The nonlinear mixed bi-skew Lie triple derivations on *-algebras

Jingxuan Wang ${ }^{\text {a }}$, Changjing Li ${ }^{\text {a,* }}$, Yueliang Liang ${ }^{\text {b }}$, Lin Chen ${ }^{\text {c }}$
${ }^{a}$ School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, P. R. China
${ }^{b}$ School of Mathematics, North University of China, Taiyuan 030051, P. R. China
${ }^{c}$ Department of Mathematics and Statistics, Changshu Institute of Technology, Changshu 215500, P. R. China

Abstract

Let \mathcal{A} be a unital *-algebra. In this paper, under some mild conditions on \mathcal{A}, it is shown that a $\operatorname{map} \Phi: \mathcal{A} \rightarrow \mathcal{A}$ is a nonlinear mixed bi-skew Lie triple derivation if and only if Φ is an additive *-derivation. As applications, nonlinear mixed bi-skew Lie triple derivations on prime $*$-algebras, von Neumann algebras with no central summands of type I_{1}, factor von Neumann algebras and standard operator algebras are characterized.

1. Introduction

Let \mathcal{A} be a $*$-algebra over the complex field \mathbb{C}. For $A, B \in \mathcal{A}$, define the bi-skew Jordan product of A and B by $A \circ B=A^{*} B+B^{*} A$ and the bi-skew Lie product of A and B by $[A, B]_{\diamond}=A^{*} B-B^{*} A$. The bi-skew Jordan product and bi-skew Lie product have attracted many scholars to study (see for example [2-6, 10, 14-17]). Particular attention has been paid to understand maps which preserve the bi-skew Jordan product and the bi-skew Lie product on C^{*}-algebras. M. Wang and G. Ji [15] proved that every bijective map preserving bi-skew Lie product between factor von Neumann algebras is a linear *-isomorphism or a conjugate linear *-isomorphism. C. Li et al. [10] proved that every bijective map preserving bi-skew Jordan product between von Neumann algebras with no central abelian projections is just the sum of a linear *-isomorphism and a conjugate linear *-isomorphism. A. Taghavi and S. Gholampoor [14] studied surjective maps preserving bi-skew Jordan product between C^{*}-algebras.

Recall that an additive map $\Phi: \mathcal{A} \rightarrow \mathcal{A}$ is said to be an additive derivation if $\Phi(A B)=\Phi(A) B+A \Phi(B)$ holds for all $A, B \in \mathcal{A}$. Furthermore, Φ is said to be an additive *-derivation if it is an additive derivation and satisfies $\Phi\left(A^{*}\right)=\Phi(A)^{*}$ for all $A \in \mathcal{A}$. We say that $\Phi: \mathcal{A} \rightarrow \mathcal{A}$ is a nonlinear bi-skew Lie derivation or bi-skew Jordan derivation if

$$
\Phi\left([A, B]_{\diamond}\right)=[\Phi(A), B]_{\diamond}+[A, \Phi(B)]_{\diamond}
$$

or

$$
\Phi(A \circ B)=\Phi(A) \circ B+A \circ \Phi(B)
$$

[^0]hold for all $A, B \in \mathcal{A}$. Recently, many authors have studied nonlinear bi-skew Lie derivations and bi-skew Jordan derivations. For example, L. Kong and J. Zhang [6] proved that any nonlinear bi-skew Lie derivation on factor von Neumann algebra \mathcal{A} with $\operatorname{dim} \mathcal{A} \geq 2$ is an additive *-derivation. A. Taghavi and M. Razeghi [15] investigated nonlinear bi-skew Lie derivations on prime *-algebras. Let Φ be a nonlinear bi-skew Lie derivation on a unital prime *-algebra with a nontrivial projection. They proved that if $\Phi(I)$ and $\Phi(i I)$ are self-adjoint, then Φ is an additive *-derivation. V. Darvish et al. [2] proved any nonlinear bi-skew Jordan derivation on prime *-algebra is an additive *-derivation. A. Khan [5] proved that any nonlinear bi-skew Lie triple derivation on factor von Neumann algebra \mathcal{A} with $\operatorname{dim} \mathcal{A} \geq 2$ is an additive $*$-derivation. V. Darvish et al. [3] proved any nonlinear bi-skew Jordan triple derivation on prime *-algebra is an additive *-derivation.

Recently, many authors have studied derivations corresponding to some mixed products (see for example $[8,9,11,12,18,19])$. Y. Zhou, Z. Yang and J. Zhang [18] proved any map Φ from a unital *-algebra \mathcal{A} containing a non-trivial projection to itself satisfying

$$
\Phi\left(\left[[A, B]_{*}, C\right]\right)=\left[[\Phi(A), B]_{*}, C\right]+\left[[A, \Phi(B)]_{*}, C\right]+\left[[A, B]_{*}, \Phi(C)\right]
$$

for all $A, B, C \in \mathcal{A}$, is an additive $*$-derivation, where $[A, B]=A B-B A$ is the usual Lie product of A and B and $[A, B]_{*}=A B-B A^{*}$ is the skew Lie product of A and B. Y. Zhou and J. Zhang [19] proved that any map Φ on factor von Neumann algebra \mathcal{A} satisfying

$$
\Phi\left([[A, B], C]_{*}\right)=[[\Phi(A), B], C]_{*}+[[A, \Phi(B)], C]_{*}+[[A, B], \Phi(C)]_{*}
$$

for all $A, B, C \in \mathcal{A}$, is also an additive *-derivation. X. Zhao and X. Fang [17] gave similar result on finite von Neumann algebra with no central summands of type I_{1}. Y. Pang, D. Zhang and D. Ma [11] proved that if Φ is a second nonlinear mixed Jordan triple derivable mapping on a factor von Neumann algebra \mathcal{A}, that is, if Φ satisfies

$$
\Phi(A \circ B \bullet C)=\Phi(A) \circ B \bullet C+A \circ \Phi(B) \bullet C+A \circ B \bullet \Phi(C)
$$

for all $A, B, C \in \mathcal{A}$, then Φ is an additive $*$-derivation, where $A \circ B=A B+B A$ is the usual Jordan product of A and B and $A \bullet B=A B+B A^{*}$ is the Jordan $*$-product of A and B. Lately, N. Rehman, J. Nisar and M. Nazim [12] generalized the above result to general *-algebras. C. Li and D. Zhang [8, 9] studied the derivations corresponding to the mixed products $[A, B]_{*} \bullet C$ and $[A \bullet B, C]_{*}$.

Motivated by the above mentioned works, in this paper, we will consider the derivations corresponding to the new product of the mixture of the bi-skew Lie product and the bi-skew Jordan product. A map $\Phi: \mathcal{A} \rightarrow \mathcal{A}$ is said to be a nonlinear mixed bi-skew Lie triple derivation if

$$
\Phi\left([A \circ B, C]_{\diamond}\right)=[\Phi(A) \circ B, C]_{\diamond}+[A \circ \Phi(B), C]_{\diamond}+[A \circ B, \Phi(C)]_{\diamond}
$$

holds for all $A, B, C \in \mathcal{A}$. In this paper, we will give the structure of the nonlinear mixed bi-skew Lie triple derivations on $*$-algebra. Under some mild conditions on a $*$-algebra \mathcal{A}, we prove that Φ is a nonlinear mixed bi-skew Lie triple derivation on \mathcal{A} if and only if Φ is an additive *-derivation.

2. Main result and corollaries

The following is our main result in this paper.
Theorem 2.1. Let \mathcal{A} be a unital $*$-algebra with the unit I. Assume that \mathcal{A} contains a nontrivial projection P which satisfies

$$
\text { (ค) } X \mathcal{A} P=0 \text { implies } X=0
$$

and
(๗) $X \mathcal{A}(I-P)=0$ implies $X=0$.

Then a map $\Phi: \mathcal{A} \rightarrow \mathcal{A}$ satisfies

$$
\Phi\left([A \circ B, C]_{\diamond}\right)=[\Phi(A) \circ B, C]_{\diamond}+[A \circ \Phi(B), C]_{\diamond}+[A \circ B, \Phi(C)]_{\diamond}
$$

for all $A, B, C \in \mathcal{A}$ if and only if Φ is an additive *-derivation.

Recall that an algebra \mathcal{A} is prime if $A \mathcal{A} B=\{0\}$ for $A, B \in \mathcal{A}$ implies either $A=0$ or $B=0$. It is easy to see that prime $*$-algebras satisfy (\star) and ($\boldsymbol{*})$. Applying Theorem 2.1 to prime $*$-algebras, we have the following corollary.

Corollary 2.2. Let \mathcal{A} be a prime *-algebra with unit I and P be a nontrivial projection in \mathcal{A}. Then a map $\Phi: \mathcal{A} \rightarrow \mathcal{A}$ satisfies

$$
\Phi\left([A \circ B, C]_{\diamond}\right)=[\Phi(A) \circ B, C]_{\diamond}+[A \circ \Phi(B), C]_{\circ}+[A \circ B, \Phi(C)]_{\diamond}
$$

for all $A, B, C \in \mathcal{A}$ if and only if Φ is an additive *-derivation.
Let $B(\mathcal{H})$ be the algebra of all bounded linear operators on a complex Hilbert space \mathcal{H} and $\mathcal{F}(\mathcal{H}) \subseteq B(\mathcal{H})$ be the subalgebra of all bounded finite rank operators. A subalgebra $\mathcal{A} \subseteq B(\mathcal{H})$ is called a standard operator algebra if it contains $\mathcal{F}(\mathcal{H})$. Now we have the following corollary.

Corollary 2.3. Let \mathcal{A} be a standard operator algebra on an infinite dimensional complex Hilbert space \mathcal{H} containing the identity operator I. Suppose that \mathcal{A} is closed under the adjoint operation. Then $\Phi: \mathcal{A} \rightarrow \mathcal{A}$ satisfies

$$
\Phi\left([A \circ B, C]_{\diamond}\right)=[\Phi(A) \circ B, C]_{\diamond}+[A \circ \Phi(B), C]_{\diamond}+[A \circ B, \Phi(C)]_{\diamond}
$$

for all $A, B, C \in \mathcal{A}$ if and only if Φ is a linear $*$-derivation. Moreover, there exists an operator $T \in B(\mathcal{H})$ satisfying $T+T^{*}=0$ such that $\Phi(A)=A T-T A$ for all $A \in \mathcal{A}$, i.e., Φ is inner.

Proof. Since \mathcal{A} is prime, we have that Φ is an additive *-derivation. It follows from [13] that Φ is a linear inner derivation, i.e., there exists an operator $S \in B(\mathcal{H})$ such that $\Phi(A)=A S-S A$. Since $\Phi\left(A^{*}\right)=\Phi(A)^{*}$, we have

$$
A^{*} S-S A^{*}=\Phi\left(A^{*}\right)=\Phi(A)^{*}=-A^{*} S^{*}+S^{*} A^{*}
$$

for all $A \in \mathcal{A}$. Hence $A^{*}\left(S+S^{*}\right)=\left(S+S^{*}\right) A^{*}$, and then $S+S^{*}=\lambda I$ for some $\lambda \in \mathbb{R}$. Let $T=S-\frac{1}{2} \lambda I$. It is easy to see that $T+T^{*}=0$ such that $\Phi(A)=A T-T A$.

A von Neumann algebra \mathcal{M} is a weakly closed, self-adjoint algebra of operators on a Hilbert space \mathcal{H} containing the identity operator $I . \mathcal{M}$ is a factor von Neumann algebra if its center only contains the scalar operators. It is well known that a factor von Neumann algebra is prime. Now we have the following corollary.
Corollary 2.4. Let \mathcal{M} be a factor von Neumann algebra with $\operatorname{dim}(\mathcal{M}) \geq 2$. Then a map $\Phi: \mathcal{M} \rightarrow \mathcal{M}$ satisfies

$$
\Phi\left([A \circ B, C]_{\diamond}\right)=[\Phi(A) \circ B, C]_{\diamond}+[A \circ \Phi(B), C]_{\diamond}+[A \circ B, \Phi(C)]_{\diamond}
$$

if and only if Φ is an additive *-derivation.
It is shown in [1] and [7] that if a von Neumann algebra \mathcal{M} has no central summands of type I_{1}, then \mathcal{M} satifies ($\boldsymbol{\bullet})$ and ($\boldsymbol{\bullet}$). Now we have the following corollary.

Corollary 2.5. Let \mathcal{M} be a von Neumann algebra with no central summands of type I_{1}. Then a map $\Phi: \mathcal{M} \rightarrow \mathcal{M}$ satisfies

$$
\Phi\left([A \circ B, C]_{\diamond}\right)=[\Phi(A) \circ B, C]_{\diamond}+[A \circ \Phi(B), C]_{\diamond}+[A \circ B, \Phi(C)]_{\diamond}
$$

if and only if Φ is an additive *-derivation.

3. The proof of main result

The proof of Theorem 2.1. In the following, let $P_{1}=P$ and $P_{2}=I-P$. Denote $\mathcal{A}_{i j}=P_{i} \mathcal{A} P_{j}(i, j=1,2)$. Then $\mathcal{A}=\mathcal{A}_{11}+\mathcal{A}_{12}+\mathcal{A}_{21}+\mathcal{A}_{22}$. Let $\mathcal{N}=\left\{A \in \mathcal{A}: A^{*}=-A\right\}, \mathcal{N}_{12}=\left\{P_{1} N P_{2}+P_{2} N P_{1}: N \in \mathcal{N}\right\}, \mathcal{N}_{i i}=$ $P_{i} \mathcal{N} P_{i}(i=1,2)$. Thus, for every $N \in \mathcal{N}, N=N_{11}+N_{12}+N_{22}$, where $N_{11} \in \mathcal{N}_{11}, N_{12} \in \mathcal{N}_{12}, N_{22} \in \mathcal{N}_{22}$.
Proof. Clearly, we only need to prove the necessity. We will complete the proof by several claims.

Claim 1.. $\Phi(0)=0$.
Indeed, we have

$$
\Phi(0)=\Phi\left([0 \circ 0,0]_{\diamond}\right)=[\Phi(0) \circ 0,0]_{\diamond}+[0 \circ \Phi(0), 0]_{\diamond}+[0 \circ 0, \Phi(0)]_{\diamond}=0
$$

Claim 2.. For every $N \in \mathcal{N}$, we have $\Phi(N) \in \mathcal{N}$.
For any $N \in \mathcal{N}, N=\left[N \circ \frac{i}{2} I, \frac{i}{2} I\right]_{\diamond}$. Since $[A \circ B, C]_{\diamond} \in \mathcal{N}$ for all $A, B, C \in \mathcal{A}$, we get

$$
\begin{aligned}
\Phi(N) & =\Phi\left(\left[N \circ \frac{i}{2} I, \frac{i}{2} I\right]_{\diamond}\right) \\
& =\left[\Phi(N) \circ \frac{i}{2} I, \frac{i}{2} I\right]_{\diamond}+\left[N \circ \Phi\left(\frac{i}{2} I\right), \frac{i}{2} I\right]_{\diamond}+\left[N \circ \frac{i}{2} I, \Phi\left(\frac{i}{2} I\right)\right]_{\diamond} \in \mathcal{N} .
\end{aligned}
$$

Claim 3.. For every $C_{11} \in \mathcal{N}_{11}, N_{12} \in \mathcal{N}_{12}$ and $D_{22} \in \mathcal{N}_{22}$, we have

$$
\Phi\left(C_{11}+N_{12}\right)=\Phi\left(C_{11}\right)+\Phi\left(N_{12}\right)
$$

and

$$
\Phi\left(N_{12}+D_{22}\right)=\Phi\left(N_{12}\right)+\Phi\left(D_{22}\right)
$$

Let $T=\Phi\left(C_{11}+N_{12}\right)-\Phi\left(C_{11}\right)-\Phi\left(N_{12}\right)$. By Claim 2, we have $T^{*}=-T$. Since $\left[I \circ P_{2}, C_{11}\right]_{\diamond}=0$, we obtain

$$
\begin{aligned}
& {\left[\Phi(I) \circ P_{2}, C_{11}+N_{12}\right]_{\diamond}+\left[I \circ \Phi\left(P_{2}\right), C_{11}+N_{12}\right]_{\diamond}+\left[I \circ P_{2}, \Phi\left(C_{11}+N_{12}\right)\right]_{\diamond}} \\
& =\Phi\left(\left[I \circ P_{2}, C_{11}+N_{12}\right]_{\diamond}\right) \\
& =\Phi\left(\left[I \circ P_{2}, C_{11}\right]_{\diamond}\right)+\Phi\left(\left[I \circ P_{2}, N_{12}\right]_{\diamond}\right) \\
& =\left[\Phi(I) \circ P_{2}, C_{11}+N_{12}\right]_{\diamond}+\left[I \circ \Phi\left(P_{2}\right), C_{11}+N_{12}\right]_{\diamond}+\left[I \circ P_{2}, \Phi\left(C_{11}\right)+\Phi\left(N_{12}\right)\right]_{\diamond} .
\end{aligned}
$$

This implies that $\left[I \circ P_{2}, T\right]_{\circ}=0$, and hence $P_{1} T P_{2}=P_{2} T P_{1}=P_{2} T P_{2}=0$.
Next, it follows from $\left[I \circ\left(P_{2}-P_{1}\right), N_{12}\right]_{\circ}=0$ that

$$
\begin{aligned}
& {\left[\Phi(I) \circ\left(P_{2}-P_{1}\right), C_{11}+N_{12}\right]_{\diamond}+\left[I \circ \Phi\left(P_{2}-P_{1}\right), C_{11}+N_{12}\right]_{\diamond}} \\
& +\left[I \circ\left(P_{2}-P_{1}\right), C_{11}+N_{12}\right]_{\diamond} \\
& =\Phi\left(\left[I \circ\left(P_{2}-P_{1}\right), C_{11}+N_{12}\right]_{\diamond}\right) \\
& =\Phi\left(\left[I \circ\left(P_{2}-P_{1}\right), C_{11}\right]_{\diamond}\right)+\Phi\left(\left[I \circ\left(P_{2}-P_{1}\right), N_{12}\right]_{\diamond}\right) \\
& =\left[\Phi(I) \circ\left(P_{2}-P_{1}\right), C_{11}+N_{12}\right]_{\diamond}+\left[I \circ \Phi\left(P_{2}-P_{1}\right), C_{11}+N_{12}\right]_{\diamond} \\
& +\left[I \circ\left(P_{2}-P_{1}\right), \Phi\left(C_{11}\right)+\Phi\left(N_{12}\right)\right]_{\diamond} .
\end{aligned}
$$

So $\left[I \circ\left(P_{2}-P_{1}\right), T\right]_{\circ}=0$, and it yields that $P_{1} T P_{1}=0$. Hence $T=0$.
Similarly, we can get that $\Phi\left(N_{12}+D_{22}\right)=\Phi\left(N_{12}\right)+\Phi\left(D_{22}\right)$.
Claim 4.. For every $C_{11} \in \mathcal{N}_{11}, N_{12} \in \mathcal{N}_{12}$ and $D_{22} \in \mathcal{N}_{22}$, we have

$$
\Phi\left(C_{11}+N_{12}+D_{22}\right)=\Phi\left(C_{11}\right)+\Phi\left(N_{12}\right)+\Phi\left(D_{22}\right)
$$

Let $T=\Phi\left(C_{11}+N_{12}+D_{22}\right)-\Phi\left(C_{11}\right)-\Phi\left(N_{12}\right)-\Phi\left(D_{22}\right)$. By Claim 2, we have $T^{*}=-T$. Since $\left[P_{1} \circ I, D_{22}\right]_{\circ}=0$, it follows from Claim 3 that

$$
\begin{aligned}
& {\left[\Phi\left(P_{1}\right) \circ I, C_{11}+N_{12}+D_{22}\right]_{\diamond}+\left[P_{1} \circ \Phi(I), C_{11}+N_{12}+D_{22}\right]_{\diamond}} \\
& +\left[P_{1} \circ I, \Phi\left(C_{11}+N_{12}+D_{22}\right)\right]_{\diamond} \\
& =\Phi\left(\left[P_{1} \circ I, C_{11}+N_{12}+D_{22}\right]_{\diamond}\right) \\
& =\Phi\left(\left[P_{1} \circ I, C_{11}+N_{12}\right]_{\diamond}\right)+\Phi\left(\left[P_{1} \circ I, D_{22}\right]_{\diamond}\right) \\
& =\left[\Phi\left(P_{1}\right) \circ I, C_{11}+N_{12}+D_{22}\right]_{\diamond}+\left[P_{1} \circ \Phi(I), C_{11}+N_{12}+D_{22}\right]_{\diamond} \\
& +\left[P_{1} \circ I, \Phi\left(C_{11}\right)+\Phi\left(N_{12}\right)+\Phi\left(D_{22}\right)\right]_{\diamond} .
\end{aligned}
$$

This yields that $\left[P_{1} \circ I, T\right]_{\circ}=0$, and then $P_{1} T P_{1}=P_{1} T P_{2}=0$. In the similar manner, we can show that $P_{2} T P_{1}=P_{2} T P_{2}=0$. Hence $T=0$.

Claim 5.. For every $N_{12}, B_{12} \in \mathcal{N}_{12}$, we have

$$
\Phi\left(N_{12}+B_{12}\right)=\Phi\left(N_{12}\right)+\Phi\left(B_{12}\right)
$$

Let $N_{12}, B_{12} \in \mathcal{N}_{12}$. Then $N_{12}=P_{1} N P_{2}+P_{2} N P_{1}, B_{12}=P_{1} B P_{2}+P_{2} B P_{1}$, where $N, B \in \mathcal{N}$. Since

$$
\left[\left(i P_{1}+N_{12}\right) \circ\left(i P_{2}+B_{12}\right), \frac{i}{2} I\right]_{\diamond}=N_{12}+B_{12}-i N_{12} B_{12}-i B_{12} N_{12}
$$

where

$$
N_{12}+B_{12} \in \mathcal{N}_{12}
$$

and

$$
-i N_{12} B_{12}-i B_{12} N_{12}=P_{1}\left(-i\left(N P_{2} B+B P_{2} N\right)\right) P_{1}+P_{2}\left(-i\left(N P_{1} B+B P_{1} N\right)\right) P_{2} \in \mathcal{N}_{11}+\mathcal{N}_{22}
$$

we can get from Claim 4 that

$$
\begin{aligned}
& \Phi\left(N_{12}+B_{12}\right)+\Phi\left(-i N_{12} B_{12}-i B_{12} N_{12}\right) \\
& =\Phi\left(N_{12}+B_{12}-i N_{12} B_{12}-i B_{12} N_{12}\right) \\
& =\Phi\left(\left[\left(i P_{1}+N_{12}\right) \circ\left(i P_{2}+B_{12}\right), \frac{i}{2} I\right]_{\diamond}\right) \\
& =\left[\left(\Phi\left(i P_{1}\right)+\Phi\left(N_{12}\right)\right) \circ\left(i P_{2}+B_{12}\right), \frac{i}{2} I\right]_{\diamond}+\left[\left(i P_{1}+N_{12}\right) \circ\left(\Phi\left(i P_{2}\right)+\Phi\left(B_{12}\right)\right), \frac{i}{2} I\right]_{\diamond} \\
& +\left[\left(i P_{1}+N_{12}\right) \circ\left(i P_{2}+B_{12}\right), \Phi\left(\frac{i}{2} I\right)\right]_{\diamond} \\
& =\Phi\left(\left[\left(i P_{1}\right) \circ\left(i P_{2}\right), \frac{i}{2} I\right]_{\diamond}\right)+\Phi\left(\left[\left(i P_{1}\right) \circ B_{12}, \frac{i}{2} I\right]_{\diamond}\right)+\Phi\left(\left[N_{12} \circ\left(i P_{2}\right), \frac{i}{2} I\right]_{\diamond}\right) \\
& +\Phi\left(\left[N_{12} \circ B_{12}, \frac{i}{2} I\right]_{\diamond}\right) \\
& =\Phi\left(B_{12}\right)+\Phi\left(N_{12}\right)+\Phi\left(-i N_{12} B_{12}-i B_{12} N_{12}\right) .
\end{aligned}
$$

This implies that

$$
\Phi\left(N_{12}+B_{12}\right)=\Phi\left(N_{12}\right)+\Phi\left(B_{12}\right)
$$

Claim 6.. For every $C_{i i}, D_{i i} \in \mathcal{N}_{i i}(i=1,2)$, we have

$$
\Phi\left(C_{i i}+D_{i i}\right)=\Phi\left(C_{i i}\right)+\Phi\left(D_{i i}\right)
$$

Let $T=\Phi\left(C_{11}+D_{11}\right)-\Phi\left(C_{11}\right)-\Phi\left(D_{11}\right)$. By Claim 2, we have $T^{*}=-T$. Since $\left[P_{2} \circ I, C_{11}\right]_{\diamond}=\left[P_{2} \circ I, D_{11}\right]_{\diamond}=0$, we obtain

$$
\begin{aligned}
& {\left[\Phi\left(P_{2}\right) \circ I, C_{11}+D_{11}\right]_{\diamond}+\left[P_{2} \circ \Phi(I), C_{11}+D_{11}\right]_{\diamond}+\left[P_{2} \circ I, \Phi\left(C_{11}+D_{11}\right)\right]_{\diamond}} \\
& =\Phi\left(\left[P_{2} \circ I, C_{11}+D_{11}\right]_{\diamond}\right) \\
& =\Phi\left(\left[P_{2} \circ I, C_{11}\right]_{\diamond}\right)+\Phi\left(\left[P_{2} \circ I, D_{11}\right]_{\diamond}\right) \\
& =\left[\Phi\left(P_{2}\right) \circ I, C_{11}+D_{11}\right]_{\diamond}+\left[P_{2} \circ \Phi(I), C_{11}+D_{11}\right]_{\diamond}+\left[P_{2} \circ I, \Phi\left(C_{11}\right)+\Phi\left(D_{11}\right)\right]_{\diamond} .
\end{aligned}
$$

Hence $\left[P_{2} \circ I, T\right]_{\circ}=0$, and then $P_{1} T P_{2}=P_{2} T P_{1}=P_{2} T P_{2}=0$. Now we have $T=P_{1} T P_{1}$.
For every $A_{12} \in \mathcal{A}_{12}$, let $N=A_{12}-A_{12}^{*}$. Then

$$
\left[C_{11} \circ N, \frac{i}{2} I\right]_{\diamond,}\left[D_{11} \circ N, \frac{i}{2} I\right]_{\diamond} \in \mathcal{N}_{12}
$$

In view of Claim 5, we find that

$$
\begin{aligned}
& {\left[\Phi\left(C_{11}+D_{11}\right) \circ N, \frac{i}{2} I\right]_{\diamond}+\left[\left(C_{11}+D_{11}\right) \circ \Phi(N), \frac{i}{2} I\right]_{\diamond}} \\
& +\left[\left(C_{11}+D_{11}\right) \circ N, \Phi\left(\frac{i}{2} I\right)\right]_{\diamond} \\
& =\Phi\left(\left[\left(C_{11}+D_{11}\right) \circ N, \frac{i}{2} I\right]_{\diamond}\right) \\
& =\Phi\left(\left[C_{11} \circ N, \frac{i}{2} I\right]_{\diamond}\right)+\Phi\left(\left[D_{11} \circ N, \frac{i}{2} I\right]_{\diamond}\right) \\
& =\left[\left(\Phi\left(C_{11}\right)+\Phi\left(D_{11}\right)\right) \circ N, \frac{i}{2} I\right]_{\diamond}+\left[\left(C_{11}+D_{11}\right) \circ \Phi(N), \frac{i}{2} I\right]_{\diamond} \\
& +\left[\left(C_{11}+D_{11}\right) \circ N, \Phi\left(\frac{i}{2} I\right)\right]_{\diamond} .
\end{aligned}
$$

This yields that $\left[T \circ N, \frac{i}{2} I\right]_{\diamond}=0$, that is, $A_{12}^{*} T-T A_{12}=0$. Multiplying the above equation by P_{1} from the left, we have $P_{1} T A_{12}=0$ for all $A_{12} \in \mathcal{A}_{12}$. It follows from $(\boldsymbol{*})$ that $P_{1} T P_{1}=0$, and hence $T=0$.

Similarly, we can show that $\Phi\left(C_{22}+D_{22}\right)=\Phi\left(C_{22}\right)+\Phi\left(D_{22}\right)$.
By using Claims 4-6, one can obtain the following claim easily.

Claim 7.. Φ is additive on \mathcal{N}.

Claim 8..

1. $\Phi(I)=\Phi(i I)=0$;
2. For any $M \in \mathcal{A}$ such that $M^{*}=M$, we have $\Phi(M)^{*}=\Phi(M)$ and $\Phi(i M)=i \Phi(M)$.

For any $M \in \mathcal{M}$, it follows from Claims 2 and 7 that

$$
\begin{aligned}
4 \Phi(i I) & =\Phi(4 i I)=\Phi\left([(i I) \circ(i I), i I]_{\diamond}\right) \\
& =[\Phi(i I) \circ(i I), i I]_{\diamond}+[(i I) \circ \Phi(i I), i I]_{\diamond}+[(i I) \circ(i I), \Phi(i I)]_{\diamond} \\
& =2[-2 i \Phi(i I), i I]_{\diamond}+[2 I, \Phi(i I)]_{\diamond} \\
& =12 \Phi(i I) .
\end{aligned}
$$

This implies that $\Phi(i I)=0$.
For any $M \in \mathcal{A}$ such that $M^{*}=M$,

$$
0=\Phi\left([M \circ(i I), i I]_{\diamond}\right)=[\Phi(M) \circ(i I), i I]_{\diamond}=2\left(\Phi(M)-\Phi(M)^{*}\right)
$$

Hence $\Phi(M)^{*}=\Phi(M)$ for all $M^{*}=M$.
Now, we can get that

$$
\begin{aligned}
0 & =4 \Phi(i I)=\Phi(4 i I)=\Phi\left([I \circ I, i I]_{\diamond}\right) \\
& =[\Phi(I) \circ I, i I]_{\diamond}+[I \circ \Phi(I), i I]_{\diamond} \\
& =8 i \Phi(I) .
\end{aligned}
$$

This yields that $\Phi(I)=0$.
For any $M \in \mathcal{A}$ such that $M^{*}=M$, we have

$$
\begin{aligned}
4 \Phi(i M) & =\Phi(4 i M)=\Phi\left([I \circ M, i I]_{\diamond}\right) \\
& =[I \circ \Phi(M), i I]_{\diamond} \\
& =4 i \Phi(M) .
\end{aligned}
$$

Thus $\Phi(i M)=i \Phi(M)$ for all $M^{*}=M$.

Claim 9.. For any $A_{1}, A_{2} \in \mathcal{A}$ such that $A_{1}^{*}=A_{1}, A_{2}^{*}=A_{2}$, we have

$$
\Phi\left(A_{1}+A_{2}\right)=\Phi\left(A_{1}\right)+\Phi\left(A_{2}\right)
$$

and

$$
\Phi\left(A_{1}+i A_{2}\right)=\Phi\left(A_{1}\right)+i \Phi\left(A_{2}\right)
$$

Let $A_{1}^{*}=A_{1}, A_{2}^{*}=A_{2}$. It follows from Claims 7 and 8 that

$$
i \Phi\left(A_{1}+A_{2}\right)=\Phi\left(i\left(A_{1}+A_{2}\right)\right)=\Phi\left(i A_{1}\right)+\Phi\left(i A_{2}\right)=i\left(\Phi\left(A_{1}\right)+\Phi\left(A_{2}\right)\right)
$$

That is, $\Phi\left(A_{1}+A_{2}\right)=\Phi\left(A_{1}\right)+\Phi\left(A_{2}\right)$.
Now, on the one hand, we have

$$
\begin{aligned}
4 i \Phi\left(A_{1}\right) & =\Phi\left(4 i A_{1}\right)=\Phi\left(\left[\left(A_{1}+i A_{2}\right) \circ I, i I\right]_{\diamond}\right) \\
& =\left[\Phi\left(A_{1}+i A_{2}\right) \circ I, i I\right]_{\diamond} \\
& =2 i\left(\Phi\left(A_{1}+i A_{2}\right)+\Phi\left(A_{1}+i A_{2}\right)^{*}\right) .
\end{aligned}
$$

On the other hand, we also have

$$
\begin{aligned}
4 i \Phi\left(A_{2}\right) & =\Phi\left(4 i A_{2}\right)=\Phi\left(\left[\left(A_{1}+i A_{2}\right) \circ(i I), i I\right]_{\diamond}\right) \\
& =\left[\Phi\left(A_{1}+i A_{2}\right) \circ(i I), i I\right]_{\diamond} \\
& =2\left(\Phi\left(A_{1}+i A_{2}\right)-\Phi\left(A_{1}+i A_{2}\right)^{*}\right) .
\end{aligned}
$$

Comparing the above two equations, we obtain $\Phi\left(A_{1}+i A_{2}\right)=\Phi\left(A_{1}\right)+i \Phi\left(A_{2}\right)$.

Claim 10..

1. For every $A \in \mathcal{A}$, we have $\Phi(i A)=i \Phi(A)$ and $\Phi\left(A^{*}\right)=\Phi(A)^{*}$;
2. Φ is additive on \mathcal{A}.

For any $A \in \mathcal{A}$, we have $A=A_{1}+i A_{2}$, where $A_{1}^{*}=A_{1}, A_{2}^{*}=A_{2}$. It follows from Claim 9 that

$$
\begin{aligned}
\Phi(i A) & =\Phi\left(i A_{1}-A_{2}\right)=i \Phi\left(A_{1}\right)-\Phi\left(A_{2}\right) \\
& =i\left(\Phi\left(A_{1}\right)+i \Phi\left(A_{2}\right)\right)=i \Phi\left(A_{1}+i A_{2}\right) \\
& =i \Phi(A)
\end{aligned}
$$

Next, from Claims 8 and 9, we find that

$$
\begin{aligned}
\Phi\left(A^{*}\right) & =\Phi\left(A_{1}-i A_{2}\right)=\Phi\left(A_{1}\right)-i \Phi\left(A_{2}\right) \\
& =\left(\Phi\left(A_{1}\right)+i \Phi\left(A_{2}\right)\right)^{*}=\left(\Phi\left(A_{1}+i A_{2}\right)\right)^{*} \\
& =\Phi(A)^{*}
\end{aligned}
$$

For any $A, B \in \mathcal{A}$, we have $A=A_{1}+i A_{2}$ and $B=B_{1}+i B_{2}$, where $A_{1}^{*}=A_{1}, A_{2}^{*}=A_{2}, B_{1}^{*}=B_{1}, B_{2}^{*}=B_{2}$. Then we can obtain from Claim 9 that

$$
\begin{aligned}
\Phi(A+B) & =\Phi\left(\left(A_{1}+B_{1}\right)+i\left(A_{2}+B_{2}\right)\right) \\
& =\Phi\left(A_{1}+B_{1}\right)+i \Phi\left(A_{2}+B_{2}\right) \\
& =\left(\Phi\left(A_{1}\right)+i \Phi\left(A_{2}\right)\right)+\left(\Phi\left(B_{1}\right)+i \Phi\left(B_{2}\right)\right) \\
& =\Phi(A)+\Phi(B)
\end{aligned}
$$

Claim 11.. Φ is an additive *-derivation on \mathcal{A}.
For every $A, B \in \mathcal{A}$, on the one hand, by Claims 8 (1) and 10, we have

$$
\begin{aligned}
2 i \Phi\left(A^{*} B+B^{*} A\right) & =\Phi\left(2 i\left(A^{*} B+B^{*} A\right)\right) \\
& =\Phi\left([A \circ B, i I]_{\diamond}\right) \\
& =[\Phi(A) \circ B, i I]_{\diamond}+[A \circ \Phi(B), i I]^{*} \\
& =2 i\left(\Phi(A)^{*} B+B^{*} \Phi(A)+A^{*} \Phi(B)+\Phi(B)^{*} A\right) .
\end{aligned}
$$

This yields that

$$
\Phi\left(A^{*} B+B^{*} A\right)=\Phi(A)^{*} B+B^{*} \Phi(A)+A^{*} \Phi(B)+\Phi(B)^{*} A .
$$

On the other hand, we also have

$$
\begin{aligned}
-2\left(\Phi\left(A^{*} B-B^{*} A\right)\right) & =\Phi\left(-2\left(A^{*} B-B^{*} A\right)\right) \\
& =\Phi\left([A \circ i B, i I]_{\diamond}\right) \\
& =[\Phi(A) \circ i B, i I]_{\diamond}+[A \circ \Phi(i B), i I]_{\diamond} \\
& =-2\left(\Phi(A)^{*} B-B^{*} \Phi(A)+A^{*} \Phi(B)-\Phi(B)^{*} A\right) .
\end{aligned}
$$

This yields that

$$
\Phi\left(A^{*} B-B^{*} A\right)=\Phi(A)^{*} B-B^{*} \Phi(A)+A^{*} \Phi(B)-\Phi(B)^{*} A .
$$

By summing the above two equations, we have

$$
\Phi\left(A^{*} B\right)=\Phi(A)^{*} B+A^{*} \Phi(B) .
$$

Replacing A by A^{*} in the above equation and using Claim 10 (1), we obtain

$$
\Phi(A B)=\Phi(A) B+A \Phi(B) .
$$

Hence Φ is an additive *-derivation on \mathcal{A} by Claim 10. This completes the proof of Theorem 2.1.

Acknowledgements

The authors are grateful to the anonymous referees and editors for their work.

References

[1] L. Dai, F. Lu, Nonlinear maps preserving Jordan *-products, J. Math. Anal. Appl. 409 (2014) 180-188.
[2] V. Darvish, M. Nouri, M. Razeghi, Nonlinear bi-skew Jordan derivations on *-algebras, Filomat 36 (2022) 3231-3239.
[3] V. Darvish, M. Nouri, M. Razeghi, Nonlinear triple product $A^{*} B+B^{*} A$ for derivations on *-algebras, Math. Notes 108 (2020) 179-187.
[4] V. Darvish, M. Nouri, M. Razeghi, A. Taghavi, Nonlinear *-Jordan triple derivation on prime *-algebras, Rocky Mountain J. Math. 50 (2020) 543-549
[5] A. Khan, Multiplicative bi-skew Lie triple derivations on factor von Neumann algebras, Rocky Mountain J. Math. 51 (2021) 2103-2114.
[6] L. Kong, J. Zhang, Nonlinear bi-skew Lie derivations on factor von Neumann algebras, Bull. Iran. Math. Soc. 47 (2021): 1097 -1106.
[7] C. Li , F. Lu, X. Fang Nonlinear ξ-Jordan $*$-derivations on von Neumann algebras, Linear Multilinear Algebra. 62 (2014) 466-473.
[8] C. Li, D. Zhang, Nonlinear mixed Jordan triple *-derivations on *-algebras, Sib. Math. J. 63(2022) 735-742.
[9] C. Li, D. Zhang, Nonlinear mixed Jordan triple *-derivations on factor von Neumann algebras, Filomat 36(2022) 2637-2644.
[10] C. Li, F. Zhao, Q. Chen, Nonlinear maps preserving product $X^{*} Y+Y^{*} X$ on von Neumann algebras, Bull. Iran. Math. Soc. 44 (2018) 729-738.
[11] Y. Pang, D. Zhang, D. Ma, The second nonlinear mixed Jordan triple derivable mapping on factor von Neumann algebras. Bull. Iran. Math. Soc. 48(2022) 951-962.
[12] N. Rehman, J. Nisar, M. Nazim, A note on nonlinear mixed Jordan triple derivation on *-algebras. Commun. Algebra. https: //doi. org/10. 1080/00927872. 2022. 2134410.
[13] P. Šemrl, Additive derivations of some operator algebras, Illinois J. Math. 35 (1991) 234-240.
[14] A. Taghavi, S. Gholampoor, Maps preserving product $A^{*} B+B^{*} A$ on C^{*}-algebras, Bull. Iran. Math. Soc. 48 (2022) 757-767.
[15] A. Taghavi, M. Razeghi, Non-linear new product $A^{*} B-B^{*} A$ derivations on *-algebras, Proyecciones (Antofagasta) 39 (2020) 467-479.
[16] M. Wang, G. Ji, Maps preserving *-Lie product on factor von Neumann algebras, Linear Multilinear Algebra. 64 (2016) $2159-2168$.
[17] X. Zhao, X. Fang, The second nonlinear mixed Lie triple derivations on finite von Neumann algebras, Bull. Iran. Math. Soc. 47 (2021) 237-254.
[18] Y. Zhou, Z. Yang, J. Zhang, Nonlinear mixed Lie triple derivations on prime *-algebras, Commun. Algebra 47 (2019) 4791-4796.
[19] Y. Zhou, J. Zhang, The second mixed nonlinear Lie triple derivations on factor von Neumann algebras, Adv. Math. (China) 48 (2019) 441-449.

[^0]: 2020 Mathematics Subject Classification. Primary 16W25; Secondary 16N60.
 Keywords. Mixed bi-skew Lie triple derivation; Derivations; Additivity
 Received: 23 February 2023; Accepted: 17 June 2023
 Communicated by Dijana Mosić
 The third author is supported by Shanxi Scholarship Council of China $2022-148 \& 2021-107$. The fourth author is supported by the National Natural Science Foundation of China (No. 12061018).

 * Corresponding author: Changjing Li

 Email addresses: 190375476@qq.com (Jingxuan Wang), lcjbxh@163. com (Changjing Li), shaguamoon@126. com (Yueliang Liang), linchen198112@163.com (Lin Chen)

