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Fixed point of weak contraction mappings on suprametric spaces
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Abstract. Suprametric spaces are a very recent generalization of metric spaces. In this study, various fixed
point results are given in suprametric spaces. We prove the existence and uniqueness of fixed point for
ψ − φ-weak contractive mapping. Our results generalize those corresponding in the literature.

1. Introduction and Preliminaries

Fixed point theory is considered to be a crucial study area for many researchers in pure and applied
mathematics. A large number of authors have written extensively about fixed point theory, especially in the
recent century. The famous Banach theorem [9] is one of the most important results of fixed point theory,
which has been proved very useful in a variety of problems.

Metric spaces provide an ideal setting for investigating the existence of fixed points for single and
multivalued mappings. The axioms of metric spaces are modified in numerous attempts to generalize the
metric setting due to the nature of mathematics science. As a result, a number of new space types are
established, and numerous metric findings are expanded and generalized to include additional contexts.
For instance, partial metric spaces [28] and b-metric spaces [17] are important and interesting metric space
generalizations. In recent years, there has been substantial progress in fixed point theory and its applications;
see papers of [1, 4, 5, 13, 14, 19, 30–32] and references therein.

In 2022, Berzig [11] established the idea of suprametric spaces which is a very interesting generalization
of that of the metric spaces. We also refer to [12]. The aim of this paper is to prove some fixed point results
in suprametric spaces.

Throughout this study, we denote byN the set of natural numbers. The symbols R stands for the set of
all real numbers and R+0 stands for set of nonnegative real numbers.

We first recall from [11] the definition and some properties of the suprametric spaces.

Definition 1.1. Let E be a nonempty set and let ds : E × E → R+0 satisfy

(ds1) ds(u, v) = 0⇔ u = v (equality);

(ds2) ds(u, v) = ds(v , u) (symmetry);

(ds3) ds(u, v) ≤ ds(u,w ) + ds(w , v) + ρds(u,w )ds(w , v);
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for some constant ρ ∈ R+0 and for all u, v ,w ∈ E . Then the pair (E , ds) is called a suprametric space and ds is called a
suprametric on E .

Example 1.2. [11] Let (E , d ) is a metric space, and α, β be two positive reals. We have following holds;

(i) ds
α
1 (u, v) = d (u, v)(d (u, v) + α), are suprametrics with constant ρ = 2

α .

(ii) ds
β
2(u, v) = β

(
ed (u,v)

− 1
)

are suprametrics with constant ρ = 1
β .

But, dα1 and ds
β
2 are not necessarily usual metrics. It is easy to see that, if

ds = ds
1
2 or
(
ds = ds

1
1

)
is defined on R and d (u, v) = |u − v |, we have ds(0, 1) + ds(1, 2) < ds(0, 2).

Every suprametric with constant ρ is a suprametric with constant ρ′ > ρ. However, the converse is not
always true. We can see the following remark.

Remark 1.3. [11] If ds is equal ds
1
1 or ds

1
2 with d (u, v) = |u − v |, then it is not a suprametric with constant ρ = 1

3
since we obtain

ds(0, 1) > ds

(
0,

1
2

)
+ ds

(1
2
, 1
)
+

1
3

ds(0, 1)ds

(1
2
, 1
)
.

Now, we present some properties of suprametric spaces.

Definition 1.4. [11] Let (E , ds) be a suprametric space. The set

B (u0, r) := {u ∈ E : d (u0, u) < r} ,

where r > 0 and u0 ∈ E , is called open ball of radius r and center u0. A subset Y of E is called open if for any point
v ∈ Y, there exists r > 0 such that B(v , r) ⊂ Y. The family of all open subsets of E will be denoted by τ.

Proposition 1.5. [11] Let (E , ds) be a suprametric space. Then each open ball is an open set.

Definition 1.6. [11] Let (E , ds) be a suprametric space. A sequence {un}n∈N of elements of E converges to u if for all
ϵ > 0 the ball B(u, ϵ) contains all but a finite number of terms of the sequence. So, u is a limit point of {un}n∈N and we
said that limn→∞ ds (un, u) = 0.

Proposition 1.7. [11] Let (E , ds) be a suprametric space. If a sequence {un}n∈N ⊂ E has a limit, then it is unique.

Definition 1.8. [11] Let (E , ds) be a suprametric space. A mapping T : E → E is called be continuous at z, if for all
ϵ > 0 there exists ζ > 0 such that ds(Tu, Tz) < ζ whenever ds(u, z) < ϵ. If T is continuous at all points of E , then it is
said to be continuous.

It is known that if a function h : R+0 → R
+
0 is an homeomorphism, then h(0) = 0 and h is strictly increasing.

So, we have following proposition.

Proposition 1.9. [11] Let (E , d ) be a metric space and (E , ds) be a suprametric space. Let h : R+0 → R
+
0 be an

homeomorphism and that ds = h ◦ d , then;

(i) A continuous mapping with respect to d is continuous with respect to ds.

(ii) A convergent sequence with respect to d converges with respect to ds to the same point.

Definition 1.10. [11] Let (E , ds) be a suprametric space. A sequence {un}n∈N in E is a Cauchy sequence if, for all
ϵ > 0, there exists some k ∈N such that ds (un, um) < ϵ for all n,m ≥ k.
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A suprametric space is complete if every Cauchy sequence is convergent.

Proposition 1.11. [11] If (E , d ) be complete metric spaces and ds is the suprametrics in Example 1.2 then (E , ds) is
a complete suprametric space.

Remark 1.12. [11] Let a sequence {un}n∈N is a Cauchy sequence in a complete suprametric (E , ds), then there exists
z∗ ∈ E such that limn→∞ ds (un, z∗) = 0 and from condition (ds3) follows that every subsequence

{
un(k)

}
k∈N

converges
to z∗.

Lemma 1.13. [11] Every suprametric is continuous.

Banach’s contraction principle in suprametric spaces [11] can be formulated as follows.

Theorem 1.14. [11] Let T be a mapping on a suprametric space (E , ds) into itself and c ∈ [0, 1) such that:

ds(Tu, Tv) ≤ cds(u, v)

where un = Tun−1,n ∈N, satisfying for every u0 ∈ E and for all u, v ∈ E . Then T has a unique fixed point.

Here, we systematically recall contraction mappings and their notations, which we use in the study.
We denote by:

• Ψ the set of continuous and nondecreasing mapping ψ : R+0 → R
+
0 such that ψ(t) = 0 ⇔ t = 0 for

t ∈ R+0 .

• Φ the set of continuous and nondecreasing mapping φ : R+0 → R
+
0 such that φ(t) = 0 ⇔ t = 0 for

t ∈ R+0 .

We next recall the Banach’s contraction principle [9].

Theorem 1.15. (Banach contraction principle) Let (E , d ) be a metric space and self map T be a contraction on E ,
i.e., there exists α ∈ [0, 1) such that

d (Tu, Tv) ≤ αd (u, v), for all u, v ∈ E .

Then T has a unique fixed point.

Later, Khan et al. [27] generalized the Banach results using altering distance functions, as follows;

Theorem 1.16. (ψ-contraction) Let (E , d ) be a metric space and self map T be a ψ-contraction on E , i.e., there exists
ψ ∈ Ψ and α ∈ [0, 1) such that

ψ(d (Tu, Tv)) ≤ αψ(d (u, v)), for all u, v ∈ E .

Then T has a unique fixed point.

Remark 1.17. It is clear that if ψ(t) = t, for t ∈ R+ in Theorem 1.16, Theorem 1.15 will be obtained.

Alber and Guerre-Delabriere [3] first introduced the concept of φ-weakly contractive (or weakly con-
tractive) mappings in Hilbert spaces, which is a generalization of Banach’s contraction. The φ-weakly
contractive mappings are defined later by Rhoades [34], as follows;

Theorem 1.18. (φ-weak contraction) Let (E , d ) be a complete metric space and T be a self mapping on E . Suppose
that T is φ-weak contraction on E , that is, there exists φ ∈ Φ such that

d (Tu, Tv) ≤ d (u, v) − φ(d (u, v)), for all u, v ∈ E .

Then T has a unique fixed point.



S. S. Yeşilkaya / Filomat 37:28 (2023), 9669–9678 9672

Remark 1.19. It is clear that if φ(t) = (1 − k)t, for k ∈ (0, 1) in Theorem 1.18, Theorem 1.15 will be obtained.

Afterwards, Dutta and Choudhurry [18] defined the concept of ψ−φ-weak contraction by generalizing
the contractions given above.

Theorem 1.20. (ψ − φ-weak contraction) Let (E , d ) be a complete metric space and T be a self mapping on E .
Suppose that T is ψ-weak contraction on E , that is, there exists ψ ∈ Ψ and φ ∈ Φ such that

ψ(d (Tu, Tv)) ≤ ψ(d (u, v)) − φ(d (u, v)), for all u, v ∈ E .

Then T has a unique fixed point.

Recently, many researchers introduced interesting fixed point results for weakly contractive mappings.
We refer the reader to [2, 7, 8, 10, 15, 16, 20, 23–26, 29, 36–38].

2. Main Fixed Point Results

Now, we are ready to state and prove our main results.

Theorem 2.1. Let (E , ds) be a complete suprametric space and T be a self mapping on E . Suppose that there exist
ψ ∈ Ψ and φ ∈ Φ such that

ψ(ds(Tu, Tv)) ≤ ψ(ds(u, v)) − φ(ds(u, v)), for all u, v ∈ E . (1)

Then, T has a unique fixed point and for all u0 ∈ E the iterative sequence such that up = Tup−1, p ∈ N converges to
fixed point z of T .

Proof. Let u0 ∈ E be arbitrary and define the sequence up ∈ E as up = Tup−1 for all p ∈N. Given that up , up+1
for every p ∈N. If we take u = up−1 and v = up in condition (1), then we obtain

ψ(ds(up , up+1)) = ψ(ds(Tup−1, Tup)) ≤ ψ(ds(up−1, up)) − φ(ds(up−1, up)), (2)

which implies

ψ(ds(up , up+1)) ≤ ψ(ds(up−1, up)).

Since the monotone property of the ψ function, we get

ds(up , up+1) ≤ ds(up−1, up),

for every p ∈ N. Hence {ds(up , up+1)} is an non increasing sequence and bounded. Then, there exists µ ≥ 0
such that limp→∞ ds(up , up+1) = µ. Now we show that µ = 0, then we assume that µ > 0. We have by taking
p →∞ in (2) that,

ψ(µ) ≤ ψ(µ) − φ(µ),

which is a contradiction and µ = 0, that is

lim
p→∞

ds(up , up+1) = 0. (3)

Next, we want to prove that {up} is a Cauchy sequence. Otherwise there exists ϵ > 0 and subsequence {uqr }

and {upr } of {up} such that for every positive integer r with pr > qr > r ,

ds(upr , uqr ) ≥ ϵ, (4)
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and we have

ds(upr , uqr−1) < ϵ.

Therefore, using (4) and inequality (ds3) for all r ∈N, we have

ds(upr , uqr ) ≤ds(upr , uqr−1) + ds(uqr−1, uqr ) + ρds(upr , uqr−1)ds(uqr−1, uqr )

≤ϵ + ds(uqr−1, uqr ) + ρϵds(uqr−1, uqr ),

letting r →∞ in the above inequality and using (3), we obtain

lim
r→∞

ds(upr , uqr ) = ϵ. (5)

In addition, by using (ds3), we have

ds

(
uqr , upr

)
≤ds

(
uqr , uqr+1

)
+ ds

(
uqr+1, upr

)
+ ρds

(
uqr , uqr+1

)
ds

(
uqr+1, upr

)
≤ ds

(
uqr , uqr+1

)
+ ds

(
uqr+1, upr+1

)
+ ds

(
upr+1, upr

)
+ ρds

(
uqr+1, upr+1

)
ds

(
upr , upr+1

)
+ ρds

(
uqr , uqr+1

)
ds

(
uqr+1, upr

)
≤ ds

(
uqr , uqr+1

)
+ ds

(
uqr+1, upr+1

)
+ ds

(
upr+1, upr

)
+ ρds

(
uqr+1, upr+1

)
ds

(
upr , upr+1

)
+ ρds

(
uqr uqr+1

) (
ds

(
uqr , uqr+1

)
+ ds

(
uqr , upr

)
+ ρds

(
uqr , uqr+1

)
ds

(
uqr , upr

))
or equivalently,((

1 − ρds

(
uqr , uqr+1

)
− ρ2ds

(
uqr , uqr+1

)2)
ds

(
uqr , upr

)
−ds

(
uqr , uqr+1

)
− ds

(
upr+1, upr

)
− ρds

(
uqr , uqr+1

)2) (
1 + ρds

(
upr , upr+1

))−1
≤ ds

(
uqr+1, upr+1

)
.

and

ds

(
uqr+1, upr+1

)
≤ds

(
uqr+1, uqr

)
+ ds

(
uqr ′ upr+1

)
+ ρds

(
uqr ′ uqr+1

)
ds

(
uqr ′ upr+1

)
≤ds

(
uqr+1, uqr

)
+ ds

(
uqr ′ upr

)
+ ds

(
upr , upr+1

)
+ ρds

(
uqr upr

)
ds

(
upr , upr+1

)
+ ρds

(
uqr , uqr+1

)
ds

(
uqr , upr+1

)
≤ds

(
uqr+1, uqr

)
+ ds

(
uqr ′ upr

)
+ ds

(
upr , upr+1

)
+ ρds

(
uqr ′ upr

)
ds

(
upr , upr+1

)
+ ρds

(
uqr , uqr+1

) (
ds

(
uqr , uqr+1

)
+ ds

(
uqr+1, upr+1

)
+ ρds

(
uqr , uqr+1

)
ds

(
uqr+1, upr+1

))
or equivalently,((

1 − ρds

(
uqr , uqr+1

)
− ρ2ds

(
uqr , uqr+1

)2)
ds

(
uqr+1, upr+1

)
≤ ds

(
uqr , uqr+1

)
+ ds

(
upr , upr+1

)
+ ρds

(
uqr , uqr+1

)2
+
(
1 + ρds

(
upr , upr+1

))
ds

(
uqr , upr

)
.

Therefore letting r →∞ in the above inequalities and from (3) and (5) we show that

lim
r→∞

ds(upr+1 , uqr+1 ) = ϵ.

In the condition (1), taking u = upr and v = uqr then we obtain

ψ(ds(Tupr , Tuqr )) ≤ ψ(ds(uqr , upr )) − φ(ds(uqr , upr )),
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using the continuous of ψ and φ and letting r →∞, we show that

ψ(ϵ) ≤ ψ(ϵ) − φ(ϵ),

that is, ϵ = 0, which contradicts the assumption that {up} is not a Cauchy sequence. Hence, the sequence
{up} is a Cauchy sequence and since (E , ds) is a complete suprametric space, so there exists z ∈ T such that
up → z.Now we show that z is a fixed point of T . From the contractive condition and Proposition (1.7) and
Remark (1.12), we get

ψ(ds(Tupr , Tz)) ≤ ψ(ds(upr , z)) − φ(ds(upr , z)),

then letting r →∞, we get ψ(ds(Tz, z)) = 0. Then ds(Tz, z) = 0, Tz = z.
To prove the uniqueness of fixed point, assume that z and z∗ are two different fixed point of T . So, using

the contractive condition and the properties of the functions ψ and φ, we have

ψ(ds(z, z∗)) = ψ(ds(Tz, Tz∗)) ≤ ψ(ds(z, z∗)) − φ(ds(z, z∗)),

which is a contraction with the assumption that z , z∗. Therefore, the fixed point of T is unique.

Theorem 2.2. Let (E , ds) be a complete suprametric space and T be a self mapping on E . Suppose that there exist
ψ ∈ Ψ and φ ∈ Φ such that

ψ(ds(Tu, Tv)) ≤ ψ(max{ds(u, v), ds(Tu, u), ds(Tv , v)}) − φ(max{ds(u, v), ds(Tu, u), ds(Tv , v)}), for all u, v ∈ E .
(6)

Then, T has a unique fixed point and for all u0 ∈ E the iterative sequence such that uϑ = Tuϑ−1, ϑ ∈ N converges to
the fixed point of T .

Proof. Let u0 ∈ E be arbitrary and define the sequence uϑ ∈ E as uϑ = Tuϑ−1 for every ϑ ∈ N. Assume that
uϑ , uϑ+1 for every ϑ ∈N. If we give u = uϑ−1 and v = uϑ in (6), then we deduce

ψ(ds(uϑ, uϑ+1)) = ψ(ds(Tuϑ−1, Tuϑ)) ≤ψ(max{ds(uϑ−1, uϑ), ds(Tuϑ−1, uϑ−1), ds(Tuϑ, uϑ)})
− φ(max{ds(uϑ−1, uϑ), ds(Tuϑ−1, uϑ−1), ds(Tuϑ, uϑ)}). (7)

If max{ds(uϑ−1, uϑ), ds(Tuϑ−1, uϑ−1), ds(Tuϑ, uϑ)} = ds(uϑ, uϑ+1), from (7) we deduce

ψ(ds(uϑ, uϑ+1)) ≤ ψ(ds(uϑ, uϑ+1)) − φ(ds(uϑ, uϑ+1)),

this is imposible so, max{ds(uϑ−1, uϑ), ds(Tuϑ−1, uϑ−1), ds(Tuϑ, uϑ)} = ds(uϑ−1, uϑ). Then, we can write,

ψ(ds(uϑ, uϑ+1)) ≤ ψ(ds(uϑ, uϑ−1)) − φ(ds(uϑ, uϑ−1)),

which implies

ψ(ds(uϑ, uϑ+1)) ≤ ψ(ds(uϑ−1, uϑ)).

From the monotone property of the ψ function, we deduce

ds(uϑ, uϑ+1) ≤ ds(uϑ−1, uϑ),

for every ϑ ∈ N. Hence {ds(uϑ, uϑ+1)} is an non increasing sequence and bounded. Then, there exists ℘ ≥ 0
such that limϑ→∞ ds(uϑ, uϑ+1) = ℘. We obtain that ℘ = 0. We given that ℘ > 0. We have by putting ϑ→∞ in
(7).

ψ(℘) ≤ ψ(℘) − φ(℘),
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which is a contradiction and ℘ = 0, then,

lim
ϑ→∞

ds(uϑ, uϑ+1) = 0. (8)

Similarly, we show that {uϑ} is a Cauchy sequence. Let {uϑ} not a Cauchy sequence, there exists ϵ > 0 and
subsequence {uwj } and {uϑj } of {uϑ} such that for every positive integer j with ϑj > wj > j ,

ds(uϑj , uwj ) ≥ ϵ, (9)

and this show that

ds(uϑj , uwj−1) < ϵ.

Consequently, by using (9) and inequality (ds3) for all j ∈N, we get

ds(uϑj , uwj ) ≤ds(uϑj , uwj−1 ) + ds(uwj−1 , uwj ) + ρds(uϑj , uwj−1 )ds(uwj−1 , uwj )

≤ϵ + ds(uwj−1 , uwj ) + ρϵds(uwj−1 , uwj ),

letting j →∞ in the above inequality and using (8), we obtain

lim
j→∞

ds(uϑj , uwj ) = ϵ. (10)

Also, by from (ds3), we deduce

ds

(
uwj , uϑj

)
≤ds

(
uwj , uwj+1

)
+ ds

(
uwj+1, uϑj

)
+ ρds

(
uwj , uwj+1

)
ds

(
uwj+1, uϑj

)
≤ ds

(
uwj , uwj+1

)
+ ds

(
uwj+1, uϑj+1

)
+ ds

(
uϑj+1, uϑj

)
+ ρds

(
uwj+1, uϑj+1

)
ds

(
uϑj , uϑj+1

)
+ ρds

(
uwj , uwj+1

)
ds

(
uwj+1, uϑj

)
≤ ds

(
uwj , uwj+1

)
+ ds

(
uwj+1, uϑj+1

)
+ ds

(
uϑj+1, uϑj

)
+ ρds

(
uwj+1, uϑj+1

)
ds

(
uϑj , uϑj+1

)
+ ρds

(
uwj uwj+1

) (
ds

(
uwj , uwj+1

)
+ ds

(
uwj , uϑj

)
+ ρds

(
uwj , uwj+1

)
ds

(
uwj , uϑj

))
or equivalently,((

1 − ρds

(
uwj , uwj+1

)
− ρ2ds

(
uwj , uwj+1

)2)
ds

(
uwj , uϑj

)
−ds

(
uwj , uwj+1

)
− ds

(
uϑj+1, uϑj

)
− ρds

(
uwj , uwj+1

)2) (
1 + ρds

(
uϑj , uϑj+1

))−1
≤ ds

(
uwj+1, uϑj+1

)
.

and

ds

(
uwj+1, uϑj+1

)
≤ds

(
uwj+1, uwj

)
+ ds

(
uwj ′ uϑj+1

)
+ ρds

(
uwj ′ uwj+1

)
ds

(
uwj ′ uϑj+1

)
≤ds

(
uwj+1, uwj

)
+ ds

(
uwj ′ uϑj

)
+ ds

(
uϑj , uϑj+1

)
+ ρds

(
uwj uϑj

)
ds

(
uϑj , uϑj+1

)
+ ρds

(
uwj , uwj+1

)
ds

(
uwj , uϑj+1

)
≤ds

(
uwj+1, uwj

)
+ ds

(
uwj ′ uϑj

)
+ ds

(
uϑj , uϑj+1

)
+ ρds

(
uwj ′ uϑj

)
ds

(
uϑj , uϑj+1

)
+ ρds

(
uwj , uwj+1

) (
ds

(
uwj , uwj+1

)
+ ds

(
uwj+1, uϑj+1

)
+ ρds

(
uwj , uwj+1

)
ds

(
uwj+1, uϑj+1

))
or equivalently,((

1 − ρds

(
uwj , uwj+1

)
− ρ2ds

(
uwj , uwj+1

)2)
ds

(
uwj+1, uϑj+1

)
≤ ds

(
uwj , uwj+1

)
+ ds

(
uϑj , uϑj+1

)
+ ρds

(
uwj , uwj+1

)2
+
(
1 + ρds

(
uϑj , uϑj+1

))
ds

(
uwj , uϑj

)
.
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Therefore taking j →∞ in the above inequalities and from (8) and (10) we obtain

lim
j→∞

ds(uϑj+1 , uwj+1 ) = ϵ.

In the contraction (6), putting u = uϑj and v = uwj so we deduce

ψ(ds(Tuϑj , Tuwj )) ≤ψ(max{ds(uwj , uϑj ), ds(Tuwj , uwj ), ds(Tuϑj , uϑj )})

− φ(max{ds(uwj , uϑj ), ds(Tuwj , uwj ), ds(Tuϑj , uϑj )}),

using the continuity of ψ and φ and taking the limit j →∞, we have

ψ(ϵ) ≤ ψ(ϵ) − φ(ϵ),

that is ϵ = 0, which contradicts the suppose that {uϑ} is not a Cauchy sequence. Then, the sequence {uϑ} is
a Cauchy sequence and as (E , ds) is a complete suprametric space, so there exists p ∈ T such that uϑ → p.
We show that p is a fixed point of T . By using the contractive condition and Proposition (1.7) and Remark
(1.12), we get

ψ(ds(Tuϑj , Tp)) ≤ ψ(max{ds(uϑj , p), ds(Tuϑj , uϑj ), ds(Tp, p)}) − φ(max{ds(uϑj , p), ds(Tuϑj , uϑj ), ds(Tp, p)}),

so, j →∞, we get

ψ(ds(Tuϑj , Tp)) ≤ ψ(ds(Tp, p)) − φ(ds(Tp, p)),

hereby, ds(Tp, p) = 0, i.e, Tp = p. To show the uniqueness of fixed point, given that p and p∗ are two different
fixed point of T . So, from contractive condition and the properties of the functions ψ and φ, we get

ψ(ds(p, p∗)) = ψ(ds(Tp, Tp∗)) ≤ψ(max{ds(Tp, Tp∗), ds(Tp, p), ds(Tp∗, p∗)})
− φ(max{ds(Tp, Tp∗), ds(Tp, p), ds(Tp∗, p∗)}),

which is a contraction then, the fixed point of T is unique.

Now, in the Theorem 2.2, by taking ψ(w) = w, we obtain the following the result.

Corollary 2.3. Let (E , ds) be a complete suprametric space and T be a self mapping on E . Suppose that there exists
φ ∈ Φ such that

ds(Tu, Tv) ≤ max{ds(u, v), ds(Tu, u), ds(Tv , v)} − φ(max{ds(u, v), ds(Tu, u), ds(Tv , v)}), for all u, v ∈ E .

Then, T has a unique fixed point and for all u0 ∈ E the iterative sequence such that up = Tup−1, p ∈ N converges to
the fixed point of T .

Now, in the Theorem 2.1, by taking ψ(w) = w, we obtain the following Alber and Guerre-Delabriere
type result in suprametric space.

Corollary 2.4. Let (E , ds) be a suprametric space and T be a self mapping on E . Suppose that there exists φ ∈ Φ
such that

ds(Tu, Tv) ≤ ds(u, v) − φ(ds(u, v)), for all u, v ∈ E .

Then, T has a unique fixed point and for all u0 ∈ E the iterative sequence such that up = Tup−1, p ∈ N converges to
fixed point z of T .

In the Corollary 2.4, putting φ(s) = (1 − k)φ(s), for s ∈ [0,∞), where k ∈ [0, 1). Then, we obtain the
following Khan type result in suprametric space.
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Corollary 2.5. Let (E , ds) be a suprametric space and T be a self mapping on E . Suppose that there exists ψ ∈ Ψ
such that

ψ(ds(Tu, Tv)) ≤ kψ(ds(u, v)), for all u, v ∈ E .

Then, T has a unique fixed point and for all u0 ∈ E the iterative sequence such that up = Tup−1, p ∈ N converges to
fixed point z of T .

Remark 2.6. In the Corollary 2.5, by putting ψ(w) = w, we obtain the Banach Contraction Principle in suprametric
space of Theorem 1.14.

3. Conclusion

We established some fixed point results on suprametric spaces, which is a very new metric generalization.
We prove the existence of a fixed point for the self-mappings satisfying a ψ−φ-weak contractive condition.
Our results extend previous results given by Rhoades [34] and Dutta-Choudhury [18]. In future studies,
some fixed point results can be taken up for other well-known contraction mappings on suprametric spaces.
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