Cesàro convergence of sequences of bi-complex numbers using BC-Orlicz function

Subhajit Bera ${ }^{\text {a }}$, Binod Chandra Tripathy ${ }^{\text {a }}$
${ }^{a}$ Tripura University, Department of Mathematics, Suryamaninagar-799022, Tripura, India

Abstract

In this article we have introduced the concept of Cesàro convergence, Cesàro null and Cesàro bounded sequences of bi-complex numbers defined by BC-Orlicz function having hyperbolic norm. we have investigated some of their algebraic and topological properties by defining a D-norm on these spaces. Also inclusion results involving these sequence spaces have been established.

1. Introduction

Bi-complex numbers are being studied for quite a long time now. Probably Italian school of Segre [12] introduced the bi-complex numbers. For more details on bi-complex numbers and bi-complex functional analysis see ([14], [16], [11]). The hyperbolic numbers studied by Cockle [2], Lie and Scheffers [7]. Hyperbolic number system has been studied for various reasons. Many research developed the hyperbolic numbers.

The sequence space has been investigated by different researchers from different aspects, such as Buck [1], Fast[5], Schoenberg [13], Fridy [6], Rath and Tripathy [10], Tripathy and Nath[15].
A real sequence $x=\left(x_{k}\right)$ is said to be Cesàro convergent to l if

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} x_{k}=l
$$

Definition 1.1. An Orlicz function is a function $\mathcal{M}:[0, \infty) \rightarrow[0, \infty)$, which is continuous, non-decreasing and convex with $\mathcal{M}(0)=0, \mathcal{M}(x)>0$, for $x>0$ and $\mathcal{M}(x) \rightarrow \infty$, as $x \rightarrow \infty$.
Lindendstrauss and Tzafriri [8] used the idea of Orlicz function to construct the sequence space

$$
\ell_{M}:=\left\{x \in \omega: \sum_{k=1}^{\infty} \mathcal{M}\left(\frac{\left|x_{k}\right|}{\rho}\right)<\infty, \text { for some } \rho>0\right\} .
$$

The sequence space ℓ_{M} is Banach space with the norm

$$
\|x\|:=\inf \left\{\rho>0: \sum_{k=1}^{\infty} \mathcal{M}\left(\frac{\left|x_{k}\right|}{\rho}\right)<1\right\}
$$

[^0]The concept of Orlicz function has been applied for studying different classes of sequences by Datta and Tripathy[3], Nath and Tripathy[9] and many more. In this article we developed the Cesàro convergence using BC-Orlicz function. Throughout the article we denote C_{0}, C_{1} and C_{2} by set of real, complex and bi-complex numbers respectively also we denote by w^{*}, the sequences of all bi-complex numbers.

2. Definition and Preliminaries

2.1. Bi-complex Numbers

A bi-complex number ξ is of the form

$$
\xi=z_{1}+i_{2} z_{2}=x_{1}+i_{1} x_{2}+i_{2} x_{3}+i_{1} i_{2} x_{4}
$$

where $z_{1}, z_{2} \in C_{1}$ and $x_{1}, x_{2}, x_{3}, x_{4} \in C_{0}$ and the independent units i_{1}, i_{2} are such that $i_{1}^{2}=i_{2}^{2}=-1$ and $i_{1} i_{2}=i_{2} i_{1}$, The set of bi-complex numbers C_{2} is defined as:

$$
C_{2}=\left\{\xi: \xi=z_{1}+i_{2} z_{2} ; z_{1}, z_{2} \in C_{1}\left(i_{1}\right)\right\}
$$

where $C_{1}\left(i_{1}\right)=\left\{x_{1}+i_{1} x_{2}: x_{1}, x_{2} \in C_{0}\right\}$. C_{2} is a vector space over $C_{1}\left(i_{1}\right)$. Other than 0 and 1 , there are two more idempotent elements in C_{2} given by $e_{1}=\frac{1+i_{1} i_{2}}{2}$ and $e_{2}=\frac{1-i_{1} i_{2}}{2}$ such that $e_{1}+e_{2}=1$ and $e_{1} e_{2}=0$.
Every bi-complex number $\xi=z_{1}+i_{2} z_{2}$ can be uniquely expressed as the combination of e_{1} and e_{2}, namely

$$
\xi=z_{1}+i_{2} z_{2}=\left(z_{1}-i_{1} z_{2}\right) e_{1}+\left(z_{1}+i_{1} z_{2}\right) e_{2}=\mu_{1} e_{1}+\mu_{2} e_{2}
$$

where $\mu_{1}=\left(z_{1}-i_{1} z_{2}\right)$ and $\mu_{2}=\left(z_{1}+i_{1} z_{2}\right)$.
For $\xi=z_{1}+i_{2} z_{2} \in C_{2}$, the norm is defined as

$$
\|\xi\|_{C_{2}}=\sqrt{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}}
$$

The product of two bi-complex numbers is connected by the following inequality:

$$
\|\xi \cdot \eta\|_{C_{2}} \leq \sqrt{2}\|\xi\|_{C_{2}} \cdot\|\eta\|_{C_{2}}
$$

C_{2} together with the norm defined above form a generalized algebra. Since $C_{2} \simeq C_{0}^{4}$ and C_{0}^{4} is complete with respect to usual metric, it follows that C_{2} forms a generalized Banach algebra.
The bi-complex number $\xi=z_{1}+i_{2} z_{2}$ is called singular if $\left|z_{1}^{2}+z_{2}^{2}\right|=0$.
The set of all singular numbers is denoted by O_{2}.

2.2. Hyperbolic Numbers

The hyperbolic number is of the form

$$
\alpha=x_{1}+i_{1} i_{2} x_{2} ; x_{1}, x_{2} \in C_{0}
$$

The idempotent representation of any hyperbolic number $\alpha=x_{1}+i_{1} i_{2} x_{2}$ is

$$
\alpha=v_{1} e_{1}+v_{2} e_{2}
$$

where $v_{1}=x_{1}+x_{2}, v_{2}=x_{2}-x_{1}$.
The set of hyperbolic numbers is given by

$$
D=\left\{v_{1} e_{1}+v_{2} e_{2}: v_{1}, v_{2} \in C_{0}\right\}
$$

The set of positive hyperbolic numbers is given by

$$
D_{+}=\left\{v_{1} e_{1}+v_{2} e_{2}: v_{1}, v_{2} \geq 0\right\}
$$

Let $\xi \in C_{2}$, then hyperbolic norm(D- valued) norm on C_{2} is given by

$$
|\xi|_{D}=\left|\mu_{1}\right| e_{1}+\left|\mu_{2}\right| e_{2} \in D_{+}
$$

If $\xi, \eta \in C_{2}$, then

$$
|\xi+\eta|_{D} \leq\left.^{\prime}\left|\xi_{D}+|\eta|_{D} \text { and }\right| \xi \eta\right|_{D}=|\xi|_{D}|\eta|_{D}
$$

Let S be a subset of D. Consider the two sets $D_{1}=\left\{v_{1}: v_{1} e_{1}+v_{2} e_{2} \in S\right\}$ and $D_{2}=\left\{v_{2}: v_{1} e_{1}+v_{2} e_{2} \in S\right\}$.
Then supremum of the set S is given by

$$
\sup _{D} S=e_{1} \sup D_{1}+e_{2} \sup D_{2}
$$

Similarly, infimum of the set S is given by

$$
\inf _{D} S=e_{1} \inf D_{1}+e_{2} \inf D_{2}
$$

The partial order relation on D is given by

$$
\alpha \leq^{\prime} \beta \text { if and only if } \beta-\alpha \in D_{+} \forall \alpha, \beta \in D
$$

Remark 2.1. Denote D_{+}^{*}, by the the non negative extended hyperbolic numbers

$$
D_{+}^{*}=\left\{\mu_{1} e_{1}+\mu_{2} e_{2}, \mu_{1}, \mu_{2}>0\right\} \cup\{\infty\} \cup\{-\infty\} \cup\left\{\infty e_{1}+\mu_{2} e_{2}\right\} \cup\left\{\mu_{1} e_{1}-\infty e_{2}\right\}
$$

Throughout the article we denote

$$
0_{D}=0+0 i_{1} i_{2}
$$

Definition 2.2. A function $\Upsilon_{D}: D \rightarrow D_{+}^{*}$ is called D-valued convex function if for every $\xi, \eta \in D$ with $0 \leq^{\prime} \alpha \leq^{\prime} 1$ such that

$$
\Upsilon_{D}(\alpha \xi+(1-\alpha) \eta) \leq^{\prime} \alpha \Upsilon_{D}(\xi)+(1-\alpha) \Upsilon_{D}(\eta)
$$

Definition 2.3. [4] A convex function $\Upsilon_{D}: D_{+} \rightarrow D_{+}^{*}$ is said to be BC-Orlicz function if it satisfies the following conditions
(i) $\Upsilon_{D}\left(0_{D}\right)=0_{D}$;
(ii) $\lim _{\xi \rightarrow \infty} \Upsilon_{D}(\xi)=\infty^{*}$, where $\infty^{*}=\mu_{1} e_{1}+\infty e_{2}=\infty e_{1}+\mu_{2} e_{2}=\infty e_{1}+\infty e_{2}$ and $\lim _{\xi \rightarrow \infty} \Upsilon_{D}(\xi)$ must exist along any line in the hyperbolic plane and must be equal.
We denote the BC-Orlicz function by \mathcal{M}_{D}.
Definition 2.4. An $B C$-Orlicz function \mathcal{M}_{D} is said to satisfy the Δ_{D}^{2}-condition denoted by $\mathcal{M}_{D} \in \Delta_{D}^{2}$ if there exist some hyperbolic constants $K \geq \geq^{\prime} 0$ and ξ_{0} (depending upon K) such that

$$
\mathcal{M}_{D}\left(\left(2 e_{1}+2 e_{2}\right) \xi\right) \leq^{\prime} K \mathcal{M}_{D}(\xi), \forall 0 \leq^{\prime} \xi \leq^{\prime} \xi_{0}
$$

Definition 2.5. A function $g: C_{2} \rightarrow D_{+}^{*}$ is called D-norm if the following conditions are satisfied;
$p_{1}: g(\xi) \geq^{\prime} 0_{D}$, for all $\xi \in C_{2}$;
$p_{2}: g(-\xi)=g(\xi)$, for all $\xi \in C_{2}$;
$p_{3}: g(\xi+\eta) \leq^{\prime} g(\xi)+g(\eta)$, for all $\xi, \eta \in C_{2}$;
$p_{4}: \alpha_{k} \rightarrow \alpha,\left|x_{k}-x\right|_{D} \rightarrow 0_{D}$, then $\left|\alpha_{k} \xi_{k}-\alpha \xi\right|_{D} \rightarrow 0_{D}$.

3. Main result

In this section we introduce the notion of different types of Cesàro convergence sequences of bi-complex numbers defined by BC-Orlicz function. We investigate their different properties and we define the following sets

$$
\begin{aligned}
& {\left[b_{1}^{*}, \mathcal{M}_{D}\right]:=\left\{\xi \in \omega^{*}: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \mathcal{M}_{D}\left(\frac{\left|\xi_{k}-\xi^{*}\right|_{D}}{\alpha}\right)=0_{D}, \text { for some hyperbolic number } \alpha>^{\prime} 0\right\}} \\
& {\left[b_{0}^{*}, \mathcal{M}_{D}\right]:=\left\{\xi \in \omega^{*}: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \mathcal{M}_{D}\left(\frac{\left|\xi_{k}\right|_{D}}{\alpha}\right)=0_{D}, \text { for some hyperbolic number } \alpha>^{\prime} 0\right\}} \\
& {\left[b_{\infty}^{*}, \mathcal{M}_{D}\right]:=\left\{\xi \in \omega^{*}: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \mathcal{M}_{D}\left(\frac{\left|\xi_{k}\right|_{D}}{\alpha}\right)<^{\prime} \infty, \text { for some hyperbolic number } \alpha>^{\prime} 0\right\}}
\end{aligned}
$$

Theorem 3.1. The sets $\left[b_{1}^{*}, \mathcal{M}_{D}\right],\left[b_{0}^{*}, \mathcal{M}_{D}\right]$ and $\left[b_{\infty}^{*}, \mathcal{M}_{D}\right]$ are linear space over $C_{2} \backslash O_{2}$.
Proof. Let $\xi, \eta \in\left[b_{\infty}^{*}, \mathcal{M}_{D}\right]$, then for some small hyperbolic numbers $\alpha_{1}, \alpha_{2}>^{\prime} 0$ such that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \mathcal{M}_{D}\left(\frac{\left|\xi_{k}\right| D}{\alpha_{1}}\right)<^{\prime} \infty \\
& \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \mathcal{M}_{D}\left(\frac{\left|\eta_{k}\right| D}{\alpha_{2}}\right)<^{\prime} \infty
\end{aligned}
$$

Let $k_{1}, k_{2} \in C_{2} \backslash \mathbb{O}_{2}$. and $\alpha=\max \left\{\left|k_{1}\right|_{D} \alpha_{1},\left|k_{2}\right|_{D} \alpha_{2}\right\}$.
Now

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \mathcal{M}_{D}\left(\frac{\left|k_{1} \xi_{k}+k_{2} \eta_{k}\right|_{D}}{\alpha}\right) \\
& \leq^{\prime} \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \mathcal{M}_{D}\left(\frac{\left|k_{1} \xi_{k}\right| D}{\alpha}\right)+\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \mathcal{M}_{D}\left(\frac{\left|k_{2} \eta_{k}\right| D}{\alpha}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \mathcal{M}_{D}\left(\frac{\left|k_{1}\right| D\left|\xi_{k}\right| D}{\alpha}\right)+\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \mathcal{M}_{D}\left(\frac{\left|k_{2}\right| D\left|\eta_{k}\right| D}{\alpha}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \mathcal{M}_{D}\left(\frac{\left|\xi_{k}\right| D}{\alpha_{1}}\right)+\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \mathcal{M}_{D}\left(\frac{\left|\eta_{k}\right| D}{\alpha_{2}}\right) \ll^{\prime} .
\end{aligned}
$$

Therefore, $\left[b_{\infty}^{*}, \mathcal{M}_{D}\right]$ is linear space over $C_{2} \backslash \mathbb{O}_{2}$.
Result 3.2. Let \mathcal{M}_{D} be BC-Orlicz function then

$$
\left[b_{0}^{*}, \mathcal{M}_{D}\right] \subset\left[b_{1}^{*}, \mathcal{M}_{D}\right] \subset\left[b_{\infty}^{*}, \mathcal{M}_{D}\right]
$$

Theorem 3.3. The spaces $\left[b_{0}^{*}, \mathcal{M}_{D}\right]$ and $\left[b_{\infty}^{*}, \mathcal{M}_{D}\right]$ are solid.
Proof. Let $\xi=\left(\xi_{k}\right) \in\left[b_{\infty}^{*}, \mathcal{M}_{D}\right]$, then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \mathcal{M}_{D}\left(\frac{\left|\xi_{k}\right|_{D}}{\alpha}\right)<^{\prime} \infty
$$

Let us consider a sequence of bi-complex scalars $\left(\zeta_{k}\right)$ with $\left|\zeta_{k}\right|_{D} \leq^{\prime} 1$.
Now

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \mathcal{M}_{D}\left(\frac{\left|\zeta_{k} \xi_{k}\right|_{D}}{\alpha}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \mathcal{M}_{D}\left(\frac{\left|\zeta_{k}\right|_{D}\left|\zeta_{k}\right|_{D}}{\alpha}\right) \\
& <^{\prime} \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \mathcal{M}_{D}\left(\frac{\left|\xi_{k}\right|_{D}}{\alpha}\right)<^{\prime} \infty .
\end{aligned}
$$

Hence, $\left[b_{\infty}^{*}, \mathcal{M}_{D}\right]$ is solid.
Similarly other cases can be proved.
Result 3.4. The spaces $\left[b_{1}^{*}, \mathcal{M}_{D}\right],\left[b_{0}^{*}, \mathcal{M}_{D}\right]$ and $\left[b_{\infty}^{*}, \mathcal{M}_{D}\right]$ are not convergence free.
Theorem 3.5. Let \mathcal{M}_{D}^{1} and \mathcal{M}_{D}^{2} be two BC-Orlicz functions with Δ_{D}^{2}-condition, then

$$
\left[b_{p}^{*}, \mathcal{M}_{D}^{1}\right] \cup\left[b_{p}^{*}, \mathcal{M}_{D}^{2}\right] \subseteq\left[b_{p}^{*}, \mathcal{M}_{D}^{1}+\mathcal{M}_{D}^{2}\right]
$$

where $p=0,1, \infty$.
Theorem 3.6. Let \mathcal{M}_{D}^{1} and \mathcal{M}_{D}^{2}-be two BC-Orlicz functions with Δ_{D}^{2}-condition, then

$$
\left[b_{\infty}^{*}, \mathcal{M}_{D}^{2}\right] \subset\left[b_{\infty}^{*}, \mathcal{M}_{D}^{1} * \mathcal{M}_{D}^{2}\right]
$$

Proof. Let $\xi \in\left[b_{\infty}^{*}, \mathcal{M}_{D}^{2}\right]$, then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \mathcal{M}_{D}^{2}\left(\frac{\left|\xi_{k}\right|_{D}}{\alpha}\right)<^{\prime} \infty
$$

Let

$$
p=\mathcal{M}_{D}^{2}\left(\frac{\left|\xi_{k}\right|_{D}}{\alpha}\right)
$$

Since \mathcal{M}_{D}^{1} satisfies Δ_{D}^{2}-condition, so there exist $K \geq^{\prime} 0$ and ξ_{0} (depending upon K) such that

$$
\mathcal{M}_{D}^{1}(p) \leq^{\prime} K p \mathcal{M}_{D}^{1}\left(2 e_{1}+2 e_{2}\right), \forall 0 \leq^{\prime} \xi \leq^{\prime} \xi_{0} .
$$

Now,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(\mathcal{M}_{D}^{1} * \mathcal{M}_{D}^{2}\right)\left(\frac{\left|\xi_{k}\right|_{D}}{\alpha}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \mathcal{M}_{D}^{1}\left(\mathcal{M}_{D}^{2}\left(\frac{\left|\xi_{k}\right|_{D}}{\alpha}\right)\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \mathcal{M}_{D}^{1}(p) \\
& \leq^{\prime} \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} K p M_{D}^{1}\left(2 e_{1}+2 e_{2}\right) \\
& \leq^{\prime} \infty .
\end{aligned}
$$

Thus, $\xi \in\left[b_{\infty}^{*}, \mathcal{M}_{D}^{1} * \mathcal{M}_{D}^{2}\right]$.
Hence, the theorem.

Theorem 3.7. Let \mathcal{M}_{D} be any BC-Orlicz function, the space $\left[b_{\infty}^{*}, \mathcal{M}_{D}^{2}\right]$ is a D-norm space with

$$
g(\xi)=\inf \left\{\alpha: \sum_{k=1}^{n}\left[\mathcal{M}_{D}\left(\frac{\left|\xi_{k}\right|_{D}}{\alpha}\right)\right] \leq^{\prime} 1, \text { for some hyperbolic number } \alpha>^{\prime} 0\right\} .
$$

Proof. Since $\alpha>^{\prime} 0$, so $g(\xi)>^{\prime} 0$ and $g(-\xi)=g(\xi), \forall \xi \in\left[b_{\infty}^{*}, \mathcal{M}_{D}^{2}\right]$.
Let $\xi, \eta \in\left[b_{\infty}^{*}, \mathcal{M}_{D}^{2}\right]$, then for some hyperbolic numbers $\alpha_{1}, \alpha_{2}>^{\prime} 0$ such that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \mathcal{M}_{D}\left(\frac{\left|\xi_{k}\right|_{D}}{\alpha_{1}}\right)<^{\prime} \infty \\
& \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \mathcal{M}_{D}\left(\frac{\left|\eta_{k}\right|_{D}}{\alpha_{2}}\right)<^{\prime} \infty
\end{aligned}
$$

Let

$$
\begin{aligned}
& S=\left\{\alpha: \sum_{k=1}^{n}\left[\mathcal{M}_{D}\left(\frac{\left|\xi_{k}+\eta_{k}\right|_{D}}{\alpha}\right)\right] \leq^{\prime} 1\right\} \\
& S_{1}=\left\{\alpha_{1}: \sum_{k=1}^{n}\left[\mathcal{M}_{D}\left(\frac{\left|\xi_{k}+\eta_{k}\right|_{D}}{\alpha_{1}}\right)\right] \leq^{\prime} 1\right\} \\
& S_{2}=\left\{\alpha_{2}: \sum_{k=1}^{n}\left[\mathcal{M}_{D}\left(\frac{\left|\xi_{k}+\eta_{k}\right|_{D}}{\alpha_{2}}\right)\right] \leq^{\prime} 1\right\}
\end{aligned}
$$

Let $\alpha=\left(\alpha_{1}+\alpha_{2}\right) \in S, \alpha_{1}=v_{1}^{\prime} e_{1}+v_{2}^{\prime} e_{2} \in S_{1}, \alpha_{2}=v_{1}^{\prime \prime} e_{1}+v_{2}^{\prime \prime} e_{2} \in S_{2}$ and $\alpha=v_{1} e_{1}+v_{2} e_{2}$.
Now,

$$
\begin{aligned}
g(\xi+\eta) & =\inf \left\{\alpha: \sum_{k=1}^{n}\left[\mathcal{M}_{D}\left(\frac{\left|\xi_{k}+\eta_{k}\right| D}{\alpha}\right)\right] \leq 1\right\} \\
& =\inf \left\{v_{1}: \alpha \in S\right\} e_{1}+\inf \left\{v_{2}: \alpha \in S\right\} e_{2} \\
& =\inf \left\{v_{1}^{\prime}: \alpha_{1} \in S_{1}\right\} e_{1}+\inf \left\{v_{1}^{\prime \prime}: \alpha_{2} \in S_{2}\right\} e_{1}+\inf \left\{v_{2}^{\prime}: \alpha_{1} \in S_{1}\right\} e_{2}+\inf \left\{v_{2}^{\prime \prime}: \alpha_{2} \in S_{2}\right\} e_{2} \\
& =\inf \left\{v_{1}^{\prime}: \alpha_{1} \in S_{1}\right\} e_{1}+\inf \left\{v_{2}^{\prime}: \alpha_{1} \in S_{1}\right\} e_{2}+\inf \left\{v_{1}^{\prime \prime}: \alpha_{2} \in S_{2}\right\} e_{1}+\inf \left\{v_{2}^{\prime \prime}: \alpha_{2} \in S_{2}\right\} e_{2} \\
& =\inf \left\{\alpha_{1}: \sum_{k=1}^{n}\left[\mathcal{M}_{D}\left(\frac{\left|\xi_{k}+\eta_{k}\right| D}{\alpha_{1}}\right)\right] \leq^{\prime} 1\right\}+\inf \left\{\alpha_{2}: \sum_{k=1}^{n}\left[\mathcal{M}_{D}\left(\frac{\left|\xi_{k}+\eta_{k}\right| D}{\alpha_{2}}\right)\right] \leq^{\prime} 1\right\} \\
& =g(\xi)+g(\eta) .
\end{aligned}
$$

Hence, the theorem.
Conclusion. In this article, we have introduced the notion of Cesàro convergence of sequences of bi-complex numbers defined by BC-Orlicz function. We have investigated its different algebraic and topological properties. There are very few articles on sequences of bi-complex numbers.

Acknowledgement The authors thank the reviwer for the comments and suggestions on the article, those improved the presentation of the article.

Declarations

Funding. Not Applicable.

Author contribution. Both the authors have equal contribution in the preparation of this article.
Availability of data and material. Not Applicable.

Code availability. Not Applicable.

Conflicts of interest/Competing interests. We declare that the article is free from Conflicts of interest and Competing interests.

References

[1] R. C. Buck, Generalized asymptotic density, Amer. Jour. Math.75(1953), 335-346.
[2] J. Cockle, A new imaginary in algebra, Lond. Edinb. Philos. Mag. 33(3),(1848), 345-349.
[3] D. Datta, B. C. Tripathy, Double sequences of complex uncertain variables defined by Orlicz function, New Mathematics and Natural Computation, 16(3)(2020), 541-550.
[4] R. Kumar, K. Sharma, R. Tundup and S. Wazir, Orlicz Spaces with Bi-complex Scalars, arXiv:1401.7112v2 [math.FA]. (2017).
[5] H. Fast, Sur la convergence statistique, Colloq Math.(1951), 241-244
[6] J. A. Fridy, On statistically convergence, Analysis. 5 (1985), 301-313.
[7] S. Lie, M. G. Scheffers, Vorlesungen uber continuerliche Gruppen, Kap. 21.Taubner, Leipzig, (1893).
[8] J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10 (1971) 379-390.
[9] P. K. Nath, B.C. Tripathy, Statistical convergence of complex uncertain sequences defined by Orlicz function, Proyecciones J. Math., 39 (2) (2020), 301-315.
[10] D. Rath, B. C. Tripathy,Matrix maps on sequence spaces associated with sets of integers, Indian J Pure Appl Math. 27(2) (1996), 197-206.
[11] D. Rochon, M. Shapiro, On algebraic properties of bi-complex and hyperbolic numbers, Anal. Univ. Oradea, fasc. Math. 11 (2004), 71-110.
[12] C. Segre, Le rapesentation reali delle forme complesse e gil enti iperalgebrici, Math. Anu. 40 (1892), 413-467.
[13] I. J. Schoenberg, The integrability of some functions and related summability method, Amer Math Monthly. 66 (1959) 361-375.
[14] R. K. Srivastava, N.K. Srivastava, On a class of entire bi-complex sequences, South East Asian J. Math.\& Math. Sc. 5(3) (2007), 47-68.
[15] B. C. Tripathy, P. K. Nath, Statistical convergence of complex uncertain sequences, New Mathematics and Natural Computation, 13 (3) (2017), 359-374.
[16] M. A. Wagh, On certain spaces of bi-complex sequences, Inter. J. Phy. Chem. and Math. Fund., 7(1) (2014) 1-6.

[^0]: 2020 Mathematics Subject Classification. 46A45; 46E30, 40A35
 Keywords. Orlicz Function, Cesàro Convergence, Bi-complex
 Received: 09 February 2023; Revised: 27 April 2023; Accepted: 29 April 2023
 Communicated by Miodrag Spalević
 Email addresses: berasubhajit0@gmail.com (Subhajit Bera), tripathybc@gmail.com (Binod Chandra Tripathy)

