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Fixed point results for a new multivalued Geraghty type contraction via
CG-simulation functions
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Abstract. The aim of this paper is to introduce the new concept of a multivalued Geraghty type contraction
mapping using CG-simulation functions and C-class functions. Additionally, through this type of contrac-
tion, we establish fixed point results that generalize several known fixed point results in the literature. As
consequences, we arrive at fixed point results endowed with graph. To demonstrate the credibility of our
results, we give an example that proves it.

1. Introduction

The concept of fixed point theory is a fundamental tool in solving various mathematical problems.
The Banach contraction principle [1] is a crucial component of metric fixed point theory and has been
extensively studied by numerous scholars due to its practical applications (see, for example, [2–8, 10–
12, 32]). Geraghty [12] introduced a generalization of this principle by utilizing an auxiliary function.
Nadler [13] expanded the Banach contraction principle to include multivalued mappings, which opened
up new avenues for metric fixed point theory. Subsequently, the notion of Banach contraction was extended
through the use of multivalued mappings and the concept of noncompactness measure (refer to [14, 15])
for further details).

The notion ofZ-contraction was first introduced by Khojasteh et al.[16] using a set of control functions
called simulation functions, and a generalized version of Banach contraction principle was presented.
Olgun et al.[17] derived fixed point results for generalized Z-contraction. De-Hierro et al.[18] presented
some coincidence point theorems were obtained by extending the class of simulation functions for a pair
of mappings. Chandok et al.[19] combined the concepts of simulation functions and C-class functions,
resulting in the existence and uniqueness of the point of coincidence, which generalized the results in
[16, 17].

On a different note, Samet et al.[4] introduced the concept of α-admissibility and extended the Banach
contraction principle. Karapinar [20] generalized the results of Samet et al.[4] and Khojasteh et al.[16]
by introducing the notion of α-admissible Z-contraction. Recently, Patel [21] proved some fixed point
theorems for multivalued contractions using generalized simulation functions in α-complete metric spaces.

In 2015, Khojasteh et al.[16] provides a class Θ of functions Z : (R+ ∪ {0})2
→ R which satisfies the

following conditions:
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(Z1) : Z(0, 0) = 0;
(Z2) : Z(ϱ, θ) < θ − ϱ for every ϱ, θ > 0;
(Z3) : If {ϱn}, {θn} are sequences in R+ such that lim

n→∞
ϱn = lim

n→∞
θn > 0 then

lim
n→∞

supZ(ϱn, θn) < 0

called the simulation functions. This function Z was used to define the concept of Z-contraction, which
was then applied to the generalized Banach contraction principle [1] in order to unify various known
contractions that involve the combination of d(Qν,Qµ) and d(ν, µ). Khojasteh et al.[16] established the
following result

Theorem 1.1. [16] Let (Υ, d) be a complete metric space and Q : Υ→ Υ be a mapping satisfying

Z(d(Qν,Qµ), d(ν, µ)) ≥ 0 for every ν, µ ∈ Υ, (1)

where Z ∈ Θ. Then Q possesses a fixed point ν ∈ Υ which is a single and for each ν0 ∈ Υ, the Picard sequence {νn}

where νn = Qνn−1 for all n ∈N converges to ν.

Karapinar [20] established fixed point results in the complete metric spaces by introducing a new
contraction condition using an admissible mapping extended in a simulation function. Hakan [22] et al.
presented a fixed point theorem by introducing a generalized simulation function on a quasi metric space.
Rold’an-L’opez-de-Hierro et al.[18] modified the simulation function by replacing (Z3) with (Z′3), where

(Z′3) : if {ϱn}, {θn} are sequences in R+ such that lim
n→∞

ϱn = lim
n→∞

θn > 0 and ϱn < θn, then

lim
n→∞

supZ(ϱn, θn) < 0.

The simulation function satisfying conditions (Z1), (Z2) and (Z′3) is called simulation function in the sense
of Roldán-López-de-Hierro and is denoted by Ω.

Definition 1.2. [2] A mapping G : (R+ ∪ {0})2
→ R is called a C-class function, if it is continuous and verifies the

following assumptions:

(1) : G(θ, ϱ) ≤ θ;
(2) : G(θ, ϱ) = θ means that either θ = 0 or ϱ = 0, for every θ, ϱ ∈ R+ ∪ {0}.

Definition 1.3. [10] A mapping G : (R+ ∪ {0})2
→ R has the property (CG), if there is CG ≥ 0 with

(G1) : G(θ, ϱ) > CG implies that θ > ϱ;
(G2) : G(ϱ, ϱ) ≤ CG, for each ϱ ∈ R+ ∪ {0}.

Definition 1.4. [10] A mapping ζ : (R+∪{0})2
→ R is called a CG-simulation function, if it is verifies the following

assumptions:

(1) : ζ(ϱ, θ) < G(θ, ϱ) for each ϱ, θ > 0, with G : (R+ ∪ {0})2
→ R is a C-class function which has property (CG);

(2) : if {ϱn}, {θn} two sequences in R+ with lim
n→∞

ϱn = lim
n→∞

θn > 0, and ϱn < θn, then lim
n→∞

sup ζ(ϱn, θn) < CG.

Definition 1.5. [5] Let β : R+ ∪ {0} → (0, 1) that verifies the following condition

for any {bm} ⊂ R
+ and lim

m→∞
β(bm) = 1, implies lim

m→∞
bm = 0+,

such a function is called a Geraghty function.

We deonte the set of Geraghty functions by F .
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Definition 1.6. [12] Let Q : Υ→ Υ be a self-mapping over a metric space (Υ, d). We say that Q is called Geraghty
contraction if there is β ∈ F , such that

d(Qω,Qµ) ≤ β(d(ω, µ))d(ω, µ), for avery ω, µ ∈ Υ.

Theorem 1.7. [12] Let (Υ, d) be a complete metric space andQ : Υ→ Υ is a Geraghty contraction. ThenQ possesses
a unique fixed point ω ∈ Υ, and the sequence {Qnω} converges to ω.

Definition 1.8. [4] Let Q : Υ → Υ be a map and α : Υ2
→ R be a function. Then Q is called α-admissible if

α(ω, µ) ≥ 1 implies that α(Qω,Qµ) ≥ 1.

Definition 1.9. [9] An α-admissible map Q is called triangular α-admissible if α(ω, σ) ≥ 1 and α(σ, µ) ≥ 1 implies
α(ω, µ) ≥ 1, for all ω, µ, σ ∈ Υ.

Cho et al.[23] generalized the notion of Geraghty contraction to a new type of contraction, namely α-
Geraghty contraction and proved the fixed point results for this type of contraction.

Definition 1.10. [23] Let (Υ, d) be a metric space and α : Υ2
→ R be a function. A map Q: Υ → Υ is said to be

α-Geraghty contractive if there is β ∈ F such that, for every ω, µ ∈ Υ,

α(ω, µ)d(Qµ,Qω) ≤ β(d(ω, µ))d(ω, µ).

Theorem 1.11. [23] Let (Υ, d) be a complete metric space and α : Υ×Υ→ R be a function. Define a mapQ : Υ→ Υ
satisfyying the following assumptions:

(1) Q is continuous and α-Geraghty contraction;

(2) Q be a triangular α-admissible;

(3) there is ω1 ∈ Υ with α(ω1,Qω1) ≥ 1.

Then Q possesses a fixed point ω ∈ Υ, and the sequence {Qnω1} converges to ω.

For a non-empty setΥ, if (Υ, d) is a metric space. LetP(Υ) the power set ofΥ and U,V ∈ P(Υ), we define

N(Υ) = P(Υ) \ {∅},
CB(Υ) = {W ∈ N(Υ) : W is closed and bounded },
K (Υ) = {W ∈ N(Υ) : W is compact },

d(µ,W) = inf{d(µ,ω) : µ ∈ Υ and ω ∈W},
d(U,W) = inf{d(µ,ω) : µ ∈ U and ω ∈W},
H(U,W) = max{sup

µ∈U
d(µ,W), sup

ω∈W
d(U, ω)}

Mohammadi et al.[24] introduced the concept of α-admissibility for multivalued mappings as follows

Definition 1.12. [24] Let Υ be a non empty set, Q : Υ→N(Υ) and α : Υ2
→ [0, ∞) be two maps. Then Q is called

an α-admissible whenever for each ω ∈ Υ and µ ∈ Qω

α(ω, µ) ≥ 1⇒ α(µ, σ) ≥ 1, for all σ ∈ Tµ.

Definition 1.13. [25] Let (Υ, d) be a metric space and α : Υ2
→ [0,∞). We say that the space (Υ, d) is α-complete,

if and only if for any Cauchy sequence {ωn} where α(ωn, ωn+1) ≥ 1 for every n ∈N converges in Υ.
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Definition 1.14. [26] Let (Υ, d) be a metric space and α : Υ2
→ R+ ∪ {0} and Q : Υ→ K (Υ) be two maps. Then Q

is called α-continuous multivalued mapping on (K (Υ),H), if for all sequences {ωn} with α(ωn, ωn+1) ≥ 1 for every
n ∈N and lim

n→∞
ωn = ω ∈ Υ, we have lim

n→∞
Qωn = Qω, that is,

lim
n→∞

d(ωn, ω) = 0

and
α(ωn, ωn+1) ≥ 1 for every n ∈N

⇒ lim
n→∞
H(Qωn,Qω) = 0.

Definition 1.15. [21] Let Υ be a nonempty set, Q : Υ → N(Υ) and α : Υ2
→ R+ ∪ {0} be two maps. Then Q is

called a triangular α-admissible if Q is α-admissible which satisfying the following condition

α(ω, µ) ≥ 1
and
α(µ, σ) ≥ 1

 implies that, α(ω, σ) ≥ 1, ∀σ ∈ Qµ.

Lemma 1.16. [21] Let Q : Υ→N(Υ) be a triangular α-admissible mapping. If there is ω0 ∈ Υ and ω1 ∈ Qω0 such
that α(ω0, ω1) ≥ 1. Then for a sequence {ωn}, ωn+1 ∈ Qωn, we get α(ωn, ωm) ≥ 1 for every n,m ∈N with n < m.

Lemma 1.17. [31] Let (Υ, d) be a metric space and {ωn} be a sequence in Υ with

lim
n→∞

d(ωn, ωn+1) = 0. (2)

If {ωn} is not a Cauchy sequence inΥ, then there exists ϵ > 0 and the sequences {mk}, {nk} of positive natural numbers
with nk > mk > k and

lim
k→∞

d(ωmk , ωnk ) = lim
k→∞

d(ωmk , ωnk+1)

= lim
k→∞

d(ωmk−1, ωnk )

= lim
k→∞

d(ωmk−1, ωnk+1)

= lim
k→∞

d(ωmk+1, ωnk+1) = ϵ.

In 2020, Hussain et al.[33] presented a fixed point theorem for a multivalued Geraghty type contractive
mapping via simulation functions along with C-class functions on a metric space.

Definition 1.18. [33] Let (Υ, d) be a metric space and Q : Υ → K (Υ) be a maps, and let α : Υ2
→ R ∪ {0} be a

function. We say that Q is Z(α,G)-Geraghty multivalued contraction with respect to a CG-simulation function ζ if
there exists β ∈ F such that

ζ
(
α(ω, µ)H(Qω,Qµ), β(M(ω, µ))M(ω, µ)

)
≥ CG

for every ω, µ ∈ Υ with ω , µ, where

M(ω, µ) = max
{
d(ω, µ), d(ω,Qω), d(µ,Qµ)

}
.

Theorem 1.19. [33] Let (Υ, d) be a metric space and Q : Υ→ K (Υ) be aZ(α,G)-Geraghty multivalued contraction
satisfying:

(1) : (Υ, d) is an α-complete metric space;

(2) : there are ω0 ∈ Υ and ω1 ∈ Qω0 with α(ω0, ω1) ≥ 1;

(3) : Q is triangular α-admissible;
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(4) : Q is an α-continuous multivalued mapping.

Then Q possesses a fixed point.

The aim of this document is to demonstrate certain fixed point outcomes for a novel form of multivalued
Geraghty contraction using CG-simulation functions featuring C-class functions which is a generalize the
result of the previous Theorem. Furthermore, we provide an illustration to exhibit the credibility of our
findings with a graph. Additionally, as consequences, we demonstrate that several known fixed point
theorems can be easily shown by these main results.

2. Main results

We begin with the following definition:

Definition 2.1. Let (Υ, d) be a metric space and Q : Υ→ K (Υ) be a maps, and let α : Υ2
→ R ∪ {0} be a function.

We say that Q isZ(CG,α)-Geraghty multivalued contraction with respect to a CG-simulation function ζ if there exists
β ∈ F such that

ζ
(
α(ω, µ)H(Qω,Qµ), β(M(ω, µ))M(ω, µ) + L N(ω, µ)

)
≥ CG (3)

for every ω, µ ∈ Υ with ω , µ and L ≥ 0, where

M(ω, µ) = max
{
d(ω, µ), d(ω,Qω), d(µ,Qµ),

d(ω,Qµ) + d(Qω, µ)
2

}
,

N(ω, µ) = min
{
d(ω,Qω), d(µ,Qµ), d(ω,Qµ), d(µ,Qω)

}
.

Theorem 2.2. Let (Υ, d) be a metric space and Q : Υ → K (Υ) be a Z(CG,α)-Geraghty multivalued contraction
satisfying:

(1) : (Υ, d) is an α-complete metric space;

(2) : there are ω0 ∈ Υ and ω1 ∈ Qω0 with α(ω0, ω1) ≥ 1;

(3) : Q is triangular α-admissible;

(4) : Ethier

(4a) : Q is an α-continuous multivalued mapping,
or

(4b) : If {ωn} ⊂ Υ with α(ωn, ωn+1) ≥ 1 for every n ∈N and lim
n→∞

ωn = ω ∈ Υ, then we have α(ωn, ω) ≥ 1 for
every n ∈N.

Then Q possesses a fixed point.

Proof. Let ω0 ∈ Υ and ω1 ∈ Qω0 such that α(ω0, ω1) ≥ 1. If ω0 = ω1 or ω1 ∈ Qω1, then ω1 is a fixed point of
Q and the proof is complete. Assume that ω1 < Qω1. Since Q is Z(CG,α)-Geraghty multivalued contraction
therefore taking ω = ω0 and µ = ω1 in (3), we get

ζ
(
α(ω0, ω1)H(Qω0, Qω1), β(M(ω0, ω1))M(ω0, ω1) + L N(ω0, ω1)

)
≥ CG.

Also we get that there exists ω2 ∈ Qω1, ω2 , ω1 such that

ζ
(
α(ω1, ω2)H(Qω1, Qω2), β(M(ω1, ω2))M(ω1, ω2) + L N(ω1, ω2)

)
≥ CG
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and α-admissibility of Q gives α(ω1, ω2) ≥ 1. Repeating this process, we find that there exists a sequence
{ωn}with initial point ω0 such that ωn+1 ∈ Qωn, ωn , ωn+1, ∀n ≥ 0, we derive

α(ωn, ωn+1) ≥ 1 for all n ∈N ∪ {0}. (4)

By taking ω = ωn and µ = ωn+1 in (3), we get that

ζ
(
α(ωn, ωn+1)H(Qωn, Qωn+1), β(M(ωn, ωn+1))M(ωn, ωn+1) + L N(ωn, ωn+1)

)
≥ CG.

Since Q isZ(CG,α)-Geraghty multivalued contractive, we get

CG ≤ ζ
(
α(ωn, ωn+1)H(Qωn,Qωn+1), β(M(ωn, ωn+1))M(ωn, ωn+1) + L N(ωn, ωn+1)

)
< G
(
β(M(ωn, ωn+1))M(ωn, ωn+1) + L N(ωn, ωn+1), α(ωn, ωn+1)H(Qωn,Qωn+1)

)
Using we get that

α(ωn, ωn+1)H(Qωn, Qωn+1) < β(M(ωn, ωn+1))M(ωn, ωn+1) + L N(ωn, ωn+1). (5)

Since Q is compact, therefore

d(ωn+1, ωn+2) ≤ H(Qωn, Qωn+1). (6)

Thus, from inequalities (5) and (6) we have

d(ωn+1, ωn+2) ≤ α(ωn, ωn+1)H(Qωn, Qωn+1)
≤ β(M(ωn, ωn+1))M(ωn, ωn+1) + L N(ωn, ωn+1)
< M(ωn, ωn+1) + L N(ωn, ωn+1), (7)

On the other hand, we have

M(ωn, ωn+1) = max
{
d(ωn, ωn+1),d(ωn,Qωn), d(ωn+1,Qωn+1),

d(ωn,Qωn+1) + d(ωn+1,Qωn)
2

}
= max

{
d(ωn, ωn+1),d(ωn,Qωn), d(ωn+1,Qωn+1),

d(ωn,Qωn+1)
2

}

Since

1
2

d(ωn,Qωn+1) ≤
1
2

[
d(ωn, ωn+1) + d(ωn+1,Qωn+1)

]
≤ max

{
d(ωn, ωn+1), d(ωn+1,Qωn+1)

}
and

(ωn,Qωn) ≤ d(ωn, ωn+1).

Then

M(ωn, ωn+1) = max
{
d(ωn, ωn+1), (ωn,Qωn) + d(ωn+1,Qωn+1)

}
= max

{
d(ωn, ωn+1), d(ωn+1,Qωn+1)

}
.
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and

N(ωn, ωn+1) =min
{
d(ωn,Qωn), d(ωn+1,Qωn+1), d(ωn,Qωn+1), d(ωn+1,Qωn)

}
=min

{
d(ωn,Qωn), d(ωn+1,Qωn+1), d(ωn,Qωn+1), 0

}
= 0.

If M(ωn, ωn+1) = d(ωn+1,Qωn+1), inequality (7) gives

d(ωn+1, ωn+2) < d(ωn+1,Qωn+1)
≤ d(ωn+1, ωn+2),

a contradiction. Hence M(ωn, ωn+1) = d(ωn, ωn+1) , and consequently from (7), we have

d(ωn+1, ωn+2) < d(ωn, ωn+1) .

Hance for all n ∈ N ∪ {0}, we have d(ωn, ωn+1) > d(ωn+1, ωn+2). Therefore, d(ωn, ωn+1) is a decreasing
sequence of strictly positive real numbers, this implies that there is γ ≥ 0 such that

lim
n→∞

d(ωn, ωn+1) = lim
n→∞

M(ωn, ωn+1) = γ.

Assume that r > 0. So by inequality the (7), we obtain

lim
n→∞

α(ωn, ωn+1)H(Qωn, Qωn+1) = γ (8)

and

lim
n→∞

β(d(ωn, ωn+1))d(ωn, ωn+1) = γ. (9)

Using (3) and (2) of Definition 1.4, we get

CG ≤ lim
n→∞

sup lim
n→∞

sup ζ
(
α(ωn, ωn+1)H(Qωn,Qωn+1), β(M(ωn, ωn+1))M(ωn, ωn+1) + L N(ωn, ωn+1)

)
= lim

n→∞
sup ζ

(
α(ωn, ωn+1)H(Qωn, Qωn+1), β(d(ωn, ωn+1))d(ωn, ωn+1)

)
< CG,

which is absurd, this implies that γ = 0. Now, we prove that {ωn} is a Cauchy sequence. Assume on
contrary that it is not, hence by Lemma 1.17, we have

lim
k→∞

d(ωmk , ωnk ) = lim
k→∞

d(ωmk+1, ωnk+1) = ϵ (10)

and consequently,

lim
k→∞

M(ωmk , ωnk ) = ϵ, (11)

lim
k→∞

N(ωmk , ωnk ) = 0. (12)

Let ω = ωmk , µ = ωnk . Since Q is triangular α-admissible, then by using Lemma 1.16, we have
α(ωmk , ωnk ) ≥ 1. Then by (3),

CG ≤ ζ
(
α(ωmk , ωnk )H(Qωmk ,Qωnk ), β(M(ωmk , ωnk ))M(ωmk , ωnk ) + L N(ωmk , ωnk )

)
= ζ
(
α(ωmk , ωnk )H(Qωmk ,Qωnk ), β(M(ωmk , ωnk ))M(ωmk , ωnk ) + L N(ωmk , ωnk )

)
< G
(
β(M(ωmk , ωnk ))M(ωmk , ωnk ), α(ωmk , ωnk )H(Qωmk + L N(ωmk , ωnk ),Qωnk )

)
.
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On the other hand, we have

d(ωmk+1, ωnk+1) ≤ α(ωmk , ωnk )H(Qωmk , Qωnk )
< β(M(ωmk , ωnk ))M(ωmk , ωnk ) + L N(ωmk , ωnk )
< M(ωmk , ωnk ) + L N(ωmk , ωnk ). (13)

Using (10) and (11) in (13), we get

lim
k→∞

α(ωmk , ωnk )H(Qωmk , Qωnk ) = ϵ,

and

lim
k→∞

β(M(ωmk , ωnk ))M(ωmk , ωnk ) + L N(ωmk , ωnk ) = ϵ.

Therefore using (2) of Definition 1.4 and (3), we get

CG ≤ lim
k→∞

sup ζ
(
α(ωmk , ωnk )H(Qωmk ,Qωnk ), β(M(ωmk , ωnk ))M(ωmk , ωnk ) + L N(ωmk , ωnk )

)
= lim

k→∞
sup ζ

(
α(ωmk , ωnk )H(Qωmk ,Qωnk ), β(M(ωmk , ωnk ))M(ωmk , ωnk ) + L N(ωmk , ωnk )

)
< CG,

which is absurd. This implies that {ωn} is a Cauchy sequence. By using the α-completeness of (Υ, d), there
is ω ∈ Υ with lim

n→∞
ωn = ω.

Case 1: If Q is α-continuity multivalued mapping, from (4a) we deduce

lim
n→∞

α(ωn, ω)H(Qωn,Qω) = 0. (14)

Thus we obtain

d(ω,Qω) = lim
n→∞

d(ωn+1,Qω) ≤ lim
n→∞

α(ωn, ω)H(Qωn,Qω) = 0.

Therefore, ω ∈ Qω and hence Q has a fixed point.

Case 2: If Q is not α-continuous multivalued mapping, from the condition (4b), we can get α(ωn, ω) ≥ 1
for every n ∈N. According to (3), we obtain

CG ≤ ζ
(
α(ωn, ω)H(Qωn,Qω), β(M(ωn, ω))M(ωn, ω) + L N(ωn, ω)

)
< G
(
β(M(ωn, ω))M(ωn, ω) + L N(ωn, ω), α(ωn, ω)H(Qωn,Qω)

)
(15)

implies that

α(ωn, ω)H(Qωn,Qω) ≤ β(M(ωn, ω))M(ωn, ω) + L N(ωn, ω)
< M(ωn, ω) + L N(ωn, ω), (16)

where

M(ωn, ω) = max
{
d(ωn, ω), d(ωn,Qωn), d(ω,Qω),

d(ωn,Qω) + d(Qωn, ω)
2

}
and

N(ωn, ω) = min
{
d(ωn,Qωn), d(ω,Qω), d(ωn,Qω), d(Qωn, ω)

}
.
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Since ωn+1 ∈ Qωn, then d(ωn,Qωn) ≤ d(ωn, ωn+1) and d(ω,Qωn) ≤ d(ω,ωn+1), implies that

lim
n→∞

d(ωn, ωn+1) = 0, implies that lim
n→∞

d(ωn,Qωn) = 0,

lim
n→∞

d(ω,ωn+1) = 0, implies that lim
n→∞

d(ω,Qωn) = 0.

So, we can obtain

lim
n→∞

M(ωn,u) = d(ω,Qω),

lim
n→∞

N(ωn, ω) = 0. (17)

Suppose that d(ω,Qω) > 0. Since we know that d(ωn+1,Qω) ≤ H(Qωn,Qω) and α(ωn, ω) ≥ 1, therefore

d(ωn+1,Qω) ≤ α(ωn, ω)H(Qωn,Qω). (18)

Then, from (18) and (16) we deduce

d(ωn+1,Qω) ≤ α(ωn,u)H(Qωn,Qω)

≤ β
(
M(ωn, ω)

)
M(ωn, ω) + L N(ωn, ω)

< M(ωn, ω) + L N(ωn, ω). (19)

So,

d(ωn+1,Qω)
d(ω,Qω)

≤ β
(
M(ωn, ω)

)M(ωn, ω)
d(ω,Qω)

+ L
N(ωn, ω)
d(ω,Qω)

<
M(ωn, ω) + L N(ωn, ω)

d(ω,Qω)
. (20)

By using (17), (20) and letting n→∞, we get

lim
n→∞

β
(
M(ωn, ω)

)
= 1.

Since β is a Geraghty function, then

lim
n→∞

M(ωn, ω) = 0.

which a contraduction. Therefore, d(ω,Qω) = 0, that is, ω ∈ Qω. The proof is finished.

Theorem 2.3. Let (Υ, d) be a metric space and Q : Υ→ K (Υ) be a maps, such that

ζ
(
α(ω, µ)H(Qω,Qµ), β(Md(ω, µ))Md(ω, µ)

)
≥ CG

for every ω, µ ∈ Υ with ω , µ, L ≥ 0 and

Md(ω, µ) = max
{
d(ω, µ),

d(ω,Qω) + d(µ,Qµ)
2

,
d(ω,Qµ) + d(Qω, µ)

2

}
,

N(ω, µ) = min
{
d(ω,Qω), d(µ,Qµ), d(ω,Qµ), d(µ,Qω)

}
.

Also assume that

(1) : (Υ, d) is an α-complete metric space;

(2) : There are ω0 ∈ Υ and ω1 ∈ Qω0 with α(ω0, ω1) ≥ 1;

(3) : Q is triangular α-admissible;
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(4) : Ethier

(4a) : Q is an α-continuous multivalued mapping,
or

(4b) : If {ωn} ⊂ Υ with α(ωn, ωn+1) ≥ 1, n ∈ N and lim
n→∞

ωn = ω ∈ Υ, then we get α(ωn, ω) ≥ 1 for every
n ∈N.

Then Q possesses a fixed point.

Proof. We have

Md(ω, µ) = max
{
d(ω, µ),

d(ω,Qω) + d(µ,Qµ)
2

,
d(ω,Qµ) + d(Qω, µ)

2

}
≤ max

{
d(ω, µ), d(ω,Qω), d(µ,Qµ),

d(Qω, µ) + d(ω,Qµ)
2

}
≤M(ω, µ).

Therefore, Q is a Z(CG,α)-Geraghty multivalued contraction. As in the proof of Theorem 2.2, we conclude
that Q possesses a unique fixed point.

Theorem 2.4. Let (Υ, d) be a metric space and Q : Υ→ K (Υ) be a maps, such that

α(ω, µ) ≥ 1 ⇒ ζ
(
H(Qω,Qµ), β(E(ω, µ))E(ω, µ) + L N(ω, µ)

)
≥ CG (21)

for every ω, µ ∈ Υ with ω , µ, where L ≥ 0 and

E(ω, µ) = d(ω, µ) + |d(ω,Qω) − d(µ,Qµ)|,

N(ω, µ) = min
{
d(ω,Qω), d(µ,Qµ), d(ω,Qµ), d(µ,Qω)

}
.

Also assume that

(1) : (Υ, d) is an α-complete metric space;

(2) : There are ω0 ∈ Υ and ω1 ∈ Qω0 such that α(ω0, ω1) ≥ 1;

(3) : Q is triangular α-admissible;

(4) : If {ωn} ⊂ Υ with lim
n→∞

d(ωn, ωn+1) = r ∈ R+, then lim
n→∞

d(ωn,Qωn) = r;

(5) : Ethier

(5a) : Q is an α-continuous multivalued mapping,
or

(5b) : If {ωn} ⊂ Υ with α(ωn, ωn+1) ≥ 1, n ∈ N and lim
n→∞

ωn = ω ∈ Υ, then we get α(ωn, ω) ≥ 1 for every
n ∈N.

Then Q possesses a fixed point.

Proof. Let ω0 ∈ Υ and ω1 ∈ Qω0 such that α(ω0, ω1) ≥ 1. If ω0 = ω1 or ω1 ∈ Qω1, then ω1 is a fixed point of
Q and the proof is complete. Assume that ω1 < Qω1. From (21), and taking ω = ω0 and µ = ω1, we get

ζ
(
H(Qω0, Qω1), β(E(ω0, ω1))E(ω0, ω1) + L N(ω0, ω1)

)
≥ CG.



A. Taqbibt et al. / Filomat 37:28 (2023), 9709–9727 9719

Also we get that there exists ω2 ∈ Qω1, ω2 , ω1 such that

ζ
(
H(Qω1, Qω2), β(E(ω1, ω2))E(ω1, ω2) + L N(ω1, ω2)

)
≥ CG

and α-admissibility of Q gives α(ω1, ω2) ≥ 1. Repeating this process, we find that there exists a sequence
{ωn}with initial point ω0 such that ωn+1 ∈ Qωn, ωn , ωn+1∀n ≥ 0, we derive

α(ωn, ωn+1) ≥ 1 for every n ∈N ∪ {0}. (22)

We want to conclude that d(ωn, ωn+1) is decreasing. Assume that

d(ωn, ωn+1) < d(ωn+1, ωn+2). (23)

From (22) and (21), we find that

CG ≤ ζ
(
H(Qωn,Qωn+1), β(E(ωn, ωn+1))E(ωn, ωn+1) + L N(ωn, ωn+1)

)
< G
(
β(E(ωn, ωn+1))E(ωn, ωn+1) + L N(ωn, ωn+1),H(Qωn,Qωn+1)

)
we get that

H(Qωn, Qωn+1) < β(E(ωn, ωn+1))E(ωn, ωn+1) + L N(ωn, ωn+1). (24)

Since Q is compact, therefore

d(ωn+1, ωn+2) ≤ H(Qωn, Qωn+1). (25)

Thus, from inequalities (24) and (25) we have

d(ωn+1, ωn+2) ≤ H(Qωn,Qωn+1)
< β(E(ωn, ωn+1))E(ωn, ωn+1) + L N(ωn, ωn+1)
< E(ωn, ωn+1) + L N(ωn, ωn+1), (26)

On the other hand, we have

E(ωn, ωn+1) = d(ωn, ωn+1) + |d(ωn,Qωn) − d(ωn+1,Qωn+1)|

and

N(ωn, ωn+1) = min
{
d(ωn,Qωn), d(ωn+1,Qωn+1), d(ωn,Qωn+1), d(ωn+1,Qωn)

}
= min

{
d(ωn,Qωn), d(ωn+1,Qωn+1), d(ωn,Qωn+1), 0

}
= 0. (27)

By using (23), we have

E(ωn, ωn+1) = d(ωn, ωn+1) − d(ωn,Qωn) + d(ωn+1,Qωn+1)
≤ d(ωn+1, ωn+2). (28)

Hence, from (28) and inequality (26) turns into

d(ωn+1, ωn+2) ≤ H(Qωn,Qωn+1) (29)
< β(E(ωn, ωn+1))E(ωn, ωn+1) + L N(ωn, ωn+1)
< E(ωn, ωn+1) + L N(ωn, ωn+1)
≤ d(ωn+1, ωn+2), (30)
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a contradiction. Consequently, we conclude that {d(ωn, ωn+1)} is a decreasing sequence . Therefore,
d(ωn, ωn+1) is a decreasing sequence of positive real numbers, hence there is γ ≥ 0 such that

lim
n→∞

d(ωn, ωn+1) = γ.

According to assumption (4), we have lim
n→∞

d(Qωn, ωn) = γ. So,

lim
n→∞

E(ωn, ωn+1) = γ.

Assume that γ > 0. So by inequality (26) and (27), we obtain

lim
n→∞

β(E(ωn, ωn+1)) = 1. (31)

Since β is a Geraghty function, then

lim
n→∞

E(ωn, ωn+1) = 0,

a contradiction and hence γ = 0.
Now, we prove that {ωn} is a Cauchy sequence. Assume on contrary that it is not, then by Lemma 1.17,

we have

lim
k→∞

d(ωmk , ωnk ) = lim
k→∞

d(ωmk+1, ωnk+1) = ϵ (32)

and consequently,

lim
k→∞

E(ωmk , ωnk ) = ϵ. (33)

Let ω = ωmk , µ = ωnk . Since Q is triangular α-admissible, then by using Lemma 1.16, we can obtain
α(ωmk , ωnk ) ≥ 1. Then by (21),

CG ≤ ζ
(
H(Qωmk ,Qωnk ), β(E(ωmk , ωnk ))E(ωmk , ωnk ) + L N(ωmk , ωnk )

)
= ζ
(
H(Qωmk ,Qωnk ), β(E(ωmk , ωnk ))E(ωmk , ωnk ) + L N(ωmk , ωnk )

)
< G
(
β(E(ωmk , ωnk ))E(ωmk , ωnk ) + L N(ωmk , ωnk ),H(Qωmk ,Qωnk )

)
.

So,

H(Qωmk ,Qωnk ) ≤ H(Qωmk ,Qωnk )
< β(E(ωmk , ωnk ))E(ωmk , ωnk ) + L N(ωmk , ωnk )

< E(ωmk , ωnk ) + L N(ωmk , ωnk ). (34)

Using (34), (32) and (33), we get

lim
k→∞
H(Qωmk , Qωnk ) = ϵ,

and

lim
k→∞

β(E(ωmk , ωnk ))E(ωmk , ωnk ) = ϵ.

Therefore using (21) and (2) of Definition 1.4, we get

CG ≤ lim
k→∞

sup ζ
(
H(Qωmk ,Qωnk ), β(E(ωmk , ωnk ))E(ωmk , ωnk ) + L N(ωmk , ωnk )

)
= lim

k→∞
sup ζ

(
H(Qωmk ,Qωnk ), β(E(ωmk , ωnk ))E(ωmk , ωnk ) + L N(ωmk , ωnk )

)
< CG,
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a contradiction. This implires that {ωn} is a Cauchy sequence. By using the α-completeness of (Υ, d), there
is ω ∈ Υ with ωn → ω as n→∞.

Case 1: If Q is α-continuous multivalued mapping, from (5a) we deduce

lim
n→∞
H(Qωn,Qω) = 0.

Thus we obtain

d(ω,Qω) = lim
n→∞

d(ωn+1,Qω) ≤ lim
n→∞
H(Qωn,Qω) = 0.

Therefore, ω ∈ Qω and hence Q has a fixed point.

Case 2: If Q is not α-continuous multivalued mapping, From the condition (5b), we get α(ωn, ω) ≥ 1 for
every n ∈N. According to (21), we have

CG ≤ ζ
(
H(Qωn,Qω), β(E(ωn, ω))E(ωn, ω) + L N(ωn, ω)

)
< G
(
β(E(ωn, ω))E(ωn, ω) + L N(ωn, ω),H(Qωn,Qω)

)
(35)

Using we can get

H(Qωn,Qω) ≤ β(E(ωn, ω))E(ωn, ω) + L N(ωn, ω)
< E(ωn, ω) + L N(ωn, ω), (36)

where

E(ωn, ω) = d(ωn, ω) + |d(ωn,Qωn) − d(ω,Qω)|

and

N(ωn, ω) = min
{
d(ωn,Qωn), d(ω,Qω), d(ωn,Qω), d(Qωn, ω)

}
= min

{
d(ωn, ωn+1), d(ω,Qω), d(ωn,Qω), d(ωn+1, ω)

}
.

Since lim
n→∞

d(ωn, ωn+1) = 0 implies that lim
n→∞

d(ωn,Qωn) = 0. Then, we can obtain

lim
n→∞

E(ωn, ω) = d(ω,Qω) and lim
n→∞

N(ωn, ω) = 0. (37)

Since we know that d(ωn+1,Qω) ≤ H(Qωn,Qω) and α(ωn, ω) ≥ 1, therefore from (36) we deduce

d(ωn+1,Qω) ≤ H(Qωn,Qω)
≤ β(E(ωn, ω))E(ωn, ω) + L N(ωn, ω)
< E(ωn, ω) + L N(ωn, ω). (38)

Suppose that d(ω, Qω) > 0, then from(37), (38) and Letting n→∞, we get

lim
n→∞

β(E(ωn, ω)) = 1,

Since β is a Gerahty function, then

lim
n→∞

E(ωn, ω) = 0,

a contradiction. This implies that d(ω,Qω) = 0, and thus, ω ∈ Qω. the proof is finished.
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Example 2.5. Let Υ = [−3, 3], d(ω, µ) = |ω − µ| and a function

α : Υ2
→ R+ ∪ {0}

(ω, µ) 7→ α(ω, µ) =
{

1 if (ω, µ) ∈ [0, 1]
0 otherwise.

and Q : Υ→ K (Υ) be given by

Qω =



{0} if ω ∈ (−10, 0) ,[
0, 2+ω

4

]
if ω ∈ [0, 1] ,[

ω−3
2 , ω−1

2

]
if ω ∈ (1, 2] ,

{2} if ω ∈ (2, 3) ,

Then the space (Υ, d) is α-complete and Q is α-continuous. Moreover, we have the multivalued mapping Q is a
triangular α-admissible, on the other hand if α(ω, µ) ≥ 1, then for any ω, µ ∈ [0, 1] we can get

Qω = [0,
2 + ω

4
]

Qµ = [0,
2 + µ

4
],

implies that

α(a, b) ≥ 1 for all a ∈ Qω and b ∈ Qµ.

Thus, Q is α-admissible. In addition, if α(ω, µ) ≥ 1, we deduce ω, µ ∈ [0, 1]. So,

ω ∈ [0, 1]

Qµ = [0,
2 + µ

4
].

Let σ ∈ Qµ. Then we can obtain α(µ, σ) ≥ 1.
Finally, For ω ∈ [0, 1] and σ ∈ [0, 2+ω

4 ] we have α(ω, σ) ≥ 1. So the mapping Q is a triangular α-admissible. If
we take ω0 = 1 then the condition (2) of Theorem 2.2 is satisfied. Next, Consider the following mappings

G(θ, ϱ) = θ − ϱ;

ζ(ϱ, θ) =
3
4
ϱ − θ;

β(t) =
1

t + 1
,

for every t, θ, ϱ ∈ R+ ∪ {0}, it is therefore clear that β, G and ζ are functions respectively Geraghty function, C-class
function and CG-simulation function.

Let ω, µ ∈ [0, 1], ω , µ then α(ω, µ) = 1, we are going to assess the values ofH(Qω,Qµ) and

M(ω, µ) = max
{
d(ω, µ), d(ω,Qω), d(µ,Qµ),

d(ω,Qµ) + d(Qω, µ)
2

}
,

N(ω, µ) = min
{
d(ω,Qω), d(µ,Qµ), d(ω,Qµ), d(µ,Qω)

}
.
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And let L ≥ 0. So,

ζ
(
α(ω, µ)H(Qω,Qµ), β(M(ω, µ))M(ω, µ) + L N(ω, µ)

)
=

3
4

[
β(M(ω, µ))M(ω, µ) + L N(ω, µ))

]
− α(ω, µ)H(Qω,Qµ)

=
8
9

[ M(ω, µ)
M(ω, µ) + 1

+ L N(ω, µ))
]

−H(Qω,Qµ) (39)

and

G

(
β(M(ω, µ))M(ω, µ) + L N(ω, µ), α(ω, µ)H(Qω,Qµ)

)
= β(M(ω, µ))M(ω, µ) + L N(ω, µ))

− α(ω, µ)H(Qω,Qµ)

=
M(ω, µ)

M(ω, µ) + 1
+ L N(ω, µ))

−H(Qω,Qµ) (40)

Accoding to (40) and (40), we conclude

0 < ζ
(
α(ω, µ)H(Qω,Qµ), β(M(ω, µ))M(ω, µ) + L N(ω, µ)

)
< G
(
β(M(ω, µ))M(ω, µ) + L N(ω, µ), α(ω, µ)H(Qω,Qµ),

)
(41)

Then, by using the inequality (41) and the Definition 2.1, it is therefore clear that the mapping Q is an Z(α,CG,)-
Geraghty multivalued contraction with CG = 0. Thus the assumptions of Theorem 2.2 are verified. So Q possesses a
fixed points in Υ.

3. Consequences

The concept of GR-contraction on a metric space with a graph GR was introduced by Jachymski [28]
in 2008, along with a fixed point theorem that extends the results of Ran and Reurings [29]. Jachymski’s
results have since been expanded to include multivalued mappings in [30, 31]. In this paper, we explore
the consequences of our primary findings on graphs. To do so, we require several essential notions. We
consider a metric space (Υ, d) and let ∆ = {(ω,ω) : ω ∈ Υ}. We define a graph GR as having verticesV(GR)
equal to Υ and edges E(GR), such that

(ω, µ), (µ,ω) ∈ E(GR), implies that ω = µ.

If the edges have an associated direction, we call GR a directed graph. Now, with the pair
(
V(GR),E(GR)

)
,

we can get the graph GR. We may treat GR as a weighted graph by assigning the distance between its
vertices to each edge.

Definition 3.1. [21] Let a non-empty setΥ equipped with a graph GR, and letQ be a multivalued mapping fromΥ to
N(Υ). IfQ satisfies the condition that for eachω ∈ Υ and µ ∈ Qωwith (ω, µ), (µ, σ) ∈ E(GR), we get (ω, σ) ∈ E(GR)
for all σ ∈ Qµ, then we say that Q is a triangular edge preserving mapping.

Definition 3.2. [21] Let GR be a graph on the metric space (Υ, d), we say that Υ is E(GR)-complete if any Cauchy
sequence {ωn} in Υ with (ωn, ωn+1) ∈ E(GR) for all n ∈N converges in Υ.

Definition 3.3. [21] Let GR is a graph on the metric space (Υ, d). A mappingQ : Υ→ K (Υ) is anE(GR)-continuous
on (K (Υ),H) , if for a given point ω ∈ Υ and a sequence {ωn} with

lim
n→∞

d(ωn, ω) = 0

and
(ωn, ωn+1) ∈ E(GR), ∀n ∈N

 implies that, lim
n→∞
H(Qωn,Qω) = 0.
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Definition 3.4. Let GR is a graph on the metric space (Υ, d). A mapping Q : Υ→ K (Υ) is an E(GR)-ZG-Geraghty
multivalued contraction, if there exist a CG-simulation function ζ and α : Υ2

→ R+ ∪ {0} with

(ω, µ) ∈ E(GR), implies that ζ(α(ω, µ)H(Qω,Qµ), β(d(ω, µ))d(ω, µ)) ≥ CG,

for every ω, µ ∈ Υ.

Corollary 3.5. Let GR is a graph on the metric space (Υ, d), andQ : Υ→ K (Υ) beE(GR)-ZG-Geraghty multivalued
contraction. Assume that the following assumptions hold

(1) : (Υ, d) is an E(GR)-complete metric space;

(2) : there are ω0 ∈ Υ and ω1 ∈ Qω0 with α(ω0, ω1) ∈ E(GR);

(3) : Q is triangular edge preserving;

(4) : Ethier

(4a) : Q is an E(GR)-continuous multivalued mapping,
or

(4b) : If {ωn} ⊂ Υ with α(ωn, ωn+1) ∈ E(GR) for every n ∈ N and lim
n→∞

ωn = ω ∈ Υ, then we get
α(ωn, ω) ∈ E(GR) for every n ∈N.

Then Q possesses a fixed point.

Proof. We define

α : Υ2
→ R+ ∪ {0}

(ω, µ) 7→ α(ω, µ) =
{

1 if (ω, µ) ∈ E(GR)
0 otherwise.

And by taking M(ω, µ) = d(ω, µ). Then all the assumptions for the Theorem 2.2 hold. Thus Q possesses a
fixed point in Υ.

Corollary 3.6. [33] Let (Υ, d) be a metric space and Q : Υ→ K (Υ) be a maps, with

ζ
(
α(ω, µ)H(Qω,Qµ), β(D(ω, µ))D(ω, µ)

)
≥ CG

for every ω, µ ∈ Υ with ω , µ, L ≥ 0 and

D(ω, µ) = max
{
d(ω, µ), d(ω,Qω), d(µ,Qµ)

}
.

Also assume that

(1) : (Υ, d) is an α-complete metric space;

(2) : There are ω0 ∈ Υ and ω1 ∈ Qω0 with α(ω0, ω1) ≥ 1;

(3) : Q is triangular α-admissible;

(4) : Ethier

(4a) : Q is an α-continuous multivalued mapping,
or

(4b) : If {ωn} ⊂ Υ with α(ωn, ωn+1) ≥ 1, n ∈ N and lim
n→∞

ωn = ω ∈ Υ, then we get α(ωn, ω) ≥ 1 for every
n ∈N.
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Then Q possesses a fixed point.

Proof. We have

D(ω, µ) = max
{
d(ω, µ), d(ω,Qω), d(µ,Qµ)

}
≤ max

{
d(ω, µ), d(ω,Qω), d(µ,Qµ),

d(Qω, µ) + d(ω,Qµ)
2

}
=M(ω, µ).

Then, from Theorem 2.2, just taking L = 0.

Corollary 3.7. Let (Υ, d) be a metric space and Q : Υ→ K (Υ) be a maps, with

ζ
(
α(ω, µ)H(Qω,Qµ), β(Dm(ω, µ))Dm(ω, µ)

)
≥ CG

for every ω, µ ∈ Υ with ω , µ, L ≥ 0 and

Dm(ω, µ) = max
{
d(ω, µ),

1
2

(
d(ω,Qω) + d(µ,Qµ)

)}
.

Also assume that

(1) : (Υ, d) is an α-complete metric space;

(2) : There are ω0 ∈ Υ and ω1 ∈ Qω0 with α(ω0, ω1) ≥ 1;

(3) : Q is triangular α-admissible;

(4) : Ethier

(4a) : Q is an α-continuous multivalued mapping,
or

(4b) : If {ωn} ⊂ Υ with α(ωn, ωn+1) ≥ 1, n ∈ N and lim
n→∞

ωn = ω ∈ Υ, then we get α(ωn, ω) ≥ 1 for every
n ∈N.

Then Q possesses a fixed point.

Proof. From Theorem 2.3, just taking L = 0 and we have

Dm(ω, µ) = max
{
d(ω, µ),

d(ω,Qω), d(µ,Qµ)
2

}
≤ max

{
d(ω, µ),

d(ω,Qω), d(µ,Qµ)
2

,
d(Qω, µ) + d(ω,Qµ)

2

}
=Md(ω, µ).

By using the Theorem 2.4 and L = 0, we can get the following result

Corollary 3.8. Let (Υ, d) be a metric space and Q : Υ→ K (Υ) be a maps, such that

α(ω, µ) ≥ 1 ⇒ ζ
(
H(Qω,Qµ), β(E(ω, µ))E(ω, µ)

)
≥ CG

for every ω, µ ∈ Υ with ω , µ, where L ≥ 0 and

E(ω, µ) = d(ω, µ) + |d(ω,Qω) − d(µ,Qµ)|.

Also assume that
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(1) : (Υ, d) is an α-complete metric space;

(2) : There exist ω0 ∈ Υ and ω1 ∈ Qω0 such that α(ω0, ω1) ≥ 1;

(3) : Q is triangular α-admissible;

(4) : If {ωn} ⊂ Υ with lim
n→∞

d(ωn, ωn+1) = r ∈ R+, then lim
n→∞

d(ωn,Qωn) = r;

(5) : Ethier

(5a) : Q is an α-continuous multivalued mapping,
or

(5b) : If {ωn} ⊂ Υ with α(ωn, ωn+1) ≥ 1, n ∈ N and lim
n→∞

ωn = ω ∈ Υ, then we get α(ωn, ω) ≥ 1 for every
n ∈N.

Then Q possesses a fixed point.
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