Filomat 37:29 (2023), 9973–9979 https://doi.org/10.2298/FIL2329973H

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The GCD for finite geometric series

R.E. Hartwig^a, Pedro Patrício^{b,*}

^a Mathematics Department, N.C.S.U., Raleigh, NC 27695-8205, U.S.A. ^bCMAT – Centro de Matemática and Departamento de Matemática, Universidade do Minho, 4710-057 Braga, Portugal

Abstract. The Greatest Common Divisor is given for a pair of finite geometric eries.

1. Introduction

We continue our investigation [5] of finite Geometric series – also called Geometric Progressions – of the form

$$G_n(x) = 1 + x + x^2 + \dots + x^{n-1}$$
(1)

by computing the Greatest Common Divisor (gcd for short)

$$\Gamma = (G_n(x^p), G_m(x^q)),$$

for a pair of such progressions, in terms of the four parameters (*n*, *p*, *m*, *q*).

Geometric series (in their finite form) play an important role in the Hyperpower Iteration ([2]) and in the Picard Iteration ([3]). On the other hand, one may use the *resultant* R(a(x), b(x)) ([1])

$R(a(x), b(x)) = \det$	$\begin{bmatrix} a_n \\ 0 \end{bmatrix}$	a_{n-1} a_n	a_{n-2} a_{n-1}	 	a_0	$\begin{array}{c} 0\\ a_1 \end{array}$	a_0]
	:						·	۰.	
								<i>a</i> ₁	<i>a</i> ₀
	1				b_m	b_{m-1}		b_1	b_0
	:			b_m	b_{m-1}	•••	b_1	b_0	0
	$\begin{bmatrix} 0\\b_m \end{bmatrix}$	b_{m-1}	b_{m-2}	 					: 0

2020 Mathematics Subject Classification. Primary 13F07; Secondary 11A05.

Keywords. Finite geometric series; Greatest common divisor

Received: 03 February 2022; Accepted: 20 June 2023

Email addresses: hartwig@unity.ncsu.edu (R.E. Hartwig), pedro@math.uminho.pt (Pedro Patrício)

Communicated by Dijana Mosić

Research supported by Portuguese Funds through FCT (Fundação para a Ciência e a Tecnologia) within the Projects UIDB/00013/2020 and UIDP/00013/2020.

^{*} Corresponding author: Pedro Patrício

of $a(x) = \sum_{i=0}^{n} a_i x^i$, $b(x) = \sum_{i=0}^{m} b_i x^i \in \mathbb{C}[x]$ to check if a(x) and b(x) are co-prime. This happens exactly when

$$R(a(x), b(x)) \neq 0.$$

For instance, $G_4(x) = x^3 + x^2 + x + 1$ and $G_3(x^2) = x^4 + x^2 + 1$ are co-prime, since their resultant is

$$R(G_4(x), G_3(x^2) = \det \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \end{bmatrix} = -3.$$

We shall need several preliminary results dealing with such progressions and their relation to the binomal $x^n - 1 = (x - 1) \cdot G_n(x)$ and shall employ a string of basic facts for gcds of polynomials over a field \mathbb{F} with $char(\mathbb{F}) = 0$.

2. Some background results

The greatest common divisor and the least common multiple of of *a* and *b* will be denoted by (*a*, *b*) and [*a*, *b*], respectively.

For elements from an Euclidean domain we recall that:

1. (Switching Lemma) If (a, c) = 1 = (b, d), then

$$(ab, cd) = (a, d)(b, c)$$
 (2)

2. Using this we have the gcd product rule :

(ab, cd) = (a, c)(b, d)(a'b'', c'd'') = (a, c)(b, d)(a', d'')(b'', c'),

where a' = a/(a,c), c' = c/(a,c), b'' = b/(b,d), d'' = d/(b,d), with (a',c') = 1 = (b'',d'').

$$(ab, cd) = 1$$
 if and only if $(a, b) = 1 = (a, d) = (b, c) = (b, d)$.

For integers m and n, let $L = [m, n] = lcm(m, n) = \frac{mn}{d}$. Also set m = dm' and n = dn' so that L = mn' = mn' = m'n'd.

Now suppose that n = mq + r, where $0 \le r < m \le n$. Then

$$x^{n} - 1 = x^{r}(x^{mq} - 1) + x^{r} - 1 = (x^{m} - 1)x^{r}G_{q}(x^{m}) + x^{r} - 1.$$

which shows that

 $m|n \Leftrightarrow x^m - 1|x^n - 1 \Leftrightarrow G_m(x)|G_n(x)$

and hence that

$$(x^m - 1, x^n - 1) = x^d - 1 = (x - 1)(G_m, G_n).$$

Consequently,

$$G_d = \frac{x^d - 1}{x - 1} = (G_m, G_n) \text{ and } (G_m, G_n) = 1 \Leftrightarrow (m, n) = 1$$

Now observe that if n|L and m|L then $x^n - 1|x^L - 1$ and $x^m - 1|x^L - 1$. Hence $[x^m - 1, x^n - 1]|x^L - 1|x^{mn} - 1$ and thus (m 1) (n 1)

$$\frac{(x^m-1)(x^n-1)}{(x^d-1)}|x^L-1|x^{mn}-1,$$

which may be expressed as

$$G_m(x)G_n(x)|G_L(x)G_d(x)|G_{mn}(x)G_d(x).$$

For $x \neq 1$, we have

$$\frac{G_{np}}{G_p} = \frac{x^{np}-1}{x-1} \cdot \frac{x-1}{x^p-1} = \frac{x^{np}-1}{x^p-1} = G_n(x^p),$$

and thus for all x

 $G_{np}(x) = G_p(x)G_n(x^p),$

which we refer to as the *Product Rule*.

Since *char*(\mathbb{F}) = 0, we know that $G_n(1) = n \neq 0$ and thus by the remainder theorem $(x - 1) \nmid G_n(x)$, or $(x - 1, G_n(x)) = 1$. Replacing *x* by x^{mk} then gives

$$(x^{mk} - 1, G_n(x^{mk})) = ((x - 1)G_m(x)G_k(x^m), G_n(x^{mk})) = 1.$$

We are left with the Linking Lemma (LL):

Lemma 2.1 (Linking Lemma (LL)). For any m, n and k,

$$(G_m(x), G_n(x^{km})) = 1.$$
 (4)

3. The GCD computation

Given *p* and *q*, let (p,q) = w and set p = p'w and q = q'w, with (p, q') = 1. Consider the gcd

$$\Gamma = \Gamma_{n,p}^{m,q} = (G_n(x^p), G_m(x^q)) = (G_n(x^{p'w}), G_m(x^{q'w})) = (G_n(y^{p'}), G_m(y^{q'})),$$

where $y = x^w$ and (p', q') = 1. Thus without loss of generality we may assume that (p, q) = 1, otherwise, in the final result, replace x by x^w .

Assuming that (p, q) = 1, we may use the Product Rule to rewrite Γ as

$$\Gamma = \left(\frac{G_{np}}{G_p}, \frac{G_{mq}}{G_q}\right) = \frac{1}{G_p G_q} (G_q G_{np}, G_p G_{mq}) = \frac{1}{G_p G_q} \Gamma'.$$

The computation of the gcd $\Gamma_{n,p}^{m,q}$ requires a suitable splitting of the four parameters (n, p, m, q). To this end we define:

d=(m,n),	m=m'd,	n = n'd,	with	(m',n')=1
f=(m',p),	$m' = \hat{m}f,$	$p = \hat{p}f$,	with	$(\hat{m},\hat{p})=1$
g=(n',q),	$n' = \bar{n}g,$	$q = \bar{q}g$,	with	$(\bar{n},\bar{q})=1$
$h = (\hat{p}, d),$	$\hat{p} = \tilde{p}h$,	$d = \tilde{d}h$,	with	$(\tilde{p}, \tilde{d}) = 1$
$t=(\bar{q},d),$	$\bar{q}=q''t,$	d = d''t,	with	$(q^{\prime\prime},d^{\prime\prime})=1.$

and in addition set $r = \hat{m}\bar{q}$ and $s = \hat{p}.\bar{n}$.

Because (m'n') = 1 = (p,q), we know from (2) that e = (m'q, n'p) = (m', p)(n', q) = fg. Moreover

$$np = n'dp = \bar{n}gd\hat{p}f = de(\bar{n}\hat{p}) = des,$$

as well as

$$mq = m'dq = \hat{m}fd\bar{q}g = de(\hat{m}fd\bar{q}) = der.$$

Consequently (np, mq) = (des, der) = de(r, s). Now because all four partial gcds equal one, i.e. $(\hat{p}, \bar{q}) = 1 = (\hat{m}, \bar{n}) = (\hat{p}, \hat{m}) = (\bar{n}, \bar{q})$, we may conclude by the Switching Lemma (2) that

(r,s)=1.

We next recall a Basic Lemma:

9975

(3)

Lemma 3.1 (Basic (n,1,n,q)). The following are equivalent:

- 1. $G_n(x)|G_n(x^q)$.
- 2. $G_n(x)G_q(x)|G_{qn}(x)$.
- 3. (q, n) = 1.

Proof. From the product rule it is clear that (1) \Leftrightarrow (2). Let (q, n) = d and q = q'd, n = n'd and suppose that (1) holds. Then

$$G_n(x)|G_n(x^q) \Rightarrow G_{n'd}(x)|G_n(x^{q'd}) \Rightarrow G_d G_{n'}(x^d)|G_n(x^{q'd})$$

From the LL we deduce that $G_d = 1$ and thus (3) follows. Conversely, from (3) we always have that

 $G_q G_n | G_{qn} G_d$

and hence if d = 1 then (2) follows. \Box We generalize this to

Lemma 3.2 (Key (n,1,m,q)). The following are equivalent:

1. $G_n(x)|G_m(x^q)$ 2. $G_n(x)G_q(x)|G_{mq}(x)$. 3. (n,q) = 1 and n|m.

Proof. The equivalence of (1) and (2) follows from the product rule.

Let (m, n) = d and m = m'd, n = n'd. Also set (n, q) = e and n = n''e, q = q''e. Then $G_n = G_e G_{n''}(x^e)|G_m(x^{q'e})$. By the LL, with exponent e, we see that $G_e = 1$ and thus e = (q, n) = 1. Applying the Basic Lemma, we get $G_n G_q |G_{nq}$. Combining this with (2) we conclude that

$$G_n G_q | (G_{mq}, G_{nq}) = G_{(mq, nq)} = G_{qd}$$

This implies that $G_n|G_{dq}$ and thus n|dq. Since (n,q) = 1 it follows that n|d, and we may conclude that n = d and n|m so that (3) follows.

Conversely, if (n, q) = 1 then, by (3.1), $G_n G_q | G_{nq}$ and since n | m we also have $G_{nq} | G_{mq}$. Combining these we arrive at $G_n G_q | G_{mq}$ giving (2). \Box

Related is the following (n, 1, n, q) gcd result

Lemma 3.3 (Halfway Lemma).

$$\Gamma = (G_n(x), G_n(x^q)) = G_{n''}(x^t)$$
, where $(n, q) = t, n = n''t$, and $q = q''t$.

Proof. $\Gamma = (G_t(x)G_{n''}(x^t), G_{n''t}(x^{q''t})) = (G_{n''}(x^t), G_{n''t}(x^{q''t}))$ since $(G_t(x), G_{n''t}(x^{q''t})) = 1$ by the Linking Lemma. Thus $\Gamma = (G_{n''}(x^t), G_{n''}(x^{q''t})G_t(x^{n''q''t})) = (G_{n''}(y), G_{n''}(y^{q''})G_t(y^{n''q''}))$ where $y = x^t$. Again by the LL, $(G_{n''}(y), G_t(y^{n''q''})) = 1$, which gives

$$\Gamma = (G_{n''}(y), G_{n''}(y^{q''})) = G_{n''}(y),$$
(5)

because by (3.1) the condition (n'', q'') = 1 ensures that $G_{n''}(y)|G_{n''}(y^{q''})$.

We next consider $\Gamma' = (G_q G_{np}, G_p G_{mq})$ in which $G_{np} = G_{des} = G_{de}G_s(x^{de})$ and $G_{mq} = G_{der} = G_{de}G_r(x^{de})$. Then by the product rule

$$\Gamma' = (G_q G_{des}, G_p G_{der}) = (G_q G_{de} G_s(x^{de}), G_p G_{de} G_r(x^{de})) = G_{de} \Gamma'',$$

where

$$\Gamma'' = (G_q G_s(x^{de}), G_p G_r(x^{de}).)$$

Now since (p,q) = 1 = (r,s) we may use the switching lemma (2) to arrive at

$$\Gamma'' = (G_q, G_r(x^{de})).(G_s(x^{de}), G_p) = \Delta.\Omega$$

Also, as $q = g\bar{q}$ and $r = \bar{q}\hat{m}$ we see that the first factor becomes

$$\Delta = (G_g \cdot G_{\bar{q}}(x^g), G_{\bar{q}}(x^{de}) \cdot G_{\hat{m}}(x^{de\bar{q}}))$$

Because $g|de|de\bar{q}$ and $\bar{q}|de\bar{q}$ we may apply the Linking Lemma to conclude that (i) $(G_g, G_{\bar{q}}(x^{dfg})G_{\hat{m}}(x^{df\bar{q}g})) = 1;$

(ii) $(G_{\bar{q}}(y), G_{\hat{m}}(y^{df\bar{q}})) = 1$, where $y = x^g$.

This means that we are left with

$$\Delta = (G_{\bar{q}}(y), G_{\bar{q}}(y^{df}))$$

From (5) we see that

 $\Delta = G_{q''}(y^t)$

where $y = x^g$ and $t = (\bar{q}, df)$. Similarly, since $s = \hat{p}\bar{n}$

$$\Omega = (G_s(x^{de}), G_p) = (G_{\hat{p}}(x^{de})G_{\bar{n}}(x^{\hat{p}de}), G_p).$$

Again, as $p|\hat{p}de$ the Linking Lemma reduces Ω to

$$\Omega = (G_{\hat{p}}(x^{de}), G_{\hat{p}}(x^f)G_f).$$
⁽⁶⁾

Lastly because f|de, the Linking Lemma again gives

$$\Omega = (G_{\hat{p}}(x^{de}), G_{\hat{p}}(x^{f})) = (G_{\hat{p}}(z^{dg}), G_{\hat{p}}(z))$$
(7)

with $z = x^{f}$. Recalling that $(\hat{p}, dg) = (\hat{p}, d) = h$ and $\hat{p} = p''h$ we get

$$\Omega = G_{p''}(z^h) = G_{p''}(x^{fh})$$

Combining the above parts we may conclude that

$$\Gamma = \frac{G_{de}}{G_p G_q} G_{q''}(x^{gt}) G_{p''}(x^{fh})$$

By the product rule this may be rewritten as in the following theorem:

Theorem 3.4. For the parameters as above, with (p,q) = 1,

$$\Gamma_{n,p}^{m,q} = (G_n(x^p), G_m(x^q)) = \frac{G_{de}}{G_{hf}G_{tg}}.$$
(8)

Alternatively, as $de = dfg = (\tilde{d}h)fg = (d''t)fg$, we may use the product rule to rewrite G_{de} as

$$G_{de} = G_{(\tilde{d}g)hf} = G_{hf}G_{\tilde{d}g}(x^{hf}) = G_{(d''f)tg} = G_{tg}G_{d''f}(x^{tg}).$$

This shows that

$$\Gamma = \frac{G_{\tilde{d}g}(x^{hf})}{G_{tg}} = \frac{G_{d''f}(x^{tg})}{G_{hf}}.$$

We may use this expression for the gcd of two geometric series, to establish the divisibility condition for such series. Indeed we have

Corollary 3.5. $G_n(x^p)$ divides $G_m(x^q)$ if and only if $n|m, p|\frac{m}{n}$ and (q, n) = 1.

9977

Proof. Suppose $(G_n(x^p), G_m(x^q)) = G_n(x^p)$. Using (8) we get

$$G_{de} = G_n(x^p) \cdot G_{hf} \cdot G_{tq}.$$

Setting x = 1 shows that

$$de = dfg = n \cdot hf \cdot tg,$$

which implies that d = n, h = 1, t = 1. Thus d = n|m and $m' = \frac{m}{n}$. Moreover $n' = \frac{n}{d} = 1$ and hence g = 1 and de = nf.

Using this in (3) gives

$$G_{nf} = G_f \cdot G_n(x^p)$$
 or $G_n(x^f) = G_n(x^p)$.

This tells us (using degrees) that p = f = (m', p) ensuring that p|m' or $p|\frac{m}{n}$.

For the converse, suppose $n|m, p|\frac{m}{n}$ and (q, n) = 1.

The latter shows that (q, pn) = (q, p)(q, n) = 1. Now let m = m'n, m' = p and m = npw. As np divides npw and (np, q) = 1, we see by the Key Lemma that $G_{np}|G_{npw}(x^q)$. Hence

$$G_{np}|G_p \cdot G_{pnw}(x^q) \text{ or } G_n(x^p)|G_m(x^q)|$$

as desired. \Box

4. Remarks and Examples

- 1. Even though these results compute the gcd implicitly, the actual polynomial ratio is not so easy to find. The same thing happens with the division of two Geometric series.
- 2. There are numerous ways to investigate the character of the polynomials, such as sliding division, Toeplitz matrices, Recurrence relations, etc., which we address at a later time.

4.1. Examples

We present several non-trivial examples. We will use the Duplication Rules:

- (a) If *n* is odd then $G_n(x^{2m}) = G_n(x^m)G_n(-x^m)$.
- (b) If *n* is even, say n = 2k, then $G_{2k}(x^q) = G_k(x^q)G_2(x^{qk})$. In particular $G_{2k}(x^{2r}) = G_k(x^{2r})(x^{2kr} + 1)$.

These follow from the binomial identities:

$$G_n(x^{2m}) = \frac{x^{2mn} - 1}{x^{2m} - 1} = \frac{(x^{mn} - 1)(x^{mn} + 1)}{(x^m - 1)(x^m + 1)} = G_n(x^m)G_n(-x^m).$$

1. Consider $\Gamma_{12,3}^{6,4} = (G_{12}(x^3), G_6(x^4))$. The parameters are:

$$\begin{array}{ll} n = 12, & m = 6, & d = (12,6) = 6, & m' = 1, \\ n' = 2, & p = 3, & q = 4, & f = (m',p) = \hat{m} = \frac{m'}{f} = 1, \\ \hat{p} = \frac{p}{f} = p = 3, & g = (n',q) = 2, & \bar{n} = \frac{m'}{g}, & \bar{q} = \frac{q}{g} = 4/2 = 2, \\ h = (\hat{p},d) = (3,6) = 3, & \tilde{p} = \frac{\hat{p}}{h} = 3/3 = 1, & \tilde{d} = \frac{d}{h} = 6/3 = 2, & t = (\bar{q},d) = (2,6) = 2, \\ q'' = \frac{q}{t} = 1, & d'' = \frac{d}{t} = 3. \end{array}$$

These show that $de = dfg = 6 \cdot 1 \cdot 2 = 12$, $hf = 3 \cdot 1 = 3$ and $tg = 2 \cdot 2 = 4$.. We end up with

$$\Gamma_{12,3}^{6,4} = \frac{G_{12}}{G_3 \cdot G_4} = \frac{G_3(x^4)}{G_4(x)} = \frac{1 + x^4 + x^8}{1 + x + x^2} = x^6 - x^5 + x^3 - x + 1.$$

This may actually be rewritten as $(x^4 - x^2 + 1)(x^2 - x + 1) = G_3(x^2)G_3(-x)$. The reason for this is that

$$G_3(x^4) = G_3(x^2)G_3(-x^2) = G_3(x)G_3(-x)G_3(-x^2)$$

The latter is a special case of the Duplication Rule.

9978

2. For computing $\Gamma_{18,5}^{10,3}$, the gcd of $G_{18}(x^5)$ and $G_{10}(x^3)$, we obtain the parameters

$$\begin{array}{ll} d=2, & f=3, & g=5, & r=3, \\ s=1, & \hat{m}=3, & \bar{n}=\hat{p}=\bar{q}=h=t=1, & \tilde{d}=d^{\prime\prime}=2, \end{array}$$

from which

$$(G_{18}, (x^5), G_{10}(x^3)) = \frac{G_{10}(x^3)}{G_5} = \frac{G_{2\cdot 5}(x^3)}{G_5} = \frac{G_2(x^3)G_5(x^6)}{G_5} = \frac{G_5(x^3)}{G_5}G_2(x^3)G_5(-x^3).$$

Using Lemma 3.1, we have $G_5|G_5(x^3)$, and by long division we obtain

$$G_5 \cdot (x^8 - x^7 + x^5 - x^4 + x^3 - x + 1) = G_5(x^3),$$

from which

$$(G_{18}, (x^5), G_{10}(x^3)) = (x^8 - x^7 + x^5 - x^4 + x^3 - x + 1)G_2(x^3)G_5(-x^3)$$

and hence

$$\Gamma_{18,5}^{10,3} = x^{23} - x^{22} + x^{20} - x^{19} + x^{18} - x^{16} + x^{15} + x^8 - x^7 + x^5 - x^4 + x^3 - x + 1.$$

References

- [1] Barnett, S., Matrices in control theory: with applications to linear programming, Van Nostrand Reinhold, 1971.
- [2] Chen, X., Hartwig, R.E., The Picard iteration and its application, Linear Multilinear Algebra, 54 (5), pp. 329–341, 2006.
- [3] Hartwig, R.E., Semrl, P., Constrained convergence, Rocky Mountain J. Math., 29 (1), pp. 177–195, 1999.
- [4] Patrício, P., Hartwig, R.E., *From Euclid to Corner Sums, a Trail of Telescoping Tricks*, Filomat, 35(14), pp. 4613-4636, 2021.
 [5] Patrício, P., Hartwig, R.E., *Divisibility of finite Geometric Series*, Bull. Malaysian Math. Sci. Soc. 46:161, 2023.