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Abstract. Here we give the notion of L2−directed topological spaces of directed graphs, and some results
about this notion such as Alexandroff property. Next, we study the form of L2−directed topological space
on E-generated subdirected graphs and their relation with the relative topologies. The relations between
some fundamental properties in topological spaces with their corresponding properties in graphs such as
the isomorphically and connectedness are introduced.

1. Introduction

Recall that Leonhard Euler, in 1736 [9], introduced the graph theory for giving solutions of some
problems in discrete mathematics. This theory is considered as good concept in discrete mathematics such
that the graphs are mathematically elegant which used in representing the mathematical combinations [15]
like topological spaces. Many researchers introduced some topological structure. Graph theory is one of
these structures, that is, studying graph theory by means of topology. The notion of creating topologies on
the set of vertices or the set of edges in graphs is taken from the notion of the digital image and a graph
model. For example, in 2013, Amiri [8] introduced a topology, called graphic topology, on the set V of
vertices of simple graph G = (V,E) by giving the subbasis family SG = {Ax : x ∈ V} such that Ax is the
set of all adjacent vertices of x. In 2018, Abdu and Kiliciman [1] introduced the topologies on the set of
edges in directed graphs, called incompatible edge and compatible topologies. In 2020, Sari and Kopuzlu
[14], Othman and Alzubaidi [12] and Zomam, Othman and Dammak [10] introduced the topology in
simple undirected graphs on the set of vertices. In 2022, Othman, Al-Shamiri, Saif, Acharjee, Lamoudan
and Ismail [11] have introduced interesting results in directed graphs. The directed graphs have some
interesting applications in physics, communication and electronically engineering. So, the results in this
work will open a wide window new for further research projects in those areas.

In this work we present the role of topological spaces in graph theory such as the giving the relation
between the connectedness in topological spaces and the connectedness in graph theory. We give the
projection in directed graphs of compatible topological spaces on the set of vertices. In Section 2 we define
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the notion of L2−directed topological spaces of directed graphs and we give some results about this new
topology such as Alexandroff property. In Section 3, we study the form of L2−directed topological space
=on E-generated subdirected graphs and its relation with the relative topologies. In Section 4, we present
relations between some fundamental properties in topological spaces with their corresponding properties
in graphs such as the isomorphism and connectedness.

A directed graph G = (V,E) (simply, dirgraph) consists of a non-empty vertices set V and a set E of
directed edges Kv1v2 where v1 ∈ V is called the initial vertex of a directed edge Kv1v2 and v2 ∈ V is called the
terminal vertex of a directed edge Kv1v2 . For any directed edge Kv1v2 , end(Kv1v2 ) = {v1, v2} is called the set of
ends of Kv1v2 . The adjacent edges are distinct edges that have a common vertex. Two directed edges Kv1v2

and K′v′1v′2
are said to have the same direction ( or adjacent directed edges) if v2 = v′1 or v′2 = v1. For v ∈ V, the

directed edge Kvv is called a loop. An alternating sequence of directed edge of the form {K1
v1v2
,K2

v2v3
,K3

v3v4
, ....}

is called directed path. The parallel edges are directed edges which have the same started vertex and the
same end vertex. Thedigraph which has no parallel edges or no loops is called simple.

Let G = (V,E) be a dirgraph. Recall [1] that the compatible edges topological space is a topological
space (E,TCE) which has a subbasis SCE, where SCE is a collection of subsets B ⊆ E such that

1. |B| ≤ 2;
2. If E ∈ B and E′ an edge that has the same direction to E, then E′ ∈ B.

The Alexandroff space [10], is a topological space such that arbitrary intersection of open sets is an open
set. Recall [1] that the compatible edges topological space (E,TCE) of adigraph G = (V,E) is an Alexandroff
space.

2. L2−directed topological spaces

Let G = (V,E) be a dirgraph. A set H ⊆ V is called C-set inV if |H| ≥ 2 and for every u ∈ H there is
at last one vertex v ∈ H such that there is directed edge between u and v. For any dirgraph G = (V,E) and
for any C-setH ⊆ V,

E(H) = {Kv1v2 ∈ E : v1, v2 ∈ H}

and |H|E denotes the number of adjacent directed edges in E(H). If |E(H)| = 1 then we consider |H|E = 1.
For any directed edge Kv1v2 ∈ E, E(Kv1v2 ) denotes the set of all adjacent directed edges with Kv1v2 . |Kv1v2 |E

denotes the number of elements E(Kv1v2 ).
Let G = (V,E) be a dirgraph. A subset E of E is called closed under directed edge if K ∈ E and K′ is

adjacent directed edge with K implies K′ ∈ E(H).

Definition 2.1. For any directed graph G = (V,E), the L2−directed topological space of G is a pair (V,TG)
where TG is a topology on V induced by a subbasis βG which is a collection of ∅ and all C-sets in V such
that |H|E ≤ 2 and E(H) is closed under directed edge.

Example 2.2. In Fig.[1] or the digraph G = (V,E),

V = {v1, v2, v3, v4, v5, v6}, E = {v2v1, v2v3, v6v5, v5v4}

and the subbasis

βG = {∅, {v1, v2}, {v2, v3}, {v4, v5, v6}}.

That is, the L2−directed topology

TG = {∅,V, {v2}, {v1, v2}, {v2, v3}, {v4, v5, v6}, {v1, v2, v3}, {v2, v4, v5, v6},

{v1, v2, v4, v5, v6}, {v2, v3, v4, v5, v6}}

.
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Figure 1:

Example 2.3. In Fig.2 [1-A], or the digraph G = (V,E),

V = {v1, v2, v3, v4, v5}, E = {v1v2, v2v3, v4v5}

and the subbasis

βG = {∅, {v1, v2, v3}, {v4, v5}}.

That is, the L2−directed topology TG = {∅,V, {v1, v2, v3}, {v4, v5}}.

Figure 2: digraph [1-A] and [1-B]

Example 2.4. For the digraph in Fig.2 [1-B], the subbasis

βG = {∅, {v1, v2, v3}, {v2, v3, v5}, {v1, v3, v4}, {v3, v4, v5}, {v1, v4, v5}, {v1, v2, v5},

{v2, v3, v4}, {v1, v3, v5}}.

includes the L2− directed topology is a discrete topology.

Theorem 2.5. If G = (V,E) is a directed graph then end(Kv1v2 ) is an open set in (V,TG) for all Kv1v2 ∈ E with
|Kv1v2 |E = 0 or |Kv1v2 |E > 2.
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Proof. It is clear by definition of βG, if |Kv1v2 |E = 0, then end(Kv1v2 ) ∈ βG, that is, the set end(Kv1v2 ) is an open
set in (V,TG) . Let |Kv1v2 |E > 2. Then, there are at least three directed edges K1

u1u2
,K2

w1w2
,K3

z1z2
∈ E(Kv1v2 ) such

that one of the following holds:

1. v1 = u2 = w2 and v2 = z1;
2. v1 = z2 = w2 and v2 = u1;
3. v1 = z2 = u2 and v2 = w1;
4. v2 = u1 = w1 and v1 = z2;
5. v2 = z1 = w1 and v1 = u2;
6. v2 = z1 = u1 and v1 = w2.

Then six cases may happen

1. A := {u1, v1, v2},B := {w1, v1, v2},C := {v1, v2, z2} ∈ βG;
2. A := {z1, v1, v2},B := {w1, v1, v2},C := {v1, v2,u2} ∈ βG;
3. A := {u1, v1, v2},B := {z1, v1, v2},C := {v1, v2,w2} ∈ βG;
4. A := {u2, v1, v2},B := {w2, v1, v2},C := {v1, v2, z1} ∈ βG;
5. A := {z2, v1, v2},B := {w2, v1, v2},C := {v1, v2,u1} ∈ βG;
6. A := {u2, v1, v2},B := {z2, v1, v2},C := {v1, v2,w1} ∈ βG;

respectively. Note that for all the pervious cases, A ∩ B ∩ C = end(Kv1v2 ) is an open set in (V,TG) .

Corollary 2.6. If G = (V,E) is a directed graph then {v} is an open set in (V,TG) for all distinct directed edges
Kvu1 ,K′vu2

∈ E in following conditions:

1. |Kvu1 |E = 0 and |K′vu2
|E = 0.

2. |Kvu1 |E = 0 and |K′vu2
|E > 2.

3. |Kvu1 |E ≥ 2 and |K′vu2
|E = 0.

4. |Kvu1 |E ≥ 2 and |K′vu2
|E > 2.

Proof. It is sufficient to notice that for each of the six cases, we find that the sets end(Kvu1 ) and end(K′vu2
) are

open sets in (V,TG) .

Theorem 2.7. If G = (V,E) is a directed graph then the L2− directed topological space of G is an Alexandroff space.

Proof. It is enough to prove that arbitrary intersection of elements of βG is an open set in (V,TG). Let
{Aλ : λ ∈ ∆} be the collection of elements of βG. Then it clear that by the definition of βG, |Aλ| = 2 or |Aλ| = 3
for all λ ∈ ∆. Then, one of the following holds: ∩λ∈∆Aλ = ∅ or ∩λ∈∆Aλ = {u, v} or ∩λ∈∆Aλ = {u} for some
u, v ∈ V. If ∩λ∈∆Aλ = ∅, then ∩λ∈∆Aλ is an open set in (V,TG). If ∩λ∈∆Aλ = {u, v} for some u, v ∈ V then by
Theorem(2.5), ∩λ∈∆Aλ is an open set in (V,TG). If ∩λ∈∆Aλ = {u} for some u ∈ V, then one of the following
three cases may occur:

∩λ∈∆Aλ = {u} = A ∩ B

where |A| = |B| = 3 or |A| = 2 and |B| = 3 or |A| = 2 and |B| = 2.
Case 1: If |A| = |B| = 3, then A,B ∈ βG. Hence, ∩λ∈∆Aλ is an open set in (V,TG).
Case 2: If |A| = 2 and |B| = 3, then B ∈ βG and, hence B is an open set in (V,TG). For |A| = 2, we have one of
the following: A ∈ βG or A = D1 ∩D2 where |D1| = |D2| = 3, that is, D1,D2 ∈ βG. This implies in two cases,
A is an open set in (V,TG). Therefore ∩λ∈∆Aλ is an open set in (V,TG).
Case 3: If |A| = 2 and |B| = 2, then we have one of the following: A,B ∈ βG or B ∈ βG and A = D1 ∩D2 where
|D1| = |D2| = 3, that is, D1,D2 ∈ βG or A ∈ βG and B = D1 ∩ D2 where |D1| = |D2| = 3, that is, D1,D2 ∈ βG or
A = D1 ∩D2 and B = D′1 ∩D′2 where

|D1| = |D2| = |D′1| = |D
′

2| = 3,

that is, D1,D2,D′1,D
′

2 ∈ βG. This implies in four cases, ∩λ∈∆Aλ is an open set in (V,TG).
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Remark 2.8. Let G = (V,E) be a directed graph. For H ⊆ V, OG(H) denotes the intersection of all open
sets in (V,TG) containing H . From the above theorem, (V,TG) is Alexandroff space, then it is clear that
OG(H) is the smallest open set in (V,TG) containingH . For v ∈ V, we write OG(v) replaced of OG({v}). The
collection βG(V) := {OG(v) : v ∈ V} forms a minimal basis of (V,TG).

Theorem 2.9. If G = (V,E) is a directed graph then for allH ⊆ V,

OG(H) = ∩{A ∈ βG : H ⊆ A}.

Proof. It is clear that B is an open set in (V,TG) for all B ∈ βG. So by Theorem 2.7, ∩{A ∈ βG : H ⊆ A} is an
open set in (V,TG). SinceH ⊆ A for all A ∈ {A ∈ βG : H ⊆ A}, thenH ⊆ ∩{A ∈ βG : H ⊆ A} and so

OG(H) ⊆ ∩{A ∈ βG : H ⊆ A}.

Since the collection of all intersections of members of βG forms a basis for (V,TG), then

∩{A ∈ βG : H ⊆ A} ⊆ OG(H).

Hence OG(H) = ∩{A ∈ βG : H ⊆ A}.

Corollary 2.10. If G = (V,E) is a digraph then for all v ∈ V,

OG(v) = ∩{A ∈ βG : v ∈ A}.

Let G = (V,E) be a digraph and K ∈ E. If |K|E = 0 then end(K) ∈ βG is an open set in (V,TG). So
OG(end(K)) = end(K). If |K|E = 1, then there is K′ ∈ E(K) such that end(K) ∪ end(K′) ∈ βG. So

OG(end(K)) = end(K) ∪ end(K′).

If |K|E = 2, then there are K′,K′′ ∈ E(K) such that end(K) ∪ end(K′) ∪ end(K′′) ∈ βG or end(K) ∈ βG. So

OG(end(K)) = end(K) ∪ end(K′) ∪ end(K′′) or OG(end(K)) = end(K).

If |K|E > 2, then by Theorem 2.5, end(K) is an open set in (V,TG). So OG(end(K)) = end(K).

Proposition 2.11. Let K,K′ ∈ E in a digraph G = (V,E). If E(K) = {K′} then end(K′) ⊆ OG(end(K)).

Corollary 2.12. Let G = (V,E) be a digraph and K,K′ ∈ E. If E(K′) = {K} then end(K′) ⊆ OG(end(K)).

Proof. Suppose that E(K′) = {K}. Then, by Proposition 2.11, end(K) ⊆ OG(end(K′)). Then for all open
set A containing end(K′), end(K) ⊆ A and A ∩ end(K) = end(K) , ∅. Since end(K) ⊆ OG(end(K)), then
A ∩OG(end(K)) , ∅. That is, end(K′) ⊆ OG(end(K)).

Let G = (V,E) be a digraph. Recall [10] that an Alexandroff space (V,TG) is T0−space if and only if
OG(v) , OG(u) for all u , v ∈ V. An Alexandroff space (V,TG) is T1−space if and only if OG(v) = {v} for all
u , v ∈ V, that is, if and only if (V,TG) is discrete.

Proposition 2.13. If G = (V,E) is a digraph then

∪K∈E{end(K) : |K|E = 0 or |K|E ≥ 2}

is an open set in (V,TG).

Proof. By Theorem 2.5, for K ∈ E with |K|E = 0 or |K|E ≥ 2, end(K) is an open set in (V,TG). So ∪K∈E{end(K) :
|K|E = 0 or |K|E ≥ 2} is an open set in (V,TG).

Proposition 2.14. If G = (V,E) is a digraph, then ∪K∈E{end(K) : |K|E = 1} is a closed set in (V,TG).
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Proof. Let

C = ∪K∈E{end(K) : |K|E = 1}.

It is clear that

C = ∪K∈E{end(K) : |K|E = 1}.

By Corollary 2.12, end(K) ⊆ C for all end(K) ⊆ C. So C ⊆ C, that is, C is a closed set in (V,TG).

Let G = (V,E) be a digraph. For v ∈ V, E(v) denotes the set of all K ∈ H such that v ∈ end(K) andV(v)
denotes the set of all v′ ∈ V such that v is join with v′ by directed edge.

Proposition 2.15. If G = (V,E) is a digraph then for v ∈ V,

∩K∈E(v)OG(end(K)) = OG(v).

Proof. It is clear that OG(v) ⊆ ∩K∈E(v)OG(end(K)). Since OG(v) is the intersection of all open sets in (V,TG)
containing v and βG is the subbasis of (V,TG), the

OG(v) = ∩K∈K ′OG(end(K))

for some subset K ′ of E. Then, v ∈ OG(end(K)) for all K ∈ K ′. Hence, K ∈ E(v) for all K ∈ K ′, that is,
K
′
⊆ E(v). So ∩K∈E(v)OG(end(K)) ⊆ OG(v).

3. On E-generated subdirected graph

Let G = (V,E) be a digraph and H be any digraph. If the direction function of H is the restriction of
the direction function of G on E(H) and all edges and vertices ofH are in G, thenH is called subdirected
graph of G. A collection of the edges in a digraph G = (V,E) together with their terminals is called Edge-
generated ( or E-generated) subdirected graph of G = (V,E). For any E-generated subdirected graph GH
of G = (V,E),VH denotes the set of all vertices of GH , EH denotes the set of all edges of GH , TGH denotes
the L2−directed topology of GH and βGH is the subbasis of (VH ,TGH ).

Theorem 3.1. For any E-generated subdirected graph GH of G = (V,E), TGH ⊆ TG|VH , where TG|VH is the
relative topology of TG onVH .

Proof. Let G ∈ TGH . We will prove that G = F ∩VH for some open set F in (V,TG). Let

F′ = ∩{D ∈ TG : G ⊆ D}.

Then, by Theorem 2.7, F′ is an open set in (V,TG) and F′ ∩VH = G. That is, G ∈ TG|VH .

In the theorem above, note that for any E-generated subdirected graphGH ofG = (V,E), TGH , TG|VH .
For example in the Fig. 3,

TG = {∅,V, {v1, v2, v3}, {v2, v3, v4}, {v2, v3}}.

Take EH = {K1,K2}, soVH = {v1, v2, v3}. Note that

TGH = {∅,VH } and TG|VH = {∅,VH , {v2, v3}}.

An E-generated subdirected graph GH = (VH ,EH ) of G = (V,E) is called an adjacent with G if |K|E > 2
in G implies |K|EH > 2 in GH for all K ∈ EH .
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Figure 3:

Theorem 3.2. Let GH = (VH ,EH ) be an E-generated subdirected graph of G = (V,E). Then, GH is an adjacent
with G if and only if TGH = TG|VH .

Proof. Suppose that GH is an adjacent with G. Let G ∈ TG|VH and G < TGH . Since VH ∈ TGH ∩ TG|VH
then G = end(K) for some K ∈ EH such that |K|E > 2 in G and |K|EH = 1 in GH . This is a contradiction
with the hypothesis, that is, TG|VH ⊆ TGH . For the other hand, TGH ⊆ TG|VH by Theorem 3.1. That is,
TGH = TG|VH . Conversely, let TGH = TG|VH and there is K ∈ EH such that |K|E > 2 in G and |K|EH < 2 in
GH . Then by Theorem 2.5, end(K) is an open set in (V,TG). Hence end(K) ∩VH = end(K) is an open set in
(VH ,TG|VH ) but end(K) is not open set in (VH ,TGH ). This is a contradiction with the hypothesis, that is,
GH is an adjacent with G.

4. On isomorphisms and connected graphs

For two dirgraphsG = (V,E) andG′ = (V′,K ′), by p-function ofG intoG′we mean a pair (ΦVV′ ,ΦEK ′ ) :
G → G

′ of two functionsΦVV′ :V →V′ andΦEK ′ : E → K ′. Recall [15] that the isomorphism ofG ontoG′

is a p-function (ΦVV′ ,ΦEK ′ ) : G → G′ of two bijective functions ΦVV′ : V → V′ and ΦEK ′ : E → K ′ such
that

ΦEK ′ (Kv1v2 ) = ΦEK ′ (K)ΦVV′ (v1)ΦVV′ (v2)

for all Kv1v2 ∈ E and v1, v2 ∈ V, that is, such that Kv1v2 ∈ E is an edge directed from v1 into v2 in G if and only
if ΦEK ′ (Kv1v2 ) is an edge directed from ΦVV′ (v1) into ΦVV′ (v2) in G′. If there exists isomorphism of G onto
G
′ then we say that G and G′ are isomorphic and write G � G′.

Remark 4.1. It is clear that if two digraph G = (V,E) and G′ = (V′,K ′) are isomorphic then the two L2−directed
topological spaces (V,TG) and (V′,TG′ ) are homeomorphic but the converse no need to be true. In Fig.4,

Figure 4:
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the graphs G and G′ are not isomorphic but the two related L2−directed topological spaces (V,TG) and (V′,TG′ )
are obviously homeomorphic because of TG = {∅,V} and TG′ = {∅,V′}.

Theorem 4.2. If G and G′ are two simple directed graphs and ϕ :V →V′ is continuous function then

E(Kuv) = {Kvw} ( resp. E(Kuv) = {Kwu})

implies

E(Kϕ(u)ϕ(v)) = {Kϕ(v)ϕ(w)} ( resp.E(Kϕ(u)ϕ(v)) = {Kϕ(w)ϕ(u)})

for all u, v,w ∈ V.

Proof. Suppose that ϕ : V → V′ is continuous and u, v,w ∈ V such that E(Kuv) = {Kvw}. By Corollary 2.12,
end(Kuv) ⊆ OG(end(Kvw)). Then

ϕ[end(Kuv)] ⊆ ϕ[OG(end(Kvw))].

That is,

end(Kϕ(u)ϕ(v)) ⊆ ϕ[OG(end(Kvw))].

Since ϕ is continuous then

ϕ[OG(end(Kvw))] ⊆ OG(end(Kϕ(v)ϕ(w))).

Hence

end(Kϕ(u)ϕ(v)) ⊆ OG(end(Kϕ(v)ϕ(w))).

That is, E(Kϕ(u)ϕ(v)) = {Kϕ(v)ϕ(w)} from Corollary 2.12. Similar for the other case.

The converse of Theorem 4.2 is not true, for example, in Fig. 5, let ϕ :V →V′ be a function given by

ϕ(v1) = ϕ(v4) = v′1, ϕ(v2) = v′2 and ϕ(v3) = v′3.

Note that ϕ is not continuous while E(Kv1v2 ) = {Kv2v3 } implies E(Kv′1v′2 ) = {Kv′2v′3 } and E(Kv2v3 ) = {Kv1v2 } implies
E(Kv′2v′3 ) = {Kv′1v′2 }.

Figure 5:

Theorem 4.3. LetG = (V,E) be a digraphs without isolated points. IfG is a disconnected graph then the L2−directed
topological space (V,TG) is disconnected space.

Proof. Let {Gα : α ∈ ∆} be the collection of all directed subgraphs of G. Then for every α ∈ ∆,

VGα := ∪{end(K) : K ∈ E(Gα)}

is an open set in (V,TG). Since G has no isolated points then alsoVc
Gα
= V−VGα is an open set in (V,TG)

andV =Vc
Gα
∪VGα . That is, the L2−directed topological space (V,TG) is disconnected space.

The converse of Theorem is not true, for example, in Fig. 6. the L2−directed topological space (V,TG)
is disconnected space but the graph G is connected where

TG = {∅,V, {v1, v2}{v3, v2}, {v3, v4}, {v2}, {v3}, {v1, v2, v3}, {v2, v3, v4}}.
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Figure 6:

5. Conclusion

The correlation property in topological spaces is integral to satisfying the correlation property in graph
theory, and conversely, the property in graph theory is also important for topological spaces. The L2−

directed topological spaces have been studied in directed graph theory to explore this relationship, as
well as the similarities between two directed graphs and their relationships to the similarities of the
corresponding L2− directed topological spaces. Several standard properties exist in both topological space
theories and graph theory that require an explanation of their interrelationships, such as interdependence
and path continuity. These relationships correlate with results for these references [[7], [3], [2], [5], [6], [4]]
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