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A generalized quaternionic sequence with Vietoris' number
components
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Abstract. In this investigation, the aim is to determine a generalized quaternionic sequence with Vietoris'
number components depending on 2-parameters α and β. Considering specific real values α and β, various
types of classical quaternionic sequence with Vietoris' number components can be obtained as real, split,
split-semi and so on. The fundamental algebraic structures, several classical expressions, a two and three
term recurrence relations are identified, as well as Catalan-like, generating function and Binet-like formulas.
Furthermore, a determinantal approach is used to generate the generalized quaternionic sequence with
Vietoris' number components.

1. Backgrounds and Motivations

Classical number sequences focus on the study of and applications of integer sequences. But at the
same time, we also have rational sequences. Integer sequences are a special case of rational sequences.
The Vietoris' sequence of rational numbers can be considered on a set of Appell polynomials several
hypercomplex variables in [5]. For more details of Appell polynomials we refer to the reader to [28–30].
The recent studies of the Vietoris' number sequence are [2–5, 7, 8, 13, 27, 32, 33]. The classical works of the
Vietoris' number sequence are for combinatorial properties [33] and for some interesting generalizations
of combinatorial properties [27]. The inspiration and starting points of this paper are recent works: [7, 8].
In their distinguished paper [8], the authors examined in detail some properties of the Vietoris' sequence
whose some of them with the use of the Catalan’s sequence properties, and gave special type of matrices
to generate this rational sequence.

Now, let us make an overview of the Vietoris' number sequence {vn}n≥0. The n-th element is of the
compact form

vn =
1
2n

(
n⌊
n
2

⌋ )
, n ≥ 0,

where
(

n⌊
n
2

⌋ )
is the central binomial coefficient, [13]. Here, the notation ⌊, ⌋ represents the floor function.

Even elements of {vn}n≥0 are given by: v2n =
1

22n

(
2n
n

)
, n ≥ 0, where v2n−1 = v2n, [32]. The first several
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values of this sequence are (related with the sequence A283208 in [26]):

1,
1
2
,

1
2
,

3
8
,

3
8
,

5
16
,

5
16
,

35
128
,

35
128
,

63
256
,

63
256
, ...

The two term recurrence relation for {v2n}n≥0 is given by the following identity:

v2n+2 = d(2n)v2n, n ≥ 0, (1)

where d(k) = k+1
k+2 , k ≥ 0. Hence one can see v2n in terms of any v2k as follows:

v2n =

n−k∏
l=1

d(2n − 2l)v2k, n > k, (2)

or in terms of v0 as

v2n+2 =

n∏
i=0

d(2i)v0 =
(2n + 1)!!
(2n + 2)!!

, (3)

[7, 8]. The three consecutive term recurrence relation is:

v2n+2 =
1
2

v2n+1 +
1
2

d (2n) v2n, (4)

and the three term consecutive with even index recurrence relation is:

v2n+2 =
1
2

d (2n) v2n +
1
2

d (2n) d (2n − 2) v2n−2. (5)

The generating function is (see [5]):

1(x) =

√
1 + x −

√
1 − x

x
√

1 − x
=

∞∑
s=0

vsxs, 0 < |x| < 1. (6)

The Binet’s like formula is given by:

v2n = c1 (2n) r2n
1 (2n) + c2 (2n) r2n

2 (2n) , (7)

where

r1 (2n) =
1
4

(
1 −

√
1 + 8d(2n)

)
, r2 (2n) =

1
4

(
1 +

√
1 + 8d(2n)

)
(8)

and 
c1 (2n) =

r2n
2 (2n) − v2

r2n
2 (2n) − r2n

1 (2n)

n−1∏
k=1

(2r1(2k) − 1)r1(2k),

c2 (2n) =
v2 − r2n

1 (2n)

r2n
2 (2n) − r2n

1 (2n)

n−1∏
k=1

(2r2(2k) − 1)r2(2k).
(9)

Some basic properties of r1 and r2 are r2(0) = 1+
√

5
4 is half of the golden ratio1), r1(2n) + r2(2n) = 1

2 and
r1(2n)r2(2n) = − 1

2 d(2n), (see [7]).

1)The ratios of sequential Fibonacci numbers approach the golden ratio.
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In the literature, a number of authors have studied the properties of hypercomplex numbers with diverse
sequences components in many points of view. Some recent studies on quaternions with special sequences
are [1, 7, 11, 15–17]. The quaternions have many applications in robotics, computer visualisation, navigation,
mechanisms, engineering and many other areas via rotation and orientation. For example, the quaternions
can be used for efficient calculations of the position of a rotated aircraft and spacecraft in space. Moreover,
the quaternions offers a basic and extensive representations of signals for the simultaneous control of several
components. The Fourier transform2), which is the integral transform, has been extended to the quaternions.
The Fourier transform is particularly relevant to physics, navigation and signal processing. Especially,
the special affine Fourier transform (SAFT for short) has a crucial role of the effective representation
of quaternion-valued signals and significant uses in a variety of image and processing, edge detection,
sampling theory, radar and optical systems, communication and electrical systems, speech recognition,
pattern recognition, data compression and analyzing temporary signals. Since, the quaternions are non-
commutative, there are three type of SAFT in [19]. The paper [31] works on the short-time SAFT as part
of 2-dimensional real quaternion-valued signals, which the readers can find some other presumably novel
directions of further researches.

Let us present some preliminary definitions and known results related to generalized quaternions. A
generalized quaternion is of the following form:

q = q0 + q1i + q2j + q3k,

where q0, q1, q2, q3 ∈ R and i, j, k are the non-real quaternionic units, obeying the following multiplication
rules:

i2 = −α, j2 = −β, k2 = −αβ, ij = −ji = k, jk = −kj = βi, ki = −ik = αj, (10)

where α, β ∈ R. It can also be written as q = (q0, q1, q2, q3), where q0 is the scalar (real) part and denoted
by Sq and (q1, q2, q3) is the 3-vector (pure) part and denoted by Vq. The quaternion conjugate is given by
q = Sq − Vq. The addition of two generalized quaternions is defined component-wise, whereas the product
of two generalized quaternions is, also a generalized quaternion, calculated by:

qp =
(
q0 + q1i + q2j + q3k

) (
p0 + p1i + p2j + p3k

)
=

(
q0p0 − αq1p1 − βq2p2 − αβq3p3

)
+

(
q0p1 + q1p0 + βq2p3 − βq3p2

)
i

+
(
q0p2 − αq1p3 + q2p0 + αq3p1

)
j +

(
q0p3 + q1p2 − q2p1 + q3p0

)
k.

The norm is denoted by ||, || and defined in a similar way as complex numbers, ||q||2 = qq = qq. The inverse of
q is defined as q = q

||q||2 , ||q||
2 , 0. The generalized quaternions form an associative and a non-commutative

algebra of dimension four over R and include other well-known 4-dimensional algebras as special cases,
[9, 10, 12, 14, 18, 20, 22–25]. For α = β = 1 real, for α = 1, β = −1 split, for α = 1, β = 0 semi, for α = −1, β = 0
split-semi and for α = β = 0 quasi quaternions are obtained.

If a quaternion algebra is discussed from the viewpoint of Vietoris' sequence, Catarino and Almeida have
introduced the real quaternion sequence with Vietoris' numbers, see [7]. They have presented fundamental
two and three terms recurrence formulas and examined the determinant of some tridiagonal matrices with
the quaternionic Vietoris' sequence, in [7]. Taking all these quite details into account, a natural question
to ask is if the paper [7] can be generalized. Our main interest in this paper is to develop the generalized
quaternionic sequence with Vietoris' number components to make this generalization. To do this, the article
is organized as follows. In Section 2, the Vietoris' generalized quaternionic sequence is examined in-depth
and in Section 3 this sequence is generated by an determinantal approach.

2. The Vietoris Generalized Quaternionic Sequence {Qs}s≥0

Now, let us introduce some notations that are used in our main results.

2)The Fourier transform converts a function of time, to a function of frequency. The affine transform includes translations, rotations,
reflections, scalings, shears, etc., as well as their combinations, forming an affine group.
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Definition 2.1. The set of generalized quaternions with Vietoris' number components is denoted by Qαβ and the
mathematical expression is of the form

Qs = vs + vs+1i + vs+2j + vs+3k, s ≥ 0, (11)

where vs is the s-th element of the Vietoris’ number and the quaternionic units satisfy the conditions in equation (10).
An equivalent definition similar to the Cayley–Dickson form is that

Qs = qs + qs+2j, (12)

where qs = vs + vs+1i.

The first five Vietoris' generalized quaternionic numbers are

Q0 = 1 + 1
2 i + 1

2 j + 3
8 k, Q1 =

1
2 +

1
2 i + 3

8 j + 3
8 k, Q2 =

1
2 +

3
8 i + 3

8 j + 5
16 k,

Q3 =
3
8 +

3
8 i + 5

16 j + 5
16 k, Q4 =

3
8 +

5
16 i + 5

16 j + 35
128 k, Q5 =

5
16 +

5
16 i + 35

128 j + 35
128 k.

Since v2n−1 = v2n, the even and odd indexed numbers of {Qs}s≥0 can be examined in detail. For s = 2n,
we have

Q2n = q2n + q2n+2j = v2n + v2n+2 (i + j) + v2n+4k. (13)

Applying equation (1), equation (13) also can be rewritten as:

Q2n = v2n (1 + d(2n)i + d(2n)j + d(2n)d(2n + 2)k) = v2nX(2n), (14)

where X(2n) = 1 + d(2n)i + d(2n)j + d(2n)d(2n + 2)k. Additionally, for s = 2n + 1, we obtain

Q2n+1 = q2n+1 + q2n+3j = 2q1 (v2n+2 + v2n+4j) = v2n+2 (1 + i) + v2n+4 (j + k) (15)

and it is rewritten as:

Q2n+1 = v2nd(2n) (1 + i + d(2n + 2) (j + k)) = v2n+2Y(2n + 2), (16)

where Y(2n + 2) = 1 + i + d(2n + 2)j + d(2n + 2)k.

Lemma 2.2. Let {Qs}s≥0 be the Vietoris' generalized quaternionic sequence. Then,

Q2n+1 =
(2n + 1)!!
(2n + 2)!!

Y(2n + 2), (17)

and

Q2n+2 =
(2n + 1)!!
(2n + 2)!!

X(2n + 2). (18)

Proof. It follows directly from equation (3), (14) and (16).

Remark 2.3. Using Lemma 2.2, all statements can also be recalculated as this form.

By using operations over generalized quaternion algebra, basic arithmetic operations can be given in a
standard way.

Theorem 2.4. Let {Qs}s≥0 be the Vietoris' generalized quaternionic sequence. Then we have:

lim
n→∞

Q2n−1

v2n
= lim

n→∞

Q2n

v2n
= lim

n→∞

Q2n+1

v2n
= lim

n→∞

Q2n+2

v2n
= 1 + i + j + k. (19)
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Proof. Taking equation (1) and the relation d(k) = k+1
k+2 into account, the proof is straightforward.

Proposition 2.5. Let {Qs}s≥0 be the Vietoris' generalized quaternionic sequence. Then the followings hold:

(i) Q2n +Q2n+1 =v2n [1 + d(2n) + 2d(2n)i + d(2n)(1 + d(2n + 2))j +2d(2n)d(2n + 2)k] ,

(ii) Q2n −Q2n+1 = v2n [1 − d(2n) + d(2n)(1 − d(2n + 2))j],

(iii) Q2n +Q2n−1 = v2n [2 + (d(2n) + 1)i + 2d(2n)j + d(2n)(d(2n + 2) + 1)k],

(iv) Q2n −Q2n−1 = v2n [(d(2n) − 1)i + d(2n)(d(2n + 2) − 1)k],

(v) Q2n+1 +Q2n−1 = v2n [(d(2n) + 1)(1 + i) + d(2n)(d(2n + 2) + 1)(j + k)],

(vi) Q2n+1 −Q2n−1 = v2n [(d(2n) − 1)(1 + i) + d(2n)(d(2n + 2) − 1)(j + k)],

(vii) Q2n +Q2n+2 =v2n [(1 + d(2n)) + d(2n)(d(2n + 2) + 1)(i + j) +d(2n)d(2n + 2)(d(2n + 4) + 1)k] ,

(viii) Q2n+2 −Q2n =v2n [(d(2n) − 1) + d(2n)(d(2n + 2) − 1)(i + j) +d(2n)d(2n + 2)(d(2n + 4) − 1)k] .

Proof. To prove items, we use equations (1), (14) and (16).

Theorem 2.6. Let {Qs}s≥0 be the Vietoris' generalized quaternionic sequence. Then, the following relations are
satisfied:

(i) Q2n −Q2n+1i −Q2n+2j −Q2n+3k = v2n + αv2n+2 + βv2n+4 + αβv2n+6,

(ii) Q2n+1 −Q2n+2i −Q2n+3j −Q2n+4k = v2n+2 + αv2n+4 + βv2n+6 + αβv2n+8,

(iii) ||Q2n||
2 = v2

2n

[
1 + d2(2n)(α + β + αβd2(2n + 2))

]
,

(iv) ||Q2n+1||
2 = v2

2n+2(1 + α)(1 + βd2(2n + 2)),

(v) Qs +Qs = 2vs,

(vi) Q2
s + ||Qs||

2 = 2vsQs.

Proof. (ii) From equations (10) and (14), and considering definition of norm, we obtain:

||Q2n||
2 = v2

2nX2nX2n
= v2

2n (1 + d(2n)i + d(2n)j + d(2n)d(2n + 2)k) (1 − d(2n)i − d(2n)j − d(2n)d(2n + 2)k)
= v2

2n

[
1 + d2(2n)(α + β + αβd2(2n + 2))

]
.

The other items can be shown easily and left to the readers.

Proposition 2.7. Let {Qs}s≥0 be the Vietoris' generalized quaternionic sequence. Then, the following properties can
be given:

(i) Q2nQ2m −Q2nQ2m = 2v2nv2m

(
VX(2n) + VX(2m)

)
,

(ii) Q2nQ2m+1 −Q2nQ2m+1 = 2v2nv2m+2

(
VX(2n) + VY(2m+2)

)
,

(iii) Q2n+1Q2m −Q2n+1Q2m = 2v2n+2v2m

(
VY(2n+2) + VX(2m)

)
,

(iv) Q2n+1Q2m+1 −Q2n+1Q2m+1 = 2v2n+2v2m+2

(
VY(2n+2) + VY(2m+2)

)
,

(v) Q2nQ2m −Q2nQ2m = 2v2nv2m

(
VX(2n) − VX(2m)

)
,
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(vi) Q2nQ2m+1 −Q2nQ2m+1 = 2v2nv2m+2

(
VX(2n) − VY(2m+2)

)
,

(vii) Q2n+1Q2m −Q2n+1Q2m = 2v2n+2v2m

(
VY(2n+2) − VX(2m)

)
,

(viii) Q2n+1Q2m+1 −Q2n+1Q2m+1 = 2v2n+2v2m+2

(
VY(2n+2) − VY(2m+2)

)
.

Proof. (ii) Considering equations (14) and (16), we have:

Q2nQ2m+1 −Q2nQ2m+1 = v2nX(2n)v2m+2Y(2m + 2) − v2nX(2n)v2m+2Y(2m + 2)
= 2v2nv2m+2 (1 + d(2n))i + (d(2n) + d(2m + 2))j
+(d(2n)d(2n + 2) + d(2m + 2))k)
= 2v2nv2m+2

(
VX(2n) + VY(2m+2)

)
.

The other items can be proved similarly.

Proposition 2.8. Let {Qs}s≥0 be the Vietoris' generalized quaternionic sequence. Let us write another useful conju-
gation of Qs = qs + qs+2j ∈ Qαβ as Q∗s = q∗s − q∗s+2j, where q∗s = vs − vs+1i. By considering this form, we can write the
following:

(i) Q2n +Q∗2n = 2v2n (1 + d(2n)d(2n + 2)k),

(ii) Q2n −Q∗2n = 2v2nd(2n) (i + j),

(iii) Q2n+1 +Q∗2n+1 = 2v2nd(2n) (1 + d(2n + 2)k),

(iv) Q2n+1 −Q∗2n+1 = 2v2nd(2n) (i + d(2n + 2)j),

(v) Q2n +Q∗2n+1 =v2n [1 + d(2n) + d(2n)(1 − d(2n + 2))j +2d(2n)d(2n + 2)k] ,

(vi) Q2n −Q∗2n+1 = v2n [1 − d(2n) + 2d(2n)i + d(2n)(1 + d(2n + 2))j],

(vii) Q2n +Q∗2n−1 = v2n [2 + (d(2n) − 1)i + d(2n)(1 + d(2n + 2))k],

(viii) Q2n −Q∗2n−1 = v2n [(d(2n) + 1)i + 2d(2n)j + d(2n)(d(2n + 2) − 1)k],

(ix) Q2n+1 +Q∗2n−1 =v2n [1 + d(2n) + (d(2n) − 1)i + d(2n)(d(2n + 2) − 1)j +d(2n)(d(2n + 2) + 1)k] ,

(x) Q2n+1 −Q∗2n−1 =v2n [d(2n) − 1 + (d(2n) + 1)i + d(2n)(d(2n + 2) + 1)j +d(2n)(d(2n + 2) − 1)k] .

Proof. (vi) It is easy to see:

Q2n −Q∗2n+1 = v2n (1 + d(2n)i + d(2n)j + d(2n)d(2n + 2)k) − v2nd(2n) (1 − i − d(2n + 2)j + d(2n + 2)k)
= v2n [1 − d(2n) + 2d(2n)i + d(2n)(1 + d(2n + 2))j] .

Similarly, the proofs of the other parts are simple calculations so we can omit it.

2.1. The recurrence relations
In the next four theorems, two term recurrence relations are introduced.

Theorem 2.9. Let {Qs}s≥0 be the Vietoris' generalized quaternionic sequence and Y(2n + 2)Y(2n + 2) , 0. Then,

Q2n+2 = Q2n+1ΦR(2n + 2) = ΦL(2n + 2)Q2n+1, (20)

where
ΦR(2n + 2) =

Φ0 +Φ1i + αΦ2j +Φ3k
(1 + α)(1 + βd2(2n + 2))

,

ΦL(2n + 2) =
Φ0 +Φ4i − αΦ2j +Φ2k
(1 + α)(1 + βd2(2n + 2))

,
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with 
Φ0 = 1 + αd(2n + 2) + βd2(2n + 2)(1 + αd(2n + 4)),
Φ1 = −1 + d(2n + 2) + βd2(2n + 2)(1 − d(2n + 4)),
Φ2 = d(2n + 2)(d(2n + 4) − d(2n + 2)),
Φ3 = d(2n + 2)(−2 + d(2n + 2) + d(2n + 4)),
Φ4 = −1 + d(2n + 2) + βd2(2n + 2)(d(2n + 4) − 1).

Proof. We sketch the steps and leave the details to the reader. From equations (14) and (16), we get:

Q2n+2 = v2n+2X(2n + 2) = v2n+2Y(2n + 2) Y(2n+2)
Y(2n+2)Y(2n+2)

X(2n + 2) = Q2n+1ΦR(2n + 2),

where ΦR(2n + 2) =
Y(2n + 2)X2n+2

Y(2n + 2)Y(2n + 2)
=
Φ0 +Φ1i + αΦ2j +Φ3k
(1 + α)(1 + βd2(2n + 2))

. A similar proof can be used to verify the

other case.

Theorem 2.10. Let {Qs}s≥0 be the Vietoris' generalized quaternionic sequence and X(2n)X(2n) , 0. Then,

Q2n+1 = Q2nΨR(2n) = ΨL(2n)Q2n, (21)

where
ΨR(2n) = d(2n)

Ψ0 +Ψ1i +Ψ2j +Ψ3k
1 + d2(2n)(α + β + αβd2(2n + 2))

,

ΨL(2n) = d(2n)
Ψ0 +Ψ4i +Ψ2j +Ψ2k

1 + d2(2n)(α + β + αβd2(2n + 2))
,

with 
Ψ0 = 1 + αd(2n) + βd(2n)d(2n + 2)(1 + αd(2n + 2)),
Ψ1 = 1 − d(2n) + βd(2n)d(2n + 2)(−1 + d(2n + 2)),
Ψ2 = d(2n + 2) − d(2n),
Ψ3 = d(2n) + d(2n + 2) − 2d(2n)d(2n + 2),
Ψ4 = 1 − d(2n) + βd(2n)d(2n + 2)(1 − d(2n + 2)).

Proof. Considering equations (14) and (16), we obtain

Q2n+1 = v2n+2Y(2n + 2) = d(2n)Y(2n + 2) X(2n)
X(2n)X(2n)

X(2n)v2n = ΨL(2n)Q2n,

whereΨL(2n) = d(2n)
Ψ0 +Ψ4i +Ψ2j +Ψ2k

1 + d2(2n)(α + β + αβd2(2n + 2))
. The other case can be proved by using similar argu-

ments.

With the help of equations (14) and (16), the following two theorems can be proved similarly.

Theorem 2.11. Let {Qs}s≥0 be the Vietoris' generalized quaternionic sequence and X(2n)X(2n) , 0. Then,

Q2n+2 = Q2nΘR(2n) = ΘL(2n)Q2n, (22)

where
ΘR(2n) = d(2n)

Θ0 +Θ1i +Θ2j +Θ3k
1 + d2(2n)(α + β + αβd2(2n + 2))

,

ΘL(2n) = d(2n)
Θ0 +Θ4i +Θ5j +Θ3k

1 + d2(2n)(α + β + αβd2(2n + 2))
,
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with 

Θ0 = 1 + d(2n)d(2n + 2)(α + β + αβd(2n + 2)d(2n + 4)),
Θ1 = −d(2n) + d(2n + 2) + βd(2n)d(2n + 2)(d(2n + 2) − d(2n + 4)),
Θ2 = −d(2n) + d(2n + 2) + αd(2n)d(2n + 2)(d(2n + 4) − d(2n + 2)),
Θ3 = −d(2n + 2)(d(2n) − d(2n + 4)),
Θ4 = −d(2n) + d(2n + 2) − βd(2n)d(2n + 2)(d(2n + 2) − d(2n + 4)),
Θ5 = −d(2n) + d(2n + 2) − αd(2n)d(2n + 2)(d(2n + 4) − d(2n + 2)).

Theorem 2.12. Let {Qs}s≥0 be the Vietoris' generalized quaternionic sequence and Y(2n)Y(2n) , 0. Then,

Q2n+1 = Q2n−1ΩR(2n) = ΩL(2n)Q2n−1, (23)

where
ΩR(2n) = d(2n)

Ω0 +Ω1j
(1 + α)(1 + βd2(2n))

,

ΩL(2n) = d(2n)
Ω0 +Ω2j +Ω3k

(1 + α)(1 + βd2(2n))
,

with 
Ω0 = (1 + α)(1 + βd(2n)d(2n + 2)),
Ω1 = (1 + α)(−d(2n) + d(2n + 2)),
Ω2 = (1 − α)(−d(2n) + d(2n + 2)),
Ω3 = −2(d(2n) − d(2n + 2)).

In the sequel, we always assume ΦR,ΨR,ΘR and ΩR are the functions in Theorems 2.9–2.12. These
functions are the key concepts of this paper.

Theorem 2.13. Let {Qs}s≥0 be the Vietoris' generalized quaternionic sequence. Then, a three consecutive term
recurrence relation is

Qs+1 = QsΛ1(s) +Qs−1Λ0(s − 1),

where

Λ1(s) =
{

1
2ΨR(s), s = 2n
1
2ΦR(s + 1), s = 2n + 1

and Λ0(s − 1) =
{

1
2ΩR(s), s = 2n
1
2ΘR(s − 1) s = 2n + 1.

Proof. The proof is a simple calculation by using Theorems 2.9–2.12 and a relation Qs+1 =
1
2 Qs+1 +

1
2 Qs+1. So

we can omit it.

Theorem 2.14. Let {Qs}s≥0 be the Vietoris' generalized quaternionic sequence. Then, a three consecutive term with
even and odd indexes recurrence relation is

Qs+2 = QsΓ1(s) +Qs−2Γ0(s − 2),

where

Γ1(s) =
{

1
2ΘR(s), s = 2n
1
2ΩR(s + 1), s = 2n + 1

and Γ0(s − 2) =
{
ΘR(s − 2)Γ1(s), s = 2n
ΩR(s − 1)Γ1(s) s = 2n + 1.
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Proof. Let s = 2n, then we have Q2n+2 = v2n+2X(2n + 2). Using equation (5), we have

Q2n+2 =
(

1
2 d(2n)v2n +

1
2 d(2n)d(2n − 2)v2n−2

)
X(2n + 2)

= 1
2 v2nX(2n)d(2n) X(2n)

X(2n)X(2n)
X(2n + 2)

+ 1
2 v2n−2X(2n − 2)d(2n)d(2n − 2) X(2n−2)

X(2n−2)X(2n−2)
X(2n + 2)

= 1
2 Q2nd(2n) X(2n)

X(2n)X(2n)
X(2n + 2)

+ 1
2 Q2n−2

[
d(2n − 2) X(2n−2)

X(2n−2)X(2n−2)
X(2n)

] [
d(2n) X(2n)

X(2n)X(2n)
X(2n + 2)

]
= 1

2 Q2nΘR(2n) + 1
2 Q2n−2ΘR(2n − 2)ΘR(2n)

= Q2nΓ1(2n) +Q2n−2Γ0(2n − 2).

Let s = 2n + 1, then we have Q2n+3 = v2n+4Y(2n + 4). From equation (5), we get

Q2n+3 =
(

1
2 d(2n + 2

)
v2n+2 +

1
2 d(2n + 2)d(2n)v2n)Y(2n + 4)

= 1
2 v2n+2Y(2n + 2)d(2n + 2) Y(2n+2)

Y(2n+2)Y(2n+2)
Y(2n + 4)

+ 1
2 v2nY(2n)d(2n + 2)d(2n) Y(2n)

Y(2n)Y(2n)
Y(2n + 4)

= 1
2 Q2n+1d(2n + 2) Y(2n+2)

Y(2n+2)Y(2n+2)
Y(2n + 4)

+ 1
2 Q2n−1

[
d(2n) Y(2n)

Y(2n)Y(2n)
Y(2n + 2)

] [
d(2n + 2) Y(2n+2)

Y(2n+2)Y(2n+2)
Y(2n + 4)

]
= 1

2 Q2n+1ΩR(2n + 2) + 1
2 Q2n−1ΩR(2n)ΩR(2n + 2)

= Q2n+1Γ1(2n + 1) +Q2n−1Γ0(2n − 1).

Theorem 2.15. Let {Qs}s≥0 be the Vietoris' generalized quaternionic sequence. The following order-2 relations hold:

(i) Q2n+1Q2n+2 = Q2
2n+1ΦR(2n + 2),

(ii) Q2nQ2n+1 = Q2
2nΨR(2n),

(iii) Q2nQ2n+2 = Q2
2nΘR(2n),

(iv) Q2n−1Q2n+1 = Q2
2n−1ΩR(2n),

(v) Q2n+2Q2n+1 = ΦL(2n + 2)Q2
2n+1,

(vi) Q2n+1Q2n = ΨL(2n)Q2
2n,

(vii) Q2n+2Q2n = ΘL(2n)Q2
2n,

(viii) Q2n+1Q2n−1 = ΩL(2n)Q2
2n−1.

Proof. Theorems 2.9–2.12 allow us to prove these multiplicative relations easily. Applying the recurrence
relations again and again, equivalent relations can also be calculated. For instance, for item (i) we have:

Q2n+1Q2n+2 = ΨL(2n)Q2nQ2n+2 = ΨL(2n)Q2
2nΘR(2n) = Q2n+1Q2nΘR(2n).

Example 2.16. From Theorems 2.9–2.12, we get the following:

• Q2n+1Q2m −Q2nQ2m+1 = ΨL(2n)Q2nQ2m −Q2nQ2mΨR(2m),

• Q2n+1Q2m+1 −Q2n+2Q2m = ΨL(2n)Q2nQ2mΨR(2m) −ΘL(2n)Q2nQ2m.

Theorem 2.17. The Catalan-like identity for the Vietoris' generalized quaternionic sequence {Qs}s≥0 is:

Q2
s −Qs−pQs+p = Q2

pT(s, p), s > p,
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where T(s, p) = Υ(s, p)κ(s, p) having

Υ(s, p) =



 X(p)

X(p)X(p)

⌊ s+1−p
2

⌋∏
l=1

d
(
2
⌊

s+1
2

⌋
− 2l

)
2

, p even Y(p+1)

Y(p+1)Y(p+1)

⌊ s−1−p
2

⌋∏
l=1

d
(
2
⌊

s
2

⌋
− 2l

)
2

, p odd

where X(p)X(p) , 0 and Y(p + 1)Y(p + 1) , 0, and

κ(s, p) =


X2(s) − τ(s, p)X(s − p)X(s + p), s = 2n, p = 2k
X2(s) − τ(s, p)d(s)Y(s + 1 − p)Y(s + 1 + p), s = 2n, p = 2k + 1
Y2(s + 1) − τ(s, p)Y(s + 1 − p)Y(s + 1 + p), s = 2n + 1, p = 2k
d2(s − 1)Y2(s + 1) − τ(s, p)d(s − 1)X(s − p)X(s + p), s = 2n + 1, p = 2k + 1

with

τ(s, p) =


⌊

p
2 ⌋∏

l=1

d(s+p−2l)
d(s−p+2l−2)

, s + p even

⌊
p
2 ⌋∏

l=1

d(s+1+p−2l)
d(s−1−p+2l)

, s + p odd.

Proof. The proof is divided into four parts according to the values s and p.

• Let s = 2n and p = 2k. From equations (2) and (14), we have:

Q2n+2k = v2n+2kX(2n + 2k) =
k∏

l=1
d(2n + 2k − 2l)v2nX(2n + 2k), n > k, (24)

and

Q2n−2k = v2n−2kX(2n − 2k) =
k∏

l=1

1
d(2n−2k+2l−2) v2nX(2n − 2k), n > k. (25)

By utilizing equations (24) and (25), we get:

Q2
2n −Q2n−2kQ2n+2k = v2

2nX2(2n) − v2n−2kv2n+2kX(2n − 2k)X(2n + 2k)

= v2
2n

(
X2(2n) −

k∏
l=1

d(2n+2k−2l)
d(2n−2k+2l−2) X(2n − 2k)X(2n + 2k)

)
= v2

2k

n−k∏
l=1

d2(2n − 2l)
(
X2(2n) − τ(2n, 2k)X(2n − 2k)X(2n + 2k)

)
= v2

2kX
2(2k)Υ(2n, 2k)κ(2n, 2k)

= Q2
2kT(2n, 2k).

• Let s = 2n and p = 2k + 1. From equations (2) and (16), we have:

Q2n+2k+1 = v2n+2k+2Y(2n + 2k + 2) =
k∏

l=1
d(2n + 2k + 2 − 2l)v2n+2Y(2n + 2k + 2), n > k, (26)

and

Q2n−2k−1 = v2n−2kY(2n − 2k) =
k∏

l=1

1
d(2n−2k+2l−2) v2nY(2n − 2k), n > k. (27)
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By substituting equations (26) and (27), we get:

Q2
2n −Q2n−2k−1Q2n+2k+1 = v2

2nX2(2n) − v2n−2kv2n+2k+2Y(2n − 2k)Y(2n + 2k + 2)

= v2
2nX2(2n) − v2

2n+2

k∏
l=1

d(2n+2k+2−2l)
d(2n−2k+2l−2)d(2n) Y(2n − 2k)Y(2n + 2k + 2)

= v2
2k+2

1
d2(2n)

n−k∏
l=1

d2(2n + 2 − 2l)(
X2(2n) − τ(2n, 2k + 1)d(2n)Y(2n − 2k)Y(2n + 2k + 2)

)
= v2

2k+2Y2(2k + 2)Υ(2n, 2k + 1)κ(2n, 2k + 1)
= Q2

2k+1T(2n, 2k + 1).

• Let s = 2n + 1 and p = 2k. From equations (2) and (16), we have:

Q2n−2k+1 = v2n−2k+2Y(2n − 2k + 2) =
k∏

l=1

1
d(2n−2k+2l) v2n+2Y(2n − 2k + 2), n > k. (28)

Considering equations (26) and (28), we obtain:

Q2
2n+1 −Q2n−2k+1Q2n+2k+1 = v2

2n+2Y2(2n + 2) − v2n−2k+2v2n+2k+2Y(2n − 2k + 2)Y(2n + 2k + 2)

= v2
2n+2Y2(2n + 2) − v2

2n+2

k∏
l=1

d(2n+2k+2−2l)
d(2n−2k+2l) Y(2n − 2k + 2)Y(2n + 2k + 2)

= v2
2k

n−k∏
l=1

d2(2n − 2l)d2(2n)(
Y2(2n + 2) − τ(2n + 1, 2k)Y(2n − 2k + 2)Y(2n + 2k + 2)

)
= v2

2kX
2(2k)Υ(2n + 1, 2k)κ(2n + 1, 2k)

= Q2
2kT(2n + 1, 2k).

• Let s = 2n + 1 and p = 2k + 1. From equations (2) and (14), we have:

Q2n+2k+2 = v2n+2k+2X(2n + 2k + 2) =
k∏

l=1
d(2n + 2k + 2 − 2l)v2n+2X(2n − 2k + 2), n > k. (29)

By using equations (25) and (29), we obtain:

Q2
2n+1 −Q2n−2kQ2n+2k+2 = v2

2n+2Y2(2n + 2) − v2n−2kv2n+2k+2X(2n − 2k)X(2n + 2k + 2)

= v2
2n+2

(
Y2(2n + 2) −

k∏
l=1

d(2n+2k+2−2l)
d(2n−2k+2l−2)d(2n) X(2n − 2k)X(2n + 2k + 2)

)
= v2

2k+2

n−k∏
l=1

d2(2n + 2 − 2l)(
Y2(2n + 2) − τ(2n+1,2k+1)

d(2n) X(2n − 2k)Y(2n + 2k + 2)
)

= v2
2k+2Y2(2k + 2)Υ(2n + 1, 2k + 1)κ(2n + 1, 2k + 1)

= Q2
2k+1T(2n + 1, 2k + 1),

which completes the proof.

Theorem 2.18. The generating function for the Vietoris' generalized quaternionic sequence {Qs}s≥0 is:

G(x) =
1
x3

(
1(x)(x3 + x2i + xj + k) − H(x)

)
, 0 < |x| < 1

where H(x) = 1
2

(
2x2i + (2x + x2)j + (2 + x + x2)k

)
.
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Proof. Let us recall the generating function in equation (6) for the Vietoris' sequence {vn}n≥0 . Then, suppose

that G(x) =
∞∑

s=0
Qs xs be the generating function of generalized quaternionic sequence {Qs}s≥0. Then, by

multiplying it with x3 gives:

x3G(x) =
∞∑

s=0
Qs xs+3

=
∞∑

s=0
(vs + vs+1i + vs+2j + vs+3k) xs+3

= x3
∞∑

s=0
vsxs + x2

∞∑
s=0

vs+1xs+1i + x
∞∑

s=0
vs+2xs+2j +

∞∑
s=0

vs+3xs+3k

= x31(x) + x2(−v0 + v0 +
∞∑

s=0
vs+1xs+1)i + x(−v0 − v1x + v0 + v1x +

∞∑
s=0

vs+2xs+2)j

+(−v0 − v1x − v2x2 + v0 + v1x + v2x2 +
∞∑

s=0
vs+3xs+3)k

= x31(x) + x2(−v0 + 1(x))i+x(−v0 − v1x + 1(x))j + (−v0 − v1x − v2x2 + 1(x))k
= 1(x)

(
x3 + x2i + xj + k

)
−

1
2

(
2x2i + (2x + x2)j + (2 + x + x2)k

)
= 1(x)

(
x3 + x2i + xj + k

)
− H(x).

Theorem 2.19. The Binet-like formula for the Vietoris' generalized quaternionic sequence {Qs}s≥0 is:

Qs = ρ1(s)r2⌊ s+1
2 ⌋

1

(
2
⌊ s + 1

2

⌋)
+ ρ2(s)r2⌊ s+1

2 ⌋
2

(
2
⌊ s + 1

2

⌋)
,

where

ρi(s) =
{

ci(s)X(s), s = 2n
ci(s + 1)Y(s + 1), s = 2n + 1

with ri(s), ci(s) are defined in the Binet-like formula for the Vietoris' sequence {vn}n≥0 (see in equations (8) (9)) for
i = 1, 2.

Proof. Let us recall the Binet-like formula in equation (7) for the Vietoris' sequence {vn}n≥0. For s = 2n, using
equation (14), we have:

Q2n = v2nX(2n)
=

(
c1 (2n) r2n

1 (2n) + c2 (2n) r2n
2 (2n)

)
X(2n)

= c1 (2n) X(2n)r2n
1 (2n) + c2 (2n) X(2n)r2n

2 (2n)
= ρ1(2n)r2n

1 (2n) + ρ2(2n)r2n
2 (2n) .

The case s = 2n + 1 can also be proved in similar manner.

3. A Determinantal Approach to {Qs}s≥0

The studies [6, 7, 21] motivate the rest of the paper. We investigate the determinant3)of some special
tridiagonal matrices that generate {Qs}s≥0. In the sequel, we always assume Λ and Γ are functions in
Theorems 2.13 and 2.14.

3)The determinant of the matrix with quaternion entries can be calculated by using the Laplace expansion starting always with all
entries of the last column. For any M =

[
mi j

]
n×n

, det M =
∑n

i=1 cinmin, with cin = (−1)i+n det Yin where det Yin is the i,n minor of M, [7].
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Theorem 3.1. Let Mn+1 be a tridiagonal matrix of order n + 1 with the generalized quaternionic sequence with
Vietoris' number entries and given by:

Mn+1 =



Q1 −Q0
Λ0(0) Λ1(1) −1

Λ0(1) Λ1(2) −1
Λ0(2) Λ1(3) −1

. . .
. . .

. . .
Λ0(n − 2) Λ1(n − 1) −1

Λ0(n − 1) Λ1(n)


.

Then, we have det (Mn+1) = Qn+1.

Proof. The proof depends on an induction.

• Let n = 0. It is clear that det (M1) = Q1.

• Let n = 1. We get M2 =

[
Q1 −Q0
Λ0(0) Λ1(1)

]
. By using Theorem 2.13, we have:

det (M2) = Q1Λ1(1) +Q0Λ0(0) = Q2.

• Let n = 2. We obtain M3 =

 Q1 −Q0 0
Λ0(0) Λ1(1) −1

0 Λ0(1) Λ1(2)

 and so

det (M3) = (−1)3+3 det (M2)Λ1(2) − (−1)3+2 det (M1)Λ0(1) = Q2Λ1(2) +Q1Λ0(1) = Q3.

• For n − 1, assume that det (Mn) = Qn.

• By applying Laplace expansion and Theorem 2.13 for n, we get:

det (Mn+1) = (−1)2n+2 det (Mn)Λ1(n) − (−1)2n+1 det (Mn−1)Λ0(n − 1)
= QnΛ1(n) +Qn−1Λ0(n − 1) = Qn+1.

Theorem 3.2. Let Mn+1 be a tridiagonal matrix of order n + 1 with the generalized quaternionic sequence with
Vietoris' number entries and given by:

Mn+1 =



Q0
−1 2Λ1(0) Λ0(0)

−1 Λ1(1) Λ0(1)
−1 Λ1(2) Λ0(2)

. . .
. . .

. . .
−1 Λ1(n − 2) Λ0(n − 2)

−1 Λ1(n − 1)


.

Then, we have det (Mn+1) = Qn.

Proof. The proof depends on an induction.

• Let n = 0. It is clear that det (M1) = Q0.
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• Let n = 1. We getM2 =

[
Q0 0
−1 2Λ1(0)

]
. By using the proof of Theorem 2.13, we find:

det (M2) = 2Q0Λ1(0) = Q1.

• Let n = 2. We haveM3 =

Q0 0 0
−1 2Λ1(0) Λ0(0)
0 −1 Λ1(1)

. Then,

det (M3) = (−1)3+3 det (M2)Λ1(1) − (−1)3+2 det (M1)Λ0(0) = Q1Λ1(1) +Q0Λ0(0) = Q2.

• For n − 1, assume that det (Mn) = Qn−1.

• From Laplace expansion and Theorem 2.13 for n, we obtain:

det (Mn+1) = (−1)2n+2 det (Mn)Λ1(n − 1) − (−1)2n+1 det (Mn−1)Λ0(n − 2)
= Qn−1Λ1(n − 1) +Qn−2Λ0(n − 2)
= Qn.

This completes the proof.

The following theorems can be proved in a similar manner by induction.

Theorem 3.3. Let Mn+1 be a tridiagonal matrix of order n+1 with the generalized quaternionic sequence with Vietoris'
number entries and given by:

Mn+1 =



Q0
−1 2Γ1(0) Γ0(0)

−1 Γ1(2) Γ0(2)
−1 Γ1(4) Γ0(4)

. . .
. . .

. . .
−1 Γ1(2n − 4) Γ0(2n − 4)

−1 Γ1(2n − 2)


.

Then, we have det (Mn+1) = Q2n.

Theorem 3.4. Let Mn+1 be a tridiagonal matrix of order n + 1 with the generalized quaternionic sequence with
Vietoris' number entries and given by:

Mn+1 =



Q1
−1 2Γ1(1) Γ0(1)

−1 Γ1(3) Γ0(3)
−1 Γ1(5) Γ0(5)

. . .
. . .

. . .
−1 Γ1(2n − 3) Γ0(2n − 3)

−1 Γ1(2n − 1)


.

Then, we have det (Mn+1) = Q2n+1.
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Theorem 3.5. Let Mn+1 be a tridiagonal matrix of order n + 1 with the generalized quaternionic sequence with
Vietoris' number entries and given by:

Mn+1 =



Q2 −Q0
Γ0(0) Γ1(2) −1

Γ0(2) Γ1(4) −1
Γ0(4) Γ1(6) −1

. . .
. . .

. . .
Γ0(2n − 4) Γ1(2n − 2) −1

Γ0(2n − 2) Γ1(2n)


.

Then, we have det (Mn+1) = Q2n+2.

Theorem 3.6. Let Mn+1 be a tridiagonal matrix of order n + 1 with the generalized quaternionic sequence with
Vietoris' number entries and given by:

Mn+1 =



Q3 −Q1
Γ0(1) Γ1(3) −1

Γ0(3) Γ1(5) −1
Γ0(5) Γ1(7) −1

. . .
. . .

. . .
Γ0(2n − 3) Γ1(2n − 1) −1

Γ0(2n − 1) Γ1(2n + 1)


.

Then, we have det (Mn+1) = Q2n+3.

4. Conclusion and Vision of the Future Work

Based on the ideas given by Catarino and Almeida [7], and Pottman and Wallner [23], we investigate
and discuss in detail the generalized quaternionic sequence with Vietoris' number components. In the
framework of generalized quaternion structures, we have

• the real quaternionic sequence with Vietoris' for α = β = 1, (see [7]),

• the split quaternionic sequence with Vietoris' for α = 1, β = −1,

• the semi quaternionic sequence with Vietoris' for α = 1, β = 0,

• the split-semi quaternionic sequence with Vietoris' for α = −1, β = 0,

• the quasi quaternionic sequence with Vietoris' for α = β = 0.

The Vietoris' number sequence has some relations with the Catalan number sequence, (see details in
[8]). The Catalan number sequence is a very popular integer sequence and arising in many combinatorial
problems closely related to different scientific areas and has many applications ranging from computer
science to computational biology and mathematical physics. Now, the relation between Vietoris' general-
ized quaternionic sequence and the Catalan generalized quaternionic sequence is now an open problem for
researchers.

In concluding the paper, we also want to draw the reader’s attention toward the quaternion-valued
functions. They have applications in many areas and have been gaining more attentions recently. One can
examine whether short time SAFT as a part of quaternion-valued signals applies to Vietoris' generalized
quaternionic sequence. Finding methods if any exists to define SAFT for Vietoris' generalized quaternionic
sequence is the main question to answer that reqires a close attention (see [19, 31] for SAFT).
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