z) = 0 and Q(2,1)(x, y, z) = 0 are the
algebraic surfaces.

Furthermore, we have the following functions

P(1,1)(u, v) =
(λ − 2)(u2

− 3v2)
(λ − 1)

,

P(2,1)(u, v) =
(3λ − 5)(

(
u2
− v2

)2
− 4u2v2)

30(λ − 1)
.

After some computations, in the inhomogeneous tangential coordinates, we reveal the following surfaces

Ŝ(1,1) (u, v) =
6

u(λ − 2)(u2 − 3v2)

 2u
2v
λ + 1

 ,
Ŝ(2,1) (u, v) =

30

(3λ − 5)((u2 − v2)2
− 4u2v2)

 2u
2v
λ + 1

 ,
where λ = u2 + v2.

Hence, we find the following algebraic surfaces, respectively,

Q̂(1,1)(a, b, c) = 9a8 + 72a6b2
− 8a6c2 + 144a4b4

− 168a4b2c2

−96a2b4c2 + 96a2b2c4 + 64b6c2
− 48b4c4

−72a7
− 288a5b2 + 288a5c2 + 288a3b2c2

−192a3c4 + 144a6,

Q̂(2,1)(a, b, c) = −16a10
− 8640a2b2c5

− 9000a4b4c − 3600a2b6c

+12000a2b4c3 + 570a4b4c2
− 180a2b6c2 + 15b8c2

−900b8 + 1440a4c5 + 1440b4c5
− 5400a4b4

−3600a2b6 + 900b8c − 2400b6c3
− 416a6b4

−416a4b6 + 176a2b8
− 16b10 + 12000a4b2c3

−3600a6b2c − 180a6b2c2
− 3600a6b2 + 176a8b2

−2400a6c3 + 900a8c + 15a8c2
− 900a8.
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Therefore, we have the following class numbers 8 and 10, respectively, for the algebraic surfaces Q̂(1,1)(a, b, c) =
0 and Q̂(2,1)(a, b, c) = 0, respectively.

7. Integral free form in E2,1

We consider the integral free form in E2,1.

Theorem 7.1. Integral free form of the Weierstrass representation for the surfaces is defined by x
y
z

 = Re


(
1 + w2

)
σ′′(w) − 2wσ′(w) + 2σ(w)

i
(
1 − w2

)
σ′′(w) + 2iwσ′(w) − 2iσ(w)
2wσ′′(w) − 2σ′(w)

 ≡ Re

 τ1 (w)
τ2 (w)
τ3 (w)

 . (15)

Here, the algebraic function σ = σ(w) and the functions τi = τi (w) are related by

4σ =
(
w2 + 1

)
τ1 − i

(
w2
− 1

)
τ2 − 2wτ3 (16)

for w ∈ C.

On the other hand, integral free form equations (15) and (16) are suitable for algebraic spacelike maximal
surfaces.

Then, we have the following results.

Corollary 7.2. The algebraic function σ(w) = 1
6 w3 gives maximal surface S(0,1).

Corollary 7.3. The algebraic function σ(w) = 1
24 w4 gives rise to maximal surface S(1,1).

Corollary 7.4. The algebraic function σ(w) = 1
60 w5 leads to the maximal surface S(2,1).

Finally, we serve the following.

Conjecture 7.5. The algebraic function σ(w) = 1
(m+n+2)! w

m+n+2 determines the maximal surface S(m,n).
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