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Abstract. The Greatest Common Divisor is given for a pair of finite geometric eries.

1. Introduction

We continue our investigation [5] of finite Geometric series – also called Geometric Progressions – of the
form

Gn(x) = 1 + x + x2 + · · · + xn−1 (1)

by computing the Greatest Common Divisor (gcd for short)

Γ = (Gn(xp),Gm(xq)),

for a pair of such progressions, in terms of the four parameters (n, p,m, q).
Geometric series (in their finite form) play an important role in the Hyperpower Iteration ([2]) and in

the Picard Iteration ([3]). On the other hand, one may use the resultant R(a(x), b(x)) ([1])

R(a(x), b(x)) = det



an an−1 an−2 · · · a0 0
0 an an−1 · · · a1 a0
... · · ·

. . .
. . .

... a1 a0

... bm bm−1 · · · b1 b0

... bm bm−1 · · · b1 b0 0

0 · · ·
...

bm bm−1 bm−2 · · · 0
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of a(x) =
∑n

i=0 aixi, b(x) =
∑m

i=0 bixi
∈ C[x] to check if a(x) and b(x) are co-prime. This happens exactly when

R(a(x), b(x)) , 0.

For instance, G4(x) = x3 + x2 + x + 1 and G3(x2) = x4 + x2 + 1 are co-prime, since their resultant is

R(G4(x),G3(x2) = det



1 1 1 1 0 0 0
0 1 1 1 1 0 0
0 0 1 1 1 1 0
0 0 0 1 1 1 1
0 0 1 0 1 0 1
0 1 0 1 0 1 0
1 0 1 0 1 0 0


= −3.

We shall need several preliminary results dealing with such progressions and their relation to the
binomal xn

− 1 = (x − 1) · Gn(x) and shall employ a string of basic facts for gcds of polynomials over a field
Fwith char(F) = 0.

2. Some background results

The greatest common divisor and the least common multiple of of a and b will be denoted by (a, b) and
[a, b], respectively.

For elements from an Euclidean domain we recall that:

1. (Switching Lemma) If (a, c) = 1 = (b, d), then

(ab, cd) = (a, d)(b, c) (2)

2. Using this we have the gcd product rule :

(ab, cd) = (a, c)(b, d)(a′b”, c′d”) = (a, c)(b, d)(a′, d”)(b”, c′),

where a′ = a/(a, c), c′ = c/(a, c), b” = b/(b, d), d” = d/(b, d),with (a′, c′) = 1 = (b”, d”).
3.

(ab, cd) = 1 if and only if (a, b) = 1 = (a, d) = (b, c) = (b, d).

For integers m and n, let L = [m,n] = lcm(m,n) = mn
d . Also set m = dm′ and n = dn′ so that

L = mn′ = mn′ = m′n′d.
Now suppose that n = mq + r, where 0 ≤ r < m ≤ n. Then

xn
− 1 = xr(xmq

− 1) + xr
− 1 = (xm

− 1)xrGq(xm) + xr
− 1.

which shows that

m|n⇔ xm
− 1|xn

− 1⇔ Gm(x)|Gn(x)

and hence that
(xm
− 1, xn

− 1) = xd
− 1 = (x − 1)(Gm,Gn).

Consequently,

Gd =
xd
− 1

x − 1
= (Gm,Gn) and (Gm,Gn) = 1⇔ (m,n) = 1.

Now observe that if n|L and m|L then xn
− 1|xL

− 1 and xm
− 1|xL

− 1. Hence [xm
− 1, xn

− 1]|xL
− 1|xmn

− 1
and thus

(xm
− 1)(xn

− 1)
(xd
− 1)

|xL
− 1|xmn

− 1,
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which may be expressed as

Gm(x)Gn(x)|GL(x)Gd(x)|Gmn(x)Gd(x). (3)

For x , 1, we have
Gnp

Gp
=

xnp
− 1

x − 1
·

x − 1
xp
− 1
=

xnp
− 1

xp
− 1
= Gn(xp),

and thus for all x

Gnp(x) = Gp(x)Gn(xp),

which we refer to as the Product Rule.
Since char(F) = 0, we know that Gn(1) = n , 0 and thus by the remainder theorem (x − 1) ∤ Gn(x), or

(x − 1,Gn(x)) = 1. Replacing x by xmk then gives(
xmk
− 1,Gn(xmk)

)
=

(
(x − 1)Gm(x)Gk(xm),Gn(xmk)

)
= 1.

We are left with the Linking Lemma (LL):

Lemma 2.1 (Linking Lemma (LL)). For any m, n and k,

(Gm(x),Gn(xkm)) = 1. (4)

3. The GCD computation

Given p and q, let (p, q) = w and set p = p′w and q = q′w, with (p,′ q′) = 1.
Consider the gcd

Γ = Γ
m,q
n,p = (Gn(xp),Gm(xq)) = (Gn(xp′w),Gm(xq′w)) = (Gn(yp′ ),Gm(yq′ )),

where y = xw and (p′, q′) = 1. Thus without loss of generality we may assume that (p, q) = 1, otherwise, in
the final result, replace x by xw.

Assuming that (p, q) = 1, we may use the Product Rule to rewrite Γ as

Γ =

(
Gnp

Gp
,

Gmq

Gq

)
=

1
GpGq

(GqGnp,GpGmq) =
1

GpGq
Γ′.

The computation of the gcd Γm,q
n,p requires a suitable splitting of the four parameters (n, p,m, q). To this

end we define:
d = (m,n), m = m′d, n = n′d, with (m′,n′) = 1
f = (m′, p), m′ = m̂ f , p = p̂ f , with (m̂, p̂) = 1
1 = (n′, q), n′ = n̄1, q = q̄1, with (n̄, q̄) = 1
h = (p̂, d), p̂ = p̃h, d = d̃h, with (p̃, d̃) = 1
t = (q̄, d), q̄ = q”t, d = d”t, with (q”, d”) = 1.

and in addition set r = m̂q̄ and s = p̂.n̄.
Because (m′n′) = 1 = (p, q), we know from (2) that e = (m′q,n′p) = (m′, p)(n′, q) = f1.

Moreover
np = n′dp = n̄1dp̂ f = de(n̄p̂) = des,

as well as

mq = m′dq = m̂ f dq̄1 = de(m̂ f dq̄) = der.

Consequently (np,mq) = (des, der) = de(r, s). Now because all four partial gcds equal one, i.e. (p̂, q̄) = 1 =
(m̂, n̄) = (p̂, m̂) = (n̄, q̄), we may conclude by the Switching Lemma (2) that

(r, s) = 1.

We next recall a Basic Lemma:
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Lemma 3.1 (Basic (n,1,n,q)). The following are equivalent:

1. Gn(x)|Gn(xq).
2. Gn(x)Gq(x)|Gqn(x).
3. (q,n) = 1.

Proof. From the product rule it is clear that (1)⇔ (2).
Let (q,n) = d and q = q′d, n = n′d and suppose that (1) holds. Then

Gn(x)|Gn(xq)⇒ Gn′d(x)|Gn(xq′d)⇒ GdGn′ (xd)|Gn(xq′d)

From the LL we deduce that Gd = 1 and thus (3) follows.
Conversely, from (3) we always have that

GqGn|GqnGd

and hence if d = 1 then (2) follows.
We generalize this to

Lemma 3.2 (Key (n,1,m,q)). The following are equivalent:

1. Gn(x)|Gm(xq)
2. Gn(x)Gq(x)|Gmq(x).
3. (n, q) = 1 and n|m.

Proof. The equivalence of (1) and (2) follows from the product rule.
Let (m,n) = d and m = m′d, n = n′d. Also set (n, q) = e and n = n”e, q = q”e. Then Gn = GeGn”(xe)|Gm(xq′e).

By the LL, with exponent e, we see that Ge = 1 and thus e = (q,n) = 1. Applying the Basic Lemma, we get
GnGq|Gnq. Combining this with (2) we conclude that

GnGq|(Gmq,Gnq) = G(mq,nq) = Gqd.

This implies that Gn|Gdq and thus n|dq. Since (n, q) = 1 it follows that n|d, and we may conclude that n = d
and n|m so that (3) follows.

Conversely, if (n, q) = 1 then, by (3.1), GnGq|Gnq and since n|m we also have Gnq|Gmq. Combining these
we arrive at GnGq|Gmq giving (2).

Related is the following (n, 1,n, q) gcd result

Lemma 3.3 (Halfway Lemma).

Γ = (Gn(x),Gn(xq)) = Gn”(xt), where (n, q) = t,n = n”t, and q = q”t.

Proof. Γ = (Gt(x)Gn”(xt),Gn”t(xq”t)) = (Gn”(xt),Gn”t(xq”t)) since (Gt(x),Gn”t(xq”t)) = 1 by the Linking Lemma.
ThusΓ = (Gn”(xt),Gn”(xq”t)Gt(xn”q”t)) = (Gn”(y),Gn”(yq”)Gt(yn”q”)) where y = xt. Again by the LL, (Gn”(y),Gt(yn”q”)) =
1 , which gives

Γ = (Gn”(y),Gn”(yq”)) = Gn”(y), (5)

because by (3.1) the condition (n”, q”) = 1 ensures that Gn”(y)|Gn”(yq”).
We next consider Γ′ = (GqGnp,GpGmq) in which Gnp = Gdes = GdeGs(xde) and Gmq = Gder = GdeGr(xde). Then

by the product rule

Γ′ = (GqGdes,GpGder) = (GqGdeGs(xde),GpGdeGr(xde)) = GdeΓ”,

where

Γ” = (GqGs(xde),GpGr(xde).)
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Now since (p,q) = 1 = (r,s) we may use the switching lemma (2) to arrive at

Γ” = (Gq,Gr(xde)).(Gs(xde),Gp) = ∆.Ω

Also, as q = 1q̄ and r = q̄m̂ we see that the first factor becomes

∆ = (G1 · Gq̄(x1),Gq̄(xde) · Gm̂(xdeq̄)).

Because 1|de|deq̄ and q̄|deq̄ we may apply the Linking Lemma to conclude that
(i) (G1,Gq̄(xd f1)Gm̂(xd f q̄1)) = 1;
(ii) (Gq̄(y),Gm̂(yd f q̄)) = 1, where y = x1.

This means that we are left with
∆ = (Gq̄(y),Gq̄(yd f )).

From (5) we see that
∆ = Gq”(yt)

where y = x1 and t = (q̄, d f ). Similarly, since s = p̂n̄

Ω = (Gs(xde),Gp) = (Gp̂(xde)Gn̄(xp̂de),Gp).

Again, as p|p̂de the Linking Lemma reduces Ω to

Ω = (Gp̂(xde),Gp̂(x f )G f ). (6)

Lastly because f |de, the Linking Lemma again gives

Ω = (Gp̂(xde),Gp̂(x f )) = (Gp̂(zd1),Gp̂(z)) (7)

with z = x f . Recalling that (p̂, d1) = (p̂, d) = h and p̂ = p”h we get

Ω = Gp”(zh) = Gp”(x f h)

Combining the above parts we may conclude that

Γ =
Gde

GpGq
Gq”(x1t)Gp”(x f h).

By the product rule this may be rewritten as in the following theorem:

Theorem 3.4. For the parameters as above, with (p, q) = 1,

Γ
m,q
n,p = (Gn(xp),Gm(xq)) =

Gde

Gh f Gt1
. (8)

Alternatively, as de = d f1 = (d̃h) f1 = (d”t) f1,we may use the product rule to rewrite Gde as

Gde = G(d̃1)h f = Gh f Gd̃1(x
h f ) = G(d” f )t1 = Gt1Gd” f (xt1).

This shows that

Γ =
Gd̃1(x

h f )

Gt1
=

Gd” f (xt1)
Gh f

.

We may use this expression for the gcd of two geometric series, to establish the divisibility condition for
such series. Indeed we have

Corollary 3.5. Gn(xp) divides Gm(xq) if and only if n|m, p|mn and (q,n) = 1.
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Proof. Suppose (Gn(xp),Gm(xq)) = Gn(xp). Using (8) we get

Gde = Gn(xp) · Gh f · Gt1.

Setting x = 1 shows that
de = d f1 = n · h f · t1,

which implies that d = n, h = 1, t = 1. Thus d = n|m and m′ = m
n . Moreover n′ = n

d = 1 and hence 1 = 1 and
de = n f .

Using this in (3) gives
Gn f = G f · Gn(xp) or Gn(x f ) = Gn(xp).

This tells us (using degrees) that p = f = (m′, p) ensuring that p|m′ or p|mn .
For the converse, suppose n|m, p|mn and (q,n) = 1.
The latter shows that (q, pn) = (q, p)(q,n) = 1. Now let m = m′n,m′ = p and m = npw. As np divides npw

and (np, q) = 1, we see by the Key Lemma that Gnp|Gnpw(xq). Hence

Gnp|Gp · Gpnw(xq) or Gn(xp)|Gm(xq),

as desired.

4. Remarks and Examples

1. Even though these results compute the gcd implicitly, the actual polynomial ratio is not so easy to
find. The same thing happens with the division of two Geometric series.

2. There are numerous ways to investigate the character of the polynomials, such as sliding division,
Toeplitz matrices, Recurrence relations, etc., which we address at a later time.

4.1. Examples
We present several non-trivial examples. We will use the Duplication Rules:

(a) If n is odd then Gn(x2m) = Gn(xm)Gn(−xm).
(b) If n is even, say n = 2k, then G2k(xq) = Gk(xq)G2(xqk).

In particular G2k(x2r) = Gk(x2r)(x2kr + 1).

These follow from the binomial identities:

Gn(x2m) =
x2mn

− 1
x2m
− 1
=

(xmn
− 1)(xmn + 1)

(xm
− 1)(xm + 1)

= Gn(xm)Gn(−xm).

1. Consider Γ6,4
12,3 = (G12(x3),G6(x4). The parameters are:

n = 12, m = 6, d = (12, 6) = 6, m′ = 1,
n′ = 2, p = 3, q = 4, f = (m′, p) = m̂ = m′

f = 1,
p̂ = p

f = p = 3, 1 = (n′, q) = 2, n̄ = n′
1
, q̄ = q

1
= 4/2 = 2,

h = (p̂, d) = (3, 6) = 3, p̃ = p̂
h = 3/3 = 1, d̃ = d

h = 6/3 = 2, t = (q̄, d) = (2, 6) = 2,
q” = q

t = 1, d” = d
t = 3.

These show that de = d f1 = 6 · 1 · 2 = 12, h f = 3 · 1 = 3 and t1 = 2 · 2 = 4..
We end up with

Γ6,4
12,3 =

G12

G3 · G4
=

G3(x4)
G4(x)

=
1 + x4 + x8

1 + x + x2 = x6
− x5 + x3

− x + 1.

This may actually be rewritten as (x4
− x2 + 1)(x2

− x + 1) = G3(x2)G3(−x).
The reason for this is that

G3(x4) = G3(x2)G3(−x2) = G3(x)G3(−x)G3(−x2)

The latter is a special case of the Duplication Rule.



R.E. Hartwig, P. Patrı́cio / Filomat 37:29 (2023), 9973–9979 9979

2. For computing Γ10,3
18,5, the gcd of G18(x5) and G10(x3), we obtain the parameters

d = 2, f = 3, 1 = 5, r = 3,
s = 1, m̂ = 3, n̄ = p̂ = q̄ = h = t = 1, d̃ = d′′ = 2,

from which

(G18, (x5),G10(x3)) =
G10(x3)

G5
=

G2·5(x3)
G5

=
G2(x3)G5(x6)

G5
=

G5(x3)
G5

G2(x3)G5(−x3).

Using Lemma 3.1, we have G5|G5(x3), and by long division we obtain

G5 · (x8
− x7 + x5

− x4 + x3
− x + 1) = G5(x3),

from which
(G18, (x5),G10(x3)) = (x8

− x7 + x5
− x4 + x3

− x + 1)G2(x3)G5(−x3)

and hence

Γ10,3
18,5 = x23

− x22 + x20
− x19 + x18

− x16 + x15 + x8
− x7 + x5

− x4 + x3
− x + 1.
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