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Abstract. Gǎvruta studied atomic systems in terms of frames for range of operators (that is, for subspaces),
namelyΘ-frames, where the lower frame condition is controlled by the Hilbert-adjoint of a bounded linear
operatorΘ. For a locally compact abelian group G and a positive integer n, we study frames of matrix-valued
Gabor systems in the matrix-valued Lebesgue space L2(G,Cn×n) , where a bounded linear operator Θ on
L2(G,Cn×n) controls not only lower but also the upper frame condition. We term such frames matrix-valued
(Θ,Θ∗)-Gabor frames. Firstly, we discuss frame preserving mapping in terms of hyponormal operators.
Secondly, we give necessary and sufficient conditions for the existence of matrix-valued (Θ,Θ∗)- Gabor
frames in terms of hyponormal operators. It is shown that if Θ is adjointable hyponormal operator, then
L2(G,Cn×n) admits a λ-tight (Θ,Θ∗)-Gabor frame for every positive real number λ. A characterization of
matrix-valued (Θ,Θ∗)-Gabor frames is given. Finally, we show that matrix-valued (Θ,Θ∗)-Gabor frames are
stable under small perturbation of window functions. Several examples are given to support our study.

1. Introduction

In [10], Gabor introduced a fundamental approach to signal decomposition in terms of elementary
signals. Duffin and Schaeffer [8] in 1952, while addressing some deep problems in non-harmonic Fourier
series, abstracted Gabor’s method to define frames for Hilbert spaces. To be exact, they introduced frames
of exponentials for the space L2(−δ, δ) under the name Fourier frame. LetH be a complex separable Hilbert
space with an inner product ⟨., .⟩. A countable collection of vector Φ := {φk}

∞

k=1 in a separable Hilbert space
H is called a frame (or Hilbert frame) forH if there exist finite positive scalars Ao Bo such that

Ao∥φ∥
2
≤

∞∑
k=1

|⟨φ,φk⟩|
2
≤ Bo∥φ∥

2 (1)

for all φ ∈ H . The scalars Ao and Bo are called the lower and upper frame bounds of Φ, respectively.
Ineq. (1) is called the frame inequality of Φ. The frame inequality guarantee invertibility of the frame
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operator S : H → H given by Sφ =
∞∑

k=1
⟨φ,φk⟩φk. This gives the stable reconstruction of each φ in H :

φ = SS−1φ =
∞∑

k=1
⟨S
−1φ,φk⟩φk =

∞∑
k=1
⟨φ,S−1φk⟩φk. This decomposition is useful in signal processing [23, 27],

in particular, in lost of coefficients, see [4, 14] for technical details. Nowadays, frames are used in sampling
[3], iterated function system [26], distributed signal processing [7], operator theory [2, 5, 19, 21], application
of wavelets [13], quantum physics [25]. We refer to texts [4, 12, 14, 29] for basic theory of frames.

Gǎvruta in [11] introduced the notion of Θ-frames, where Θ is a linear bounded operator acting on the
underlying Hilbert spaceH .

Definition 1.1. Let Θ ∈ B(H), the space of bounded linear operators onH . A sequence Φ := {φk}k∈I ⊂ H is called
a Θ-frame forH if there exist constants 0 < ao, bo < ∞ such that

ao∥Θ
∗φ∥2 ≤

∞∑
k=1

|⟨φk, φ⟩|
2
≤ bo∥φ∥

2 for all φ ∈ H . (2)

[11, p. 142] The numbers ao and bo are collectively known as Θ-frame bounds. If Θ = I, the identity operator
onH , thenΘ-frames are the ordinary Hilbert frames. However, aΘ-frame need not be a frame whenΘ , I.
To be exact, Θ-frames are generalization of frames, which allow the reconstruction of elements from the
range Ran(Θ) of Θ. Note that a Θ-frame for H is a Bessel sequence, so its frame operator is well defined.
But, in general, it is not invertible on H . However, the frame operator of a Θ-frame is invertible on the
subspace Ran(Θ) ofH , whenever the Ran(Θ) is closed. In [11], Gǎvruta characterizedΘ-frames in separable
Hilbert spaces by using bounded linear operators on the underlying space. Θ-frames are also related to
atomic systems and Gǎvruta in [11] characterized atomic systems in terms ofΘ-frames in separable Hilbert
spaces. She also observed many differences between Θ-frames and ordinary frames in separable Hilbert
spaces. More precisely,Θ-frames gives stable analysis and reconstruction of functions from a subspace, e.g.,
range of operators. Xiao, Zhu, and Gǎvruta [30] gave various methods to construct Θ-frames in separable
Hilbert spaces. They also discussed stability of Θ-frames under small perturbation. Recently, Θ-frames in
distributed signal processing are studied in [6, 18].

Frames in matrix-valued signal spaces have potential applications in signal processing as most of the
application areas involve matrix-valued signals. Xia and Suter in [28] studied vector-valued wavelets
which play important role in multivariate signals. It is worth observing that frame properties, in general,
not carried from a signal space to its associated matrix-valued signal space. In this direction, the authors of
[20] studied an interplay between frames and matrix-valued frames, where they considered the wave packet
structure in the euclidean matrix-valued space L2(Rd,Cs×r). They also gave some classes of matrix-valued
window functions which can generate frames. Frame properties of WH-packets which is generalized
Aldroubi’s model [1] for construction of new frames from a given frame studied in [16] and sufficient
conditions for finite sums of matrix-valued wave packet frames can be found in [17]. Two authors in [18]
introduced and studied matrix-valued frames for range of operators. Recently, matrix-valued Gabor frames
over locally compact abelian groups studied by authors of [15]. Motivated by applications of matrix-valued
frames and differences between ordinary frames andΘ-frames, we study matrix-valued Gabor frames over
locally compact abelian (LCA) groups, where both the lower frame condition and upper frame condition are
controlled by bounded linear operators, in particular hyponormal operators, on the matrix-valued signal
space over LCA groups. Notable contribution in this work include frame preserving mapping in terms of
hyponormal operators, existence of tight matrix-valued Gabor frames over LCA groups for hyponormal
operators. A characterization of matrix-valued Gabor frames over LCA groups and new stability results
for matrix-valued Gabor frames over LCA groups under small perturbation.

This paper is organized as follows. In Section 2, we set the basic notions and definitions on the matrix-
valued signal space and matrix-valued Gabor frames over locally compact abelian (LCA) groups and frames
for operators to the make the paper self-contained. We introduce matrix-valued (Θ,Θ∗)-Gabor frames in
the matrix-valued signal space L2(G,Cn×n) over LCA groups in Section 3, where G is a LCA group, n is a
positive integer and Θ is a bounded linear operator acting on L2(G,Cn×n). In (Θ,Θ∗)-Gabor frames both
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the lower frame condition and upper frame condition are controlled by Θ. Proposition 3.4 gives sufficient
condition for a matrix-valued Gabor frame to be (Θ,Θ∗)-Gabor frame in terms of bounded belowness of Θ.
Frame preserving maps in terms of hyponormal operators are given in Proposition 3.5 and Proposition 3.7.
Theorem 3.8 provides existence of tight matrix-valued (Θ,Θ∗)-Gabor frames in L2(G,Cn×n). Proposition 3.12
shows that (Θ,Θ∗)-Gabor frames are preserved under adjointable hyponormal operators. A characterization
for the existence of (Θ,Θ∗)-Gabor frames in L2(G,Cn×n) is given in Theorem 3.14. Two different perturbation
results which gives stability of frame conditions in terms of window functions and operators are given in
Theorem 4.1 and Theorem 4.3. Examples and counter-examples are given to illustrate our results.

2. Preliminaries

Throughout the paper, symbolZ andC denote the set of integers and complex numbers, respectively. T
denote the unit circle group. Let G be a second countable locally compact abelian group equipped with the
Hausdorff topology. We recall that a character on G is the mapγG into itself which satisfiesγ(x+y) = γ(x)γ(y)
for all x, y ∈ G. The dual group of G, denoted by Ĝ, is the collection of all continuous characters on G which
forms a locally compact abelian group under the operation defined by (γ+γ′)(x) := γ(x)γ′(x), where γ, γ′ ∈ Ĝ
and x ∈ G and an appropriate topology. It is well known that on a LCA group G there exists a Haar measure
which is unique upto a positive scalar multiple, see [9] for details. The symbols µG and µĜ denote the Haar
measure on G and Ĝ, respectively. A lattice of G is a discrete subgroup Λ of G for which G/Λ is compact.
The annihilator of Λ, denoted by Λ⊥, is defined by Λ⊥ = {γ ∈ Ĝ | γ(x) = 1, x ∈ Λ}. Note that Λ⊥ is a
lattice in Ĝ. The fundamental domain associated with the latticeΛ⊥ of Ĝ, denoted by V, is a Borel measurable
relatively compact set in Ĝ such that Ĝ = ∪w∈Λ⊥ (w + V), (w + V) ∩ (w′ + V) = ∅ for w , w′,w,w′ ∈ Λ⊥.
The collection of all continuous automorphisms on G is denoted by AutG. As is standard L2(G) denote the
space of measurable square integrable functions over G. The Fourier transform of a function f in L1 ⋂

L2(G)
is defined as

f̂ (γ) =
∫

G
f (x)γ(x)dµG(x), γ ∈ Ĝ

Note that the Fourier transform can be extended isometrically to L2(G), see [9].

2.1. The Space L2(G,Cn×n)

Throughout the paper, the matrix-valued functions are denoted by bold letters. Let n be a positive
integer. The space of matrix-valued functions over G, denoted by L2(G,Cn×n), is defined as

L2(G,Cn×n) :=
{
f =

[
fi j

]
1≤i, j≤n

: fi j ∈ L2(G) (1 ≤ i, j ≤ n)
}
,

where
[

fi j

]
1≤i, j≤n

is matrix of order n with entries fi j. The functions fi j are called components or atoms of f.

The Frobenius norm on L2(G,Cn×n) is given by

∥f∥ =
( n∑

i, j=1

∫
G
| fi j|

2dµG

) 1
2
. (3)

It is easy to see that L2(G,Cn×n) is a Banach space with respect to the Frobenius norm given in (3).
The integral of a function f =

[
fi j

]
1≤i, j≤n

∈ L2(G,Cn×n) is defined as

∫
G

fdµG =

[∫
G

fi jdµG

]
1≤i, j≤n
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For f,g ∈ L2(G,Cn×n), the matrix-valued inner product is defined as

⟨f,g⟩ =
∫

G
f(x)g∗(x)dµG. (4)

Here, ∗ denotes the transpose and the complex conjugate. One may observe that the matrix-valued inner
product given in (4) is not an inner product in usual sense. Further, a bounded linear operator on L2(G,Cn×n)
may not be adjointable with respect to the matrix-valued product given in (4).

Let trA denotes trace of the matrix A. The space L2(G,Cn×n) becomes a Hilbert space with respect to the
inner product ⟨·, ·⟩o defined by

⟨f,g⟩o = tr⟨f,g⟩, f, g ∈ L2(G,Cn×n),

and ⟨·, ·⟩o generates the Frobenius norm: ||f||2 = ⟨f, f⟩o, f ∈ L2(G,Cn×n).

Definition 2.1. A bounded linear operator U on L2(G,Cn×n) is said to be hyponormal if tr⟨UU∗f, f⟩ ≤ tr⟨U∗Uf, f⟩,
for all f ∈ L2(G,Cn×n). That is, ∥U∗f∥ ≤ ∥Uf∥ for all f ∈ L2(G,Cn×n).

For fundamental properties of hyponormal operators, we refer to [24].

2.2. Matrix-Valued Gabor Frames in L2(G,Cn×n)

Let Λ0 be a finite subset ofN, B ∈ AutG, C ∈ AutĜ, Λ be a lattice in G and Λ′ a lattice in Ĝ.
Write

ΦΛ0 := {Φl}l∈Λ0 ⊂ L2(G,Cn×n),

G(C,B,ΦΛ0 ) := {ECmTBkΦl}l∈Λ0,k∈Λ,m∈Λ′ ⊂ L2(G,Cn×n).

For a ∈ G and η ∈ Ĝ, we consider following operators on L2(G,Cn×n).

Taf(x) = f(xa−1) (Translation operator),
Eηf(x) = η(x)f(x) (Modulation operator).

For l ∈ Λ0, let Φl ∈ L2(G,Cn×n) be given by Φl(x) =
[
ϕ(l)

i j (x)
]

n×n
. Let B ∈ AutG and C ∈ AutĜ. A collection of

the form

G(C,B,ΦΛ0 ) := {ECmTBkΦl}l∈Λ0,k∈Λ,m∈Λ′

is called the matrix-valued Gabor system in the space L2(G,Cn×n) over LCA group G. The functions Φl are
called the matrix-valued Gabor window functions.

Definition 2.2. A frame of the form G(C,B,ΦΛ0 ) for L2(G,Cn×n) is called a matrix-valued Gabor frame. That is,
the inequality (frame inequality)

ao∥f∥2 ≤
∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥∥∥∥〈ECmTBkΦl, f
〉∥∥∥∥2
≤ bo∥f∥2, f ∈ L2(G,Cn×n),

holds for some positive scalars ao and bo. As in case of ordinary frames, ao and bo are called frame bounds.

LetMn(C) be the complex vector space of all n × n complex matrices. The space

ℓ2(Λ0 ×Λ ×Λ
′,Mn(C)) :=

{
{Ml, j,k}l∈Λ0, j∈Λ,k∈Λ′ ⊂ Mn(C) :

∑
l∈Λ0

∑
j∈Λ,k∈Λ′

∥Ml, j,k∥
2 < ∞

}
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is a Hilbert space and its related norm is given by

∥{Ml, j,k}l∈Λ0, j∈Λ,k∈Λ′∥ =
(∑

l∈Λ0

∑
j∈Λ,k∈Λ′

∥Ml, j,k∥
2
) 1

2
.

If G(C,B,ΦΛ0 ) is a frame for L2(G,Cn×n), then the map

V : ℓ2(Λ0 ×Λ ×Λ
′,Mn(C))→ L2(G,Cn×n) defined by V : {Ml,k,m} l∈Λ0

k∈Λ,m∈Λ′
7→

∑
l∈Λ0

∑
k∈Λ,m∈Λ′

Ml,k,mECmTBkΦl

is called the synthesis operator (or the pre-frame operator), associated with G(C,B,ΦΛ0 ). The analysis operator is
the map

W : L2(G,Cn×n)→ ℓ2(Λ0 ×Λ ×Λ
′,Mn(C)) given by W : f 7→

{
⟨f,ECmTBkΦl⟩

}
l∈Λ0,k∈Λ,m∈Λ′

.

The frame operator of G(C,B,ΦΛ0 ) is the composition S = VW on the space L2(G,Cn×n) which is given by

S : f 7→
∑
l∈Λ0

∑
k∈Λ,m∈Λ′

⟨f,ECmTBkΦl⟩ECmTBkΦl,

f ∈ L2(G,Cn×n). The frame operator is bounded, linear and invertible on L2(G,Cn×n). We refer to [4, 12] for
basic theory of Gabor frames.

The following example will be used in illustration of results.

Example 2.3. [15, Example 3.1] Let G be the torus group. Its dual group is Ĝ = Z. Fix a lattice Λ =
{
0, 1

8 , . . . ,
7
8

}
.

Then Λ⊥ = 8Z with fundamental domain V = Z8 = {0, 1, . . . , 7}. Let ϕ1, ϕ2 ∈ L2(T) be such that

ϕ̂1(γ) = χZ8 (γ) and ϕ̂2(γ) =
1
2
χZ8 (γ) in L2(Z) for γ ∈ Z.

For B ∈ AutG and C ∈ AutĜ, consider the Gabor system {ECmTBkϕ1} k∈Λ
m∈Λ⊥

= {E8mTkϕ1}k∈Λ,m∈Z. Set ϕ(1)
m (ξ) =

E8mϕ1(ξ), m ∈ Z, ξ ∈ [0, 1[. Since E8mTkϕ1(ξ) = TkE8mϕ1(ξ), thus by taking Λm := Λ, one can write
{Tkϕ

(1)
m }k∈Λ,m∈Z = {E8mTkϕ1}k∈Λ,m∈Z.

Define

G0(γ) =
∑
m∈Z

µĜ(V)
∣∣∣∣ϕ̂(1)

m (γ)
∣∣∣∣2, γ ∈ Z,

and

G1(γ) =
∑
m∈Z

µĜ(V)
∑

w∈Λ⊥\{0}

|ϕ̂(1)
m (γ)ϕ̂(1)

m (γ + w)|, γ ∈ Z.

Then, using ϕ̂(1)
m (γ) = Ê8mϕ1(γ) = T8mϕ̂1(γ), γ ∈ Z, we have

G0(γ) =
∑
m∈Z

8|χZ8 (γ − 8m)|2 = 8 for γ ∈ Z,

and

G1(γ) =
∑
m∈Z

8
∑

a∈Z\{0}

|χZ8 (γ − 8m)χZ8 (γ + 8a − 8m)|2 = 0 for γ ∈ Z.

Therefore, by [4, Theorem 21.6.1], the Gabor system {E8mTkϕ1}k∈Λ,m∈Z is a 8-tight frame for L2(G). Similarly,
{E8mTkϕ2}k∈Λ,m∈Z is a 2-tight frame for L2(G).
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3. Matrix-Valued (Θ,Θ∗)-Gabor Frames

We begin this section with the definition of a matrix-valued (Θ,Θ∗)-Gabor frame in the matrix-valued
function space L2(G,Cn×n).

Definition 3.1. LetΘ be a bounded linear operator acting on L2(G,Cn×n). A countable family of vectorsG(C,B,ΦΛ0 ) :=
{ECmTBkΦl}l∈Λ0,k∈Λ,m∈Λ′ in L2(G,Cn×n) is called a matrix-valued (Θ,Θ∗)-Gabor frame for L2(G,Cn×n) if for all
f ∈ L2(G,Cn×n),

αo∥Θ
∗f∥2 ≤

∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥∥∥∥〈ECmTBkΦl, f
〉∥∥∥∥2
≤ βo∥Θf∥2 (5)

holds for some positive scalars αo and βo.

The positive scalars αo and βo are called lower and upper frame bounds of the (Θ,Θ∗)-Gabor frameG(C,B,ΦΛ0 ).
If αo = βo, then we say that G(C,B,ΦΛ0 ) is a αo-(Θ,Θ∗)-tight matrix-valued Gabor frame for L2(G,Cn×n).

Remark 3.2. IfΘ is the identity operator on L2(G,Cn×n), then a matrix-valued (Θ,Θ∗)-Gabor frame for L2(G,Cn×n)
is the standard matrix-valued Gabor frame for L2(G,Cn×n). However, if Θ is a non-identity operator on L2(G,Cn×n),
then a matrix-valued (Θ,Θ∗)-Gabor frame for L2(G,Cn×n) need not be the standard matrix-valued Gabor frame for
L2(G,Cn×n). For example, consider the tight Gabor frames {E8mTkϕl}k∈Λ,m∈Z, (l = 1, 2) for L2(G) given in Example

2.3. Let Φ1 =

[
0 ϕ1
0 ϕ1

]
,Φ2 =

[
0 ϕ2
0 ϕ2

]
. Then, Φ1,Φ2 ∈ L2(G,C2×2). For any f =

[
f11 f12
f21 f22

]
in L2(G,C2×2), we have

∑
l∈{1,2}

∑
k∈Λ,m∈Z

∥∥∥∥〈E8mTkΦl, f
〉∥∥∥∥2

=
∑

l∈{1,2}

∑
k∈Λ,m∈Z

2
(∣∣∣ ∫

G
E8mTkϕl f12dµG

∣∣∣2 + ∣∣∣ ∫
G

E8mTkϕl f22dµG

∣∣∣2)
= 20

(
∥ f12∥

2 + ∥ f22∥
2
)
.

Therefore, for fo =

[
f 0
f 0

]
, where 0 , f ∈ L2(G), we have

∑
l∈{1,2}

∑
k∈Λ,m∈Z

∥∥∥∥〈E8mTkΦl, fo

〉∥∥∥∥2
= 0.

Thus, {E8mTkΦl}l∈{1,2},k∈Λ,m∈Z is not a matrix-valued Gabor frame for L2(G,C2×2). But the family {E8mTkΦl}l∈{1,2},k∈Λ,m∈Z
is a (Θo,Θ∗o)-Gabor frame for L2(G,C2×2), where Θo is a bounded linear operator on L2(G,C2×2) given by

Θo : f 7→
[
0 f12
0 f22

]
, f =

[
f11 f12
f21 f22

]
∈ L2(G,C2×2).

It is easy to see that Θ∗o = Θo. Therefore, for any f ∈ L2(G,C2×2), we have

20∥Θ∗of∥2 =
∑

l∈{1,2}

∑
k∈Λ,m∈Z

∥∥∥∥〈E8mTkΦl, f
〉∥∥∥∥2
= 20∥Θof∥2.

Hence, {E8mTkΦl}l∈{1,2},k∈Λ,m∈Z is a matrix-valued (Θo,Θ∗o)-Gabor frame for L2(G,C2×2).

Remark 3.3. It is mentioned in [15] that a matrix-valued Gabor frame for L2(G,Cn×n) is always a Θ-Gabor frame
for L2(G,Cn×n) where Θ is a bounded linear operator on L2(G,Cn×n). However, this is not true in the case of (Θ,Θ∗)-
matrix-valued Gabor frame. Precisely, a matrix-valued Gabor frame for L2(G,Cn×n) need not be a (Θ,Θ∗)-Gabor
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frame for L2(G,Cn×n). For example, let G be the torus group and {E8mTkϕl}k∈Λ,m∈Z (l = 1, 2) be the tight Gabor frames
for L2(G) given in Example 2.3. Let Φ1, Φ2 ∈ L2(G,C2×2) be given by

Φ1 =

[
0 ϕ1
ϕ2 0

]
and Φ2 =

[
0 ϕ2
ϕ1 0

]
.

Then, {E8mTkΦl}l∈{1,2},k∈Λ,m∈Z is a 10-tight matrix-valued Gabor frame for L2(G,C2×2). Define Θ : L2(G,C2×2) →
L2(G,C2×2) by

Θ : f 7→
[

f11 0
0 0

]
, f =

[
f11 f12
f21 f22

]
∈ L2(G,C2×2).

Then,Θ is a bounded linear operator. If possible, let {E8mTkΦl}l∈{1,2},k∈Λ,m∈Z be a (Θ,Θ∗)- Gabor frame for L2(G,C2×2)

with bounds a, b. Then, for fo =

[
0 f
f f

]
, where 0 , f ∈ L2(G), we have

∑
l∈{1,2}

∑
k∈Λ,m∈Z

∥∥∥∥〈E8mTkΦl, fo

〉∥∥∥∥2
= 10∥fo∥

2 = 30∥ f ∥2 > 0 = b∥Θfo∥
2,

which is a contradiction. Hence, {E8mTkΦl}l∈{1,2},k∈Λ,m∈Z is not a (Θ,Θ∗)- Gabor frame for L2(G,C2×2).

Now, we show that a matrix-valued Gabor frame for L2(G,Cn×n) becomes a (Θ,Θ∗)-Gabor frame for
L2(G,Cn×n) provided Θ is bounded below.

Proposition 3.4. Let {ECmTBkΦl}l∈Λ0,k∈Λ,m∈Λ′ be a matrix-valued Gabor frame for L2(G,Cn×n). Let Θ be a bounded
linear operator acting on the space L2(G,Cn×n) which is bounded below. Then, the collection {ECmTBkΦl}l∈Λ0,k∈Λ,m∈Λ′

is a matrix-valued (Θ,Θ∗)-Gabor frame for L2(G,Cn×n).

Proof. Let γ and δ be frame bounds of {ECmTBkΦl}l∈Λ0,k∈Λ,m∈Λ′ . LetΘ be bounded below by a constant α, that
is, ∥Θf∥ ≥ α∥f∥ for all f in L2(G,Cn×n). Then, for any f ∈ L2(G,Cn×n), we have

γ

∥Θ∗∥2
∥Θ∗f∥2 ≤ γ∥f∥2 ≤

∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨ECmTBkΦl, f⟩∥2,

and ∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨ECmTBkΦl, f⟩∥2 ≤ δ∥f∥2 ≤
δ

α2 ∥Θf∥2.

Thus, {ECmTBkΦl}l∈Λ0,k∈Λ,m∈Λ′ is a matrix-valued (Θ,Θ∗)-Gabor frame for the space L2(G,Cn×n) with frame
bounds γ

∥Θ∗∥2
and δ

α2 .

Now, we discuss relations between hyponormal operators on L2(G,Cn×n) and matrix-valued λo-(Θ,Θ∗)-tight
frames for L2(G,Cn×n). By Definition 3.1, one may observe that a bounded linear operator Θ on L2(G,Cn×n)
is hyponormal if there exists a matrix-valued λo-(Θ,Θ∗)-tight frame for the space L2(G,Cn×n). Indeed, if
{fk}k∈I is a matrix-valued λo-(Θ,Θ∗)-tight frame for L2(G,Cn×n), then by Definition 3.1, we have ∥Θ∗f∥ ≤ ∥Θf∥,
for all f ∈ L2(G,Cn×n). Hence, Θ is a hyponormal operator on L2(G,Cn×n).

In order to see the other way round relationship, we first discuss some frame preserving properties
of (Θ,Θ∗)-frames in L2(G,Cn×n). The following result says that the image of a frame in L2(G) under a
hyponormal operator Θ is a (Θ,Θ∗)-frame for L2(G).

Proposition 3.5. Let {ECmTBkϕl}l∈Λ0,k∈Λ,m∈Λ′ be a Gabor frame for L2(G) and let Θ be a hyponormal operator on
L2(G). Then, {ΘECmTBkϕl} l∈Λ0 ,k∈Λ

m∈Λ′
is a (Θ,Θ∗)-frame for L2(G).
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Proof. Let λ and µ be lower and upper frame bounds of {ECmTBkϕl} l∈Λ0 ,k∈Λ
m∈Λ′

. Then, using the hyponormality

of Θ, for any f ∈ L2(G), we have∑
l∈Λ0

∑
k∈Λ,m∈Λ′

|⟨ΘECmTBkϕl, f ⟩|2 =
∑
l∈Λ0

∑
k∈Λ,m∈Λ′

|⟨ECmTBkϕl,Θ
∗ f ⟩|2

≤ µ∥Θ∗ f ∥2

≤ µ∥Θ f ∥2.

Also

λ∥Θ∗ f ∥2 ≤
∑
l∈Λ0

∑
k∈Λ,m∈Λ′

|⟨ECmTBkϕl,Θ
∗ f ⟩|2

=
∑
l∈Λ0

∑
k∈Λ,m∈Λ′

|⟨ΘECmTBkϕl, f ⟩|2

for all f ∈ L2(G). Hence, {ΘECmTBkϕl}l∈Λ0,k∈Λ,m∈Λ′ is a (Θ,Θ∗)-frame for L2(G) with frame bounds λ and µ.

Remark 3.6. Proposition 3.5 is not true for matrix-valued frames in matrix-valued signal spaces L2(G,Cn×n). This
problem is related to adjointable operators on matrix-valued signal spaces with respect to matrix-valued inner product
on the underlying space. For example, consider the tight Gabor frames {E8mTkϕl} k∈Λ

m∈Z
(l = 1, 2) for L2(G) given in

Example 2.3. Let Φ1, Φ2 ∈ L2(G,C2×2) be given by

Φ1 =

[
0 ϕ1
ϕ2 0

]
and Φ2 =

[
0 ϕ2
ϕ1 0

]
.

Then, {E8mTkΦl}l∈{1,2},k∈Λ,m∈Z is a 10-tight matrix-valued Gabor frame for L2(G,C2×2).
Define Θ : L2(G,C2×2)→ L2(G,C2×2) by

Θ : f 7→
[

f11 0
0 0

]
, f =

[
f11 f12
f21 f22

]
∈ L2(G,C2×2).

Then,Θ is a bounded linear operator with adjointΘ∗ = Θ and hence a hyponormal operator. ButΘ is not adjointable
with respect to matrix-valued inner product on L2(G,C2×2). That is, ⟨Θf,g⟩ , ⟨f,Θ∗g⟩ for all f,g in L2(G,C2×2).
Furthermore,ΘE8mTkΦl = O for l ∈ {1, 2}, k ∈ Λ,m ∈ Z. Hence, {ΘE8mTkΦl}l∈{1,2},k∈Λ,m∈Z is not a (Θ,Θ∗)-frame for
L2(G,C2×2).

The following result gives sufficient conditions on matrix-valued Θ-frame preserving transformations
acting on matrix-valued signal spaces in terms of adjointability of Θ.

Proposition 3.7. Let {ECmTBkΦl}l∈Λ0,k∈Λ,m∈Λ′ be a matrix-valued frame for the space L2(G,Cn×n) with frame bounds
γ and δ. LetΘ be a hyponormal operator acting on L2(G,Cn×n) which is adjointable with respect to the matrix-valued
inner product. Then, {ΘECmTBkΦl}l∈Λ0,k∈Λ,m∈Λ′ is a matrix-valued (Θ,Θ∗)-frame for L2(G,Cn×n) with frame bounds
γ and δ.

Proof. For any f ∈ L2(G,Cn×n), we have

γ∥Θ∗f∥2 ≤
∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨ECmTBkΦl,Θ
∗f⟩∥2

=
∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨ΘECmTBkΦl, f⟩∥2

=
∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨ECmTBkΦl,Θ
∗f⟩∥2

≤ δ∥Θ∗f∥2

≤ δ∥Θf∥2.
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Thus, {ΘECmTBkΦl}l∈Λ0,k∈Λ,m∈Λ′ is a matrix-valued (Θ,Θ∗)-frame for the space L2(G,Cn×n) with the desired
frame bounds.

Now, we have enough knowledge to discuss the conditions on an operatorΘ acting on L2(G,Cn×n) such that
the existence of λo-(Θ,Θ∗)-tight frames for L2(G,Cn×n) is guaranteed. We give the following result regarding
this.

Theorem 3.8. Let Θ be a hyponormal operator on L2(G,Cn×n). If Θ is adjointable with respect to the matrix-valued
inner product, then there exists a matrix-valued λo-(Θ,Θ∗)-tight frame for L2(G,Cn×n) for every positive real number
λo.

Proof. Let {ECmTBkϕl}l∈Λ0,k∈Λ,m∈Λ′ be a Parseval frame for L2(G). For each l ∈ Λ0, define the matrix-valued
function Φl ∈ L2(G,Cn×n) as

Φl =


√
λo ϕl 0 · · · 0
0

√
λo ϕl · · · 0

...
...

. . .
...

0 0 · · ·
√
λo ϕl

 .
Then

ECmTBkΦl =


ECmTBk (

√
λo ϕl) 0 · · · 0

0 ECmTBk (
√
λo ϕl) · · · 0

.

.

.

.

.

.

.
.
.

.

.

.
0 0 · · · ECmTBk (

√
λo ϕl )

.

Therefore, for any f =


f11 f12 · · · f1n
f21 f22 · · · f2n
...

...
. . .

...
fn1 fn2 · · · fnn

 ∈ L2(G,Cn×n), we have

∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨f,ECmTBkΦl⟩∥
2

=
∑
l∈Λ0

∑
k∈Λ

m∈Λ′

∥∥∥∥

⟨ f11,ECmTBk(

√
λo ϕl)⟩ · · · ⟨ f1n,ECmTBk(

√
λo ϕl)⟩

⟨ f21,ECmTBk(
√
λo ϕl)⟩ · · · ⟨ f2n,ECmTBk(

√
λo ϕl)⟩

...
. . .

...
⟨ fn1,ECmTBk(

√
λo ϕl)⟩ · · · ⟨ fnn,ECmTBk(

√
λo ϕl)⟩


∥∥∥∥2

= λo

∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∑
1≤i, j≤n

|⟨ fi j,ECmTBk ϕl⟩|
2

= λo

∑
1≤i, j≤n

∥ fi j∥
2

= λo∥f∥2.

Hence, {ECmTBkΦl}l∈Λ0,k∈Λ,m∈Λ′ is a matrix-valued λo-tight Gabor frame for L2(G,Cn×n). Further, by Proposi-
tion 3.7, {ΘECmTBkΦl}l∈Λ0,k∈Λ,m∈Λ′ is a (Θ,Θ∗)-frame for L2(G,Cn×n) with λo as lower and upper frame bounds.
Hence, the existence of a matrix-valued λo-(Θ,Θ∗)-tight frame for the space L2(G,Cn×n) is proved.

We illustrate Theorem 3.8 by giving the following example regarding the existence of λo-(Θ,Θ∗)-tight
frames for L2(R,C3×3).
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Example 3.9. Let G = R be the additive group of real numbers. The characters on R are the functions ηy : R→ C
defined by

ηy(x) = e2πiyx, x ∈ R

for fixed y ∈ R. That is, the dual group Ĝ can be identified with R, see [9] for technical details. Consider the lattice
Λ = Z and Λ′ = Z. Then, for ϕ = χ[0,1], the Gabor system {EmTkϕ}m,k∈Z is an orthonormal basis for L2(R), see [4,
p. 96] for details.

Define a matrix-valued function Φ ∈ L2(R,C3×3) as

Φ =


√

3 ϕ 0 0
0

√
3 ϕ 0

0 0
√

3 ϕ

 .
Then, for any f =

[
fi, j

]
1≤i, j≤n

∈ L2(R,C3×3), we have∑
m,k∈Z

∥⟨f,EmTkΦ⟩∥
2 = 3∥f∥2,

which implies that {EmTkΦ}m,k∈Z is a matrix-valued 3-tight Gabor frame for L2(R,C3×3). Define Θ : L2(R,C3×3)→
L2(R,C3×3) by

Θ : f 7→

 f11 0 f13
f21 0 f23
f31 0 f33

 , f =

 f11 f12 f13
f21 f22 f23
f31 f32 f33

 ∈ L2(R,C3×3).

Then,Θ is a bounded linear operator with adjointΘ∗ = Θ. Also,Θ is adjointable with respect to matrix-valued inner
product on L2(R,C3×3). That is, ⟨Θf,g⟩ = ⟨f,Θ∗g⟩, f,g ∈ L2(R,C3×3). Then, by Proposition 3.7, the matrix-valued
system {ΘEmTkΦ}m,k∈Z is a matrix-valued 3-(Θ,Θ∗)-tight frame for L2(R,C3×3).

Remark 3.10. In Theorem 3.8, the condition of adjointability ofΘ with respect to matrix-valued inner product is not
a necessary condition.

Next, we discuss frame properties of the image of a (Θ,Θ∗)-Gabor frame in L2(G,Cn×n) under a bounded
linear operatorΞ. It is proved in [15, Proposition 4.2] that the image of aΘ-Gabor frame for L2(G,Cn×n) under
an operator Ξ ∈ B(L2(G,Cn×n)) becomes a ΞΘ-frame for L2(G,Cn×n) provided Ξ is adjointable with respect
to matrix-valued inner product. But, this is not true for the case of (Θ,Θ∗)-Gabor frames in L2(G,Cn×n). That
is, if G(C,B,ΦΛ0 ) is a (Θ,Θ∗)-Gabor frame for L2(G,Cn×n) and Ξ ∈ B(L2(G,Cn×n)) is adjointable with respect
to matrix-valued inner product, then Ξ(G(C,B,ΦΛ0 )) may not be a (ΞΘ, (ΞΘ)∗)-frame for L2(G,Cn×n). This is
justified in the following example.

Example 3.11. Consider tight Gabor frames {E8mTkϕ1} k∈Λ
m∈Z

and {E8mTkϕ2} k∈Λ
m∈Z

for L2(G) given in Example 2.3. Define
Θ : L2(G,C2×2)→ L2(G,C2×2) by

Θ : f 7→
[

f22 f21
f12 f11

]
, f =

[
f11 f12
f21 f22

]
∈ L2(G,C2×2).

Then, {E8mTkΦl}l∈{1,2},k∈Λ,m∈Z is a matrix-valued 10-tight (Θ,Θ∗)-frame for L2(G,C2×2). In fact, for any f ∈
L2(G,C2×2), we have

10∥Θ∗f∥2 = 10∥f∥2 ≤
∑

l∈{1,2}

∑
k∈Λ,m∈Z

∥⟨f,E8mTkΦl⟩∥
2
≤ 10∥f∥2 = 10∥Θf∥2.
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Define Ξ : L2(G,C2×2)→ L2(G,C2×2) by

Ξ : f 7→
[
0 f12
0 f22

]
, f =

[
f11 f12
f21 f22

]
∈ L2(G,C2×2).

Then, Ξ is a bounded linear operator with adjoint Ξ∗ = Ξ. Also, Ξ is adjointable with respect to matrix-valued
inner product on L2(G,C2×2). That is, ⟨Ξf,g⟩ = ⟨f,Ξ∗g⟩, f,g ∈ L2(G,C2×2). However, {ΞE8mTkΦl} l∈{1,2},k∈Λ

m∈Z
is not

a (ΞΘ, (ΞΘ)∗)-frame. If possible, let {ΞE8mTkΦl}l∈{1,2},k∈Λ,m∈Z be a (ΞΘ, (ΞΘ)∗)-frame with bounds γ, δ. Then, for

fo =

[
0 f
0 f

]
, where f is a non-zero function in L2(G), we have

∑
l∈{1,2}

∑
k∈Λ,m∈Z

∥∥∥∥〈ΞE8mTkΦl, fo

〉∥∥∥∥2
= 20∥ f ∥2 > 0 = δ∥ΞΘfo∥

2,

which is a contradiction.

In the following result, we give some additional conditions on Ξ so that Ξ(G(C,B,ΦΛ0 )) becomes a
(ΞΘ, (ΞΘ)∗)-frame. This result can be seen as a generalization of Proposition 3.7.

Proposition 3.12. Let {ECmTBkΦl}l∈Λ0,k∈Λ,m∈Λ′ be a matrix-valued (Θ,Θ∗)-Gabor frame for L2(G,Cn×n) with frame
bounds γ and δ. Suppose

(i) Ξ ∈ B(L2(G,Cn×n)) is adjointable with respect to matrix-valued inner product.
(ii) Ξ is hyponormal on Ran(Θ) such that ΘΞ∗ = Ξ∗Θ.

Then, {ΞECmTBkΦl}l∈Λ0,k∈Λ,m∈Λ′ is a (ΞΘ, (ΞΘ)∗)-frame for L2(G,Cn×n) with the same frame bounds.

Proof. For any f ∈ L2(G,Cn×n), we have∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥∥∥∥〈ΞECmTBkΦl, f
〉∥∥∥∥2
=

∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥∥∥∥〈ECmTBkΦl,Ξ
∗f
〉∥∥∥∥2

≤ δ∥ΘΞ∗f∥2

= δ∥Ξ∗Θf∥2

≤ δ∥ΞΘf∥2. (6)

Similarly∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥∥∥∥〈ΞECmTBkΦl, f
〉∥∥∥∥2
=

∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥∥∥∥〈ECmTBkΦl,Ξ
∗f
〉∥∥∥∥2

≥ γ∥Θ∗Ξ∗f∥2

= γ∥(ΞΘ)∗f∥2 f ∈ L2(G,Cn×n). (7)

By (6) and (7), we conclude that {ΞECmTBkΦl}l∈Λ0,k∈Λ,m∈Λ′ is a matrix-valued (ΞΘ, (ΞΘ)∗)-frame for L2(G,Cn×n)
with frame bounds γ and δ. This completes the proof.

Remark 3.13. The condition that the operator Θ commutes with Ξ∗ in Theorem 3.12 cannot be relaxed. Consider
the operators Θ, Ξ defined on L2(G,C2×2) and the system {E8mTkΦl}l∈{1,2},k∈Λ,m∈Z which is a (Θ,Θ∗)-Gabor frame
for L2(G,C2×2) given in Example 3.11. As mentioned in Example 3.11, the operator Ξ is adjointable with respect
to matrix-valued inner product, and Ξ is hyponormal on Ran(Θ) since Ξ∗ = Ξ. But, ΘΞ∗ , Ξ∗Θ. In fact, for any

f =
[

f11 f12
f21 f22

]
∈ L2(G,C2×2), we have

ΘΞ∗f = ΘΞf =
[

f22 0
f12 0

]
and Ξ∗Θf = ΞΘf =

[
0 f21
0 f11

]
.

Therefore, the system {ΞE8mTkΦl}l∈{1,2},k∈Λ,m∈Z not being a (ΞΘ, (ΞΘ)∗)-frame, details in Example 3.11, supports our
argument.
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Next, we give a characterization for matrix-valued (Θ,Θ∗)-Gabor frames in L2(G,Cn×n). This is inspired by
a fundamental result due to Gǎvruta in [11, Theorem 4] for ordinary K-frames in separable Hilbert spaces.
This is also related with the concept of atomic systems in Hilbert spaces. The matrix-valued atomic system
in matrix-valued function spaces can be studied in terms of (Θ,Θ∗)-Gabor frames.

Theorem 3.14. LetΘ be a bounded linear operator acting on L2(G,Cn×n). A matrix-valued Gabor systemG(C,B,ΦΛ0 )
is a (Θ,Θ∗)-Gabor frame for the space L2(G,Cn×n) if and only if there exists a bounded linear operator Ω from
ℓ2(Λ0 ×Λ ×Λ

′,Mn(C)) into L2(G,Cn×n) such that
(i) ECmTBkΦl = Ωχl,k,m, l ∈ Λ0, k ∈ Λ,m ∈ Λ′, where {χl,k,m}l∈Λ0,k∈Λ,m∈Λ′ is an orthonormal basis of
ℓ2(Λ0 ×Λ ×Λ

′,Mn(C)),
(ii) there exist finite positive numbers α and β satisfying

α tr⟨ΘΘ∗f, f⟩ ≤ tr⟨ΩΩ∗f, f⟩ ≤ β tr⟨Θ∗Θf, f⟩, f ∈ L2(G,Cn×n).

Proof. Suppose first that G(C,B,ΦΛ0 ) is a matrix-valued (Θ,Θ∗)-Gabor frame for the space L2(G,Cn×n) with
frame bounds ao, bo.

Define Ξ : L2(G,Cn×n)→ ℓ2(Λ0 ×Λ ×Λ
′,Mn(C)) by

Ξ(f) =
∑
l∈Λ0

∑
k∈Λ,m∈Λ′

⟨f,ECmTBkΦl⟩χl,k,m, f ∈ L2(G,Cn×n).

Then, Ξ is a bounded linear operator and ∥Ξ∥ ≤
√

bo∥Θ∥.
Now, for any l ∈ Λ0, k ∈ Λ,m ∈ Λ′, we have

tr⟨χl,k,m,Ξf⟩ = tr
〈
χl,k,m,

∑
l′∈Λ0

∑
k′∈Λ,m′∈Λ′

⟨f,ECm′TBk′Φl′⟩χl′,k′,m′
〉

= tr⟨f,ECmTBkΦl⟩
∗

= tr⟨ECmTBkΦl, f⟩ for all f ∈ L2(G,Cn×n).

Thus, Ξ∗χl,k,m = ECmTBkΦl, for all l ∈ Λ0, k ∈ Λ and m ∈ Λ′. If we take Ω = Ξ∗, then we obtain (i). To prove
(ii), let f ∈ L2(G,Cn×n) be arbitrary. Then,

ao∥Θ
∗f∥2 ≤

∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥∥∥∥⟨f,ECmTBkΦl⟩

∥∥∥∥2
= ∥Ξf∥2,

and

∥Ξf∥2 =
∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥∥∥∥⟨f,ECmTBkΦl⟩

∥∥∥∥2
≤ bo∥Θf∥2.

This imply that

aotr⟨ΘΘ∗f, f⟩ ≤ tr⟨Ξ∗Ξf, f⟩ = tr⟨ΩΩ∗f, f⟩ ≤ botr⟨Θ∗Θf, f⟩.

This gives (ii), where α = ao and β = bo.
To prove the converse, assume that conditions (i) and (ii) hold. Then, using condition (i), for any

l ∈ Λ0, k ∈ Λ,m ∈ Λ′ and any f ∈ L2(G,Cn×n), we have

tr⟨χl,k,m,Ω
∗f⟩ = tr⟨Ωχl,k,m, f⟩
= tr⟨ECm TBkΦl, f⟩
= tr⟨f,ECmTBkΦl⟩

∗

= tr
〈
χl,k,m,

∑
l′∈Λ0

∑
k′∈Λ,m′∈Λ′

⟨f,ECm′TBk′Φl′⟩χl′,k′,m′
〉
,
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which entails

Ω∗f =
∑
l∈Λ0

∑
k∈Λ,m∈Λ′

⟨f,ECmTBkΦl⟩χl,k,m, f ∈ L2(G,Cn×n).

Therefore

∥Ω∗f∥2 =
∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥∥∥∥⟨f,ECmTBkΦl⟩

∥∥∥∥2
, f ∈ L2(G,Cn×n).

Using condition (ii), we have α∥Θ∗f∥2 ≤ ∥Ω∗f∥2 =
∑

l∈Λ0

∑
k∈Λ,m∈Λ′

∥∥∥∥⟨f,ECmTBkΦl⟩

∥∥∥∥2
≤ β∥Θf∥2 for all f ∈

L2(G,Cn×n). Hence, G(C,B,ΦΛ0 ) is a matrix-valued (Θ,Θ∗)-Gabor frame for L2(G,Cn×n). This completes the
proof.

4. Perturbation of (Θ,Θ∗)-Gabor Frames

In this section, we show that matrix-valued (Θ,Θ∗)-Gabor frames are stable under small perturbation.
Perturbation theory plays a significant role in both pure mathematics and applied science, see e.g. [22].
For applications of perturbation theory for frames in various directions, we refer to [14]. The following
result shows that multivariate (Θ,Θ∗)-Gabor frames in matrix-valued signal spaces are stable under small
perturbations.

Theorem 4.1. Let G(C,B,ΦΛ0 ) be a matrix-valued (Θ,Θ∗)-Gabor frame for L2(G,Cn×n) with frame bounds γo, δo,
and let {Φ̃l}l∈Λ0 ⊂ L2(G,Cn×n). Assume that

(i) Θ∗ be bounded below by mo.

(ii) λ, µ, η ≥ 0 be such that (1−2λ)γo−2µ
2η > ∥Θ∥

2

m2
o

.

(iii) For all f ∈ L2(G,Cn×n),∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨f,ECmTBk(Φl − Φ̃l)⟩∥2 ≤ λ
∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨f,ECmTBkΦl⟩∥
2

+ µ∥Θ∗f∥2 + η∥Θf∥2. (8)

Then, G(C,B, Φ̃Λ0 ) is a matrix-valued (Θ,Θ∗)-Gabor frame for L2(G,Cn×n) with frame bounds((1
2
− λ

)
γo − µ −

η∥Θ∥2

m2
o

)
and 2

((
1 + λ +

µ

γo

)
δo + η

)
.

Proof. By hypothesis (8), for any f ∈ L2(G,Cn×n), we have∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨f,ECmTBkΦ̃l⟩∥
2

≤ 2
∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨f,ECmTBkΦl − ECmTBkΦ̃l⟩∥
2 + 2

∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨f,ECmTBkΦl⟩∥
2

≤ (2λ + 2)
∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨f,ECmTBkΦl⟩∥
2 + 2µ∥Θ∗f∥2 + 2η∥Θf∥2

≤ (2λ + 2)
∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨f,ECmTBkΦl⟩∥
2 +

2µ
γo

∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨f,ECmTBkΦl⟩∥
2 + 2η∥Θf∥2.
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Therefore∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨f,ECmTBkΦ̃l⟩∥
2
≤ 2

((
1 + λ +

µ

γo

)
δo + η

)
∥Θf∥2, f ∈ L2(G,Cn×n). (9)

Similarly,∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨f,ECmTBkΦl⟩∥
2

≤ 2
∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨f,ECmTBkΦl − ECmTBkΦ̃l⟩∥
2 + 2

∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨f,ECmTBkΦ̃l⟩∥
2

≤ 2λ
∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨f,ECmTBkΦl⟩∥
2 + +2µ∥Θ∗f∥2 + 2η∥Θf∥2 + 2

∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨f,ECmTBkΦ̃l⟩∥
2,

which entails

2
∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨f,ECmTBkΦ̃l⟩∥
2

≥ (1 − 2λ)
∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨f,ECmTBkΦl⟩∥
2
− 2µ∥Θ∗f∥2 − 2η∥Θf∥2

≥ (1 − 2λ)γo∥Θ
∗f∥2 − 2µ∥Θ∗f∥2 − 2η∥Θ∥2∥f∥2

≥ (1 − 2λ)γo∥Θ
∗f∥2 − 2µ∥Θ∗f∥2 −

2η∥Θ∥2

m2
o
∥Θ∗f∥2

(
using hypothesis (i)

)
That is∑

l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨f,ECmTBkΦ̃l⟩∥
2
≥

((1
2
− λ

)
γo − µ −

η∥Θ∥2

m2
o

)
∥Θ∗f∥2 (10)

for all f ∈ L2(G,Cn×n). From (9) and (10), we conclude that G(C,B, Φ̃Λ0 ) is a frame for L2(G,Cn×n) with the
desired frame bounds.

Next is an applicative example of Theorem 4.1.

Example 4.2. Let {E8mTkΦl}l∈{1,2},k∈Λ,m∈Z be the 10-tight matrix-valued Gabor frame for L2(G,C2×2) given in Remark
3.3. Define Θ on L2(G,C2×2) by

Θ : f 7→
[
2 f22 f21
f12 f11

]
, f =

[
f11 f12
f21 f22

]
∈ L2(G,C2×2).

Then, Θ is a bounded linear operator satisfying ∥Θf∥ ≤ 2∥f∥, for all f ∈ L2(G,C2×2). In fact, we have ∥Θ∥ = 2. For
any f, g ∈ L2(G,C2×2), we have

tr⟨Θf,g⟩ = tr
∫

G

[
2 f22 f21
f12 f11

] [
111 121
112 122

]
dµG

= tr
∫

G

[
f11 f12
f21 f22

] [
122 112
121 2 111

]
dµG,

which implies that Θ∗ is given by

Θ∗ : g 7→
[
122 121
112 2111

]
, g =

[
111 112
121 122

]
∈ L2(G,C2×2).
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It can be easily seen that Θ∗ satisfies ∥f∥ ≤ ∥Θ∗f∥ ≤ 2∥f∥, for all f ∈ L2(G,C2×2). That is, Θ∗ is bounded below by
mo = 1.

Now, for any f ∈ L2(G,C2×2), we have 5
2∥Θ

∗f∥2 ≤
∑

l∈{1,2}
∑

k∈Λ,m∈Z

∥∥∥∥〈E8mTkΦl, f
〉∥∥∥∥2
= 10∥f∥2 ≤ 10∥Θf∥2.

Therefore, {E8mTkΦl}l∈{1,2},k∈Λ,m∈Z is a matrix-valued (Θ,Θ∗)-Gabor frame for L2(G,C2×2) with frame bounds γ1 =
5
2

and δ1 = 10.

Consider Φ̃1 =

[
1
5ϕ1 ϕ1

ϕ2
1
5ϕ2

]
, Φ̃2 =

[
1
5ϕ2 ϕ2

ϕ1
1
5ϕ1

]
in L2(G,C2×2). Then, for any f =

[
fi j

]
1≤i, j≤2

∈ L2(G,C2×2), we

have ∑
l∈{1,2}

∑
k∈Λ,m∈Z

∥⟨f,E8mTkΦl − E8mTkΦ̃l⟩∥
2

=
1

25

∑
l∈{1,2}

∑
k∈Λ,m∈Z

(∣∣∣ ∫
G

E8mTkϕl f11

∣∣∣2 + ∣∣∣ ∫
G

E8mTkϕl f21

∣∣∣2 + ∣∣∣ ∫
G

E8mTkϕl f12

∣∣∣2 + ∣∣∣ ∫
G

E8mTkϕl f22

∣∣∣2)
=

10
25
∥f∥2 ≤

1
5
∥Θ∗f∥2 +

1
5
∥Θf∥2.

Thus, all the conditions in Theorem 4.1 are satisfied withλ = 0, µ = 1
5 , η =

1
5 . Hence, the collection {E8mTkΦ̃l}l∈{1,2},k∈Λ,m∈Z

is a matrix-valued (Θ,Θ∗)-Gabor frame for L2(G,C2×2).

Theorem 4.1 shows that a matrix-valued Gabor system G(C,B, Φ̃Λ0 ) becomes a (Θ,Θ∗)-Gabor frame for
L2(G,Cn×n) if its window functions Φ̃l, l ∈ Λ0 are sufficiently close to the window functions Φl, l ∈ Λ0 of
a matrix-valued (Θ,Θ∗)-Gabor frame G(C,B,ΦΛ0 ). This can also be seen as a way of constructing new
matrix-valued (Θ,Θ∗)-Gabor frames by altering the window functions of a known matrix-valued (Θ,Θ∗)-
Gabor frame appropriately. In the direction of obtaining new matrix-valued (Θ,Θ∗)-Gabor frames from
known matrix-valued (Θ,Θ∗)-Gabor frames, we give the following result which states that the perturbed
matrix-valued Gabor systems (Θ,Θ∗)-Gabor frames, under suitable conditions, becomes a matrix-valued
(Θ,Θ∗)-Gabor frame for L2(G,Cn×n).

Theorem 4.3. LetG(C,B,ΦΛ0 ) andG(C,B,ΨΛ0 ) be matrix-valued (Θ,Θ∗)-Gabor frames for L2(G,Cn×n) with frame

bounds γ1, δ1 and γ2, δ2, respectively. Suppose Θ∗ is bounded below with constant mo such that
√
γ1

δ2
> ∥Θ∥mo

. Then,

the perturbed matrix-valued Gabor system G
(
C,B, (ΦΛ0 +ΨΛ0 )

)
is a (Θ,Θ∗)-Gabor frame for L2(G,Cn×n) with frame

bounds
(
√
γ1 −

√
δ2∥Θ∥
mo

)2
and 2(δ1 + δ2).

Proof. For any f ∈ L2(G,Cn×n), we compute(∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨f ,ECmTBk(Φl +Ψl)⟩∥2
) 1

2

=
(∑

l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨f ,ECmTBkΦl + ECmTBkΨl⟩∥
2
) 1

2

≥

(∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨f ,ECmTBkΦl⟩∥
2
) 1

2
−

(∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨f ,ECmTBkΨl⟩∥
2
) 1

2

≥
√
γ1∥Θ

∗f∥ −
√
δ2∥Θf∥

≥
√
γ1∥Θ

∗f∥ −
√
δ2∥Θ∥∥f∥

≥
√
γ1∥Θ

∗f∥ −
√
δ2∥Θ∥

mo
∥Θ∗f∥.
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This gives∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨f ,ECmTBkΦl + ECmTBkΨl⟩∥
2
≥

(√
γ1 −

√
δ2∥Θ∥

mo

)2
∥Θ∗f∥2 for all f ∈ L2(G,Cn×n). (11)

Similarly,∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨f ,ECmTBk(Φl +Ψl)⟩∥2

≤ 2
(∑

l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨f ,ECmTBkΦl⟩∥
2 +

∑
l∈Λ0

∑
k∈Λ,m∈Λ′

∥⟨f ,ECmTBkΨl⟩∥
2
)

≤ 2(δ1 + δ2)∥Θf∥2 for all f ∈ L2(G,Cn×n). (12)

From (11) and (12), we conclude that G
(
C,B, (ΦΛ0 + ΨΛ0 )

)
is a (Θ,Θ∗)-Gabor frame for L2(G,Cn×n) with the

desired frame bounds. This completes the proof.

We end this paper by providing an application of Theorem 4.3.

Example 4.4. Consider the (Θ,Θ∗)-Gabor frame {E8mTkΦl}l∈{1,2},k∈Λ,m∈Z for L2(G,C2×2) with frame bounds γ1 =
5
2

and δ1 = 10 given in Example 4.2.

LetΨ1 =

[
1
5ϕ1 0
0 1

5ϕ2

]
,Ψ2 =

[
1
5ϕ2 0
0 1

5ϕ1

]
. Then,Ψ1,Ψ2 ∈ L2(G,C2×2), and for any f ∈ L2(G,C2×2), we have∑

l∈{1,2}

∑
k∈Λ,m∈Z

∥⟨f,E8mTkΨl⟩∥
2

=
1
25

∑
l∈{1,2}

∑
k∈Λ,m∈Z

(∣∣∣ ∫
G

E8mTkϕl f11

∣∣∣2 + ∣∣∣ ∫
G

E8mTkϕl f21

∣∣∣2 + ∣∣∣ ∫
G

E8mTkϕl f12

∣∣∣2 + ∣∣∣ ∫
G

E8mTkϕl f22

∣∣∣2)
=

10
25
∥f∥2

≤
2
5
∥Θf∥2.

Also ∑
l∈{1,2}

∑
k∈Λ,m∈Z

∥⟨f,E8mTkΨl⟩∥
2 =

2
5
∥f∥2 ≥

1
10
∥Θ∗f∥2, f ∈ L2(G,C2×2).

Thus, {E8mTkΨl}l∈{1,2},k∈Λ,m∈Z is a (Θ,Θ∗)-Gabor frame for L2(G,C2×2) with frame bounds γ2 =
1

10 and δ2 =
2
5 .

Further, Θ∗ is bounded below by mo = 1 and 5
2 =

√
γ1

δ2
> ∥Θ∥

mo
= 2. Hence, by Theorem 4.3, the perturbed matrix-

valued Gabor system {E8mTk(Φl +Ψl)}l∈{1,2},k∈Λ,m∈Z is a (Θ,Θ∗)-Gabor frame for L2(G,C2×2) with frame bounds(
√
γ1 −

√
δ2∥Θ∥

mo

)2

and 2(δ1 + δ2).

Remark 4.5. Theorem 4.1 and Theorem 4.3 are not only ways of constructing new frames but also can be used to
check if a matrix-valued Gabor system G(C,B, Φ̃Λ0 ) is a (Θ,Θ∗)-Gabor frame for L2(G,Cn×n), where the window
functions Φ̃l, l ∈ Λ0 have complex structure leading to complicated calculations. In order to understand this better,
we compare Example 4.2 and Example 4.4. In Example 4.2, to prove matrix-valued (Θ,Θ∗)-Gabor frame conditions of
{E8mTkΦ̃l}l∈{1,2},k∈Λ,m∈Z, a (Θ,Θ∗)-Gabor frame {E8mTkΦl}l∈{1,2},k∈Λ,m∈Z having simpler window functions is considered.
However, in Example 4.4, Φl +Ψl = Φ̃l, l ∈ Λ0. Hence, Example 4.4 can be seen as a method by which the collection
{E8mTkΦ̃l}l∈{1,2},k∈Λ,m∈Z is proved to be a (Θ,Θ∗)-Gabor frame by splitting its window functions as a sum of the window
functions (perturbed window functions) of two (Θ,Θ∗)-Gabor frames.
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[5] Deepshikha, L. K. Vashisht, G. Verma, Generalized weaving frames for operators in Hilbert spaces, Results Math. 72 (2017), 1369–1391.
[6] Deepshikha, L. K. Vashisht, Weaving K-frames in Hilbert spaces, Results Math. 73 (2018), Art. No. 81, 1–20.
[7] Deepshikha, L. K. Vashisht, On weaving frames, Houston J. Math. 44 (2018), 887–915.
[8] R. J. Duffin, A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341–366.
[9] G. B. Folland, A course in abstract harmonic analysis, (2ndedition), CRC Press, New York, 2015.

[10] D. Gabor, Theory of communication, J. Inst. Elect. Eng. 93 (1946), 429–457.
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