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Abstract. In this paper, we introduce notions of hereditarily weakly selection principles and strongly quasi-
selection principles and show that they are different from quasi-selection principles and weakly selection
principles which are studied in [1]. By introducing the strongly quasi-separability, the quasi-separability
and the weakly separability, we provide relations among these separable properties and weak versions of
selection principles. These extend some results of G. Di Maio and Lj.D.R. Kočinac [1].

1. Introduction

Throughout the paper all spaces are assumed to be topological spaces. ByN and R we denote the sets
of natural numbers and real numbers. ω denotes the first infinite cardinal. The continuum is denoted by c.
Most of undefined notion and terminology are as in [3].

Recall two very known selection principles defined in 1996 by M. Scheepers [5]. Let A and B be
collections of sets of an infinite set X.

S1(A,B) denotes the selection principle: for each sequence {An : n ∈ N} of elements of A there is a
sequence {bn : n ∈N} such that bn ∈ An for each n ∈N and {bn : n ∈N} is an element of B.

Sfin(A,B) denotes the selection principle: for each sequence {An : n ∈ N} of elements of A there is a
sequence {Bn : n ∈N} such that Bn is a finite subset of An for each n ∈N and

⋃
n∈N Bn ∈ B.

G. Di Maio and Lj.D.R. Kočinac [1] defined the following quasi-versions of selection principles:
1. A space X is said to be quasi-Rothberger if for each closed set F ⊂ X and each sequence {Un : n ∈ N}

of covers of F by sets open in X there is a sequence {Un : n ∈ N} such that for each n ∈ N, Un ∈ Un and
F ⊂
⋃

n∈NUn.
2. A space X is said to be quasi-Menger if for each closed set F ⊂ X and each sequence {Un : n ∈ N}

of covers of F by sets open in X there is a sequence {Vn : n ∈ N} of finite sets such that for each n ∈ N,
Vn ⊂ Un and F ⊂

⋃
n∈N
⋃
Vn.

For a space X and a subset F of X, we denote:

• OF = {U :U is a cover of F by sets open in X};

• O
D
F = {U :U is a family of open subsets of X such that F ⊂

⋃
U}.
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So, a space X is quasi-Rothberger (resp., quasi-Menger) if and only if each closed subset F of X satisfies
S1(OF,OD

F ) (resp., Sfin(OF,OD
F )).

We denote

• L : Lindelöf;
• qL : quasi-Lindelöf;
• wL : weakly Lindelöf;
• H : Hurewicz;
• qH : quasi-Hurewicz;
• wH : weakly Hurewicz;
• M : Menger;
• qM : quasi-Menger;
• wM : weakly Menger;
• R : Rothberger;
• qR : quasi-Rothberger;
• wR : weakly Rothberger;
• GN : Gerlits-Nagy;
• qGN : quasi-Gerlits-Nagy;
• wGN : weakly Gerlits-Nagy.

In [1] the authors established the following implications.

L −−−−−→ qL −−−−−→ wLx x x
H −−−−−→ qH −−−−−→ wHy y y
M −−−−−→ qM −−−−−→ wMx x x
R −−−−−→ qR −−−−−→ wRx x x

GN −−−−−→ qGN −−−−−→ wGNy y y
L −−−−−→ qL −−−−−→ wL

Diagram 1

In this paper, we introduce hereditarily weakly selection principles and strongly quasi-selection prin-
ciples (Rows 1-2 in Diagram 2) stronger than quasi-selection principles and weakly selection principles
(Rows 3-4 in Diagram 2 or Columns 2-3 in Diagram 1) and investigate the relationships among these se-
lection principles. We also introduce the strongly quasi-separability, the quasi-separability and the weakly
separability (Column 1 in Diagram 2) and the weak π-base in order to obtain characterizations of these
weak selection principles. We give the following implications.
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hs −−−−−→ hwR −−−−−→ hwM −−−−−→ csy y y y
sqs −−−−−→ sqR −−−−−→ sqM −−−−−→ CCCy y y y
qs −−−−−→ qR −−−−−→ qM −−−−−→ q-1-s-Ly y y y
ws −−−−−→ wR −−−−−→ wM −−−−−→ 1-s-L

Diagram 2 : All cases

This paper is organized as follows. In Section 2, we introduce weakly dense sets and the quasi-
separability (qs) to characterize quasi-selection principles (Row 3 in Diagram 2). In Section 3, we introduce
the strongly quasi-separability (sqs) and study strongly quasi-selection principles (Row 2 in Diagram 2). In
Section 4, we introduce the weakly separability (ws) to study weakly selection principles (Row 4 in Diagram
2). In Section 5, by the hereditarily separability (hs), we study hereditarily weakly selection principles (Row
1 in Diagram 2). In Section 6, in order to complete the Diagram 2, we compare the hereditarily separability,
the strongly quasi-separability, the quasi-separability and the weakly separability (Column 1 in Diagram
2) and point that these separable properties are different.

2. Quasi-selection principles

Definition 2.1. A subset D of X is said to be weakly dense in X, if for every open neighborhood assignment
{Ux : x ∈ D}, then

⋃
x∈D Ux is dense in X.

Definition 2.2. A space X is said to be quasi-separable if each closed subspace of X has a countable weakly
dense subset.

Obviously, each dense subset of X is weakly dense in X.

Theorem 2.3. If X is a quasi-separable space, then X is quasi-Rothberger.

Proof. Let F be a closed subset of X and {xn : n ∈N} be a countable weakly dense subset of F. If {Un : n ∈N}
is a sequence of open covers of F by sets open in X, then Vn = {U ∩ F : U ∈ Un} is an open cover of F.
Take Un ∩ F ∈ Vn for each n ∈ N such that xn ∈ Un ∩ F. Let τF be the subspace topology of F. Since X is
quasi-separable, then F = ClτF (

⋃
n∈NUn ∩ F) ⊂

⋃
n∈NUn. So X is quasi-Rothberger.

The converse of Theorem 2.3 is not true.

Example 2.4. ([6]) There is a quasi-Rothberger space which is not quasi-separable.

Proof. Let X be an uncountable set and X∗ = X
⋃
{∞}, where∞ < X. Endow X∗ with the following topology

τ∗:
τ∗ = {V ∪ {∞} : V ⊂ X}

⋃
{∅}.

Then (X∗, τ∗) is quasi-Rothberger but it is not quasi-separable. Indeed, let F be a closed subspace of X∗,
{Un : n ∈ N} be a sequence of covers of F by sets open in X∗. Pick any Un ∈ Un for each n ∈ N, then
∞ ∈ Un. For each x ∈ F and any neighborhood Ux of x, then ∞ ∈ Ux. Hence Ux ∩ (

⋃
n∈NUn) , ∅. Thus

F ⊂
⋃

n∈NUn. So X∗ is quasi-Rothberger. X is a closed uncountable discrete subspace of X∗. So X∗ is not
quasi-separable.
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Recall that a space X is said to be hereditarily separable if each subspace of X is separable. A hereditarily
separable space is quasi-separable. The converse is not true.

Example 2.5. ([6]) There is a quasi-separable space which is not hereditarily separable.

Proof. Let R be real line with usual topology τ, we denote

B = {V − A : V ∈ τ,A ⊂ R, |A| ≤ ω}.

The collection B is a base for a new topology τ′ on R.
1. (R, τ′) is quasi-separable. Let F be a τ′-closed subset of R and take a countable τ-dense subset

DF = {xn : n ∈ N} of F since (R, τ) is hereditarily separable. If Un is a τ′-open neighborhood of xn for each
n ∈ N, then F ⊂ Clτ′ (

⋃
n∈NUn). In fact, let x ∈ F, Ux = Vx − Ax be a τ′-open neighborhood of x, where Vx is

a τ-open subset of R and |Ax| ≤ ω. Take xn0 ∈ DF ∩ Vx and Un0 = Vn0 − An0 ∈ τ
′, then xn0 ∈ Vn0 ∩ Vx , ∅,

where Vn0 is a τ-open subset of R, |An0 | ≤ ω. So Ux ∩Un0 , ∅. Otherwise, (Vx − Ax) ∩ (Vn0 − An0 ) = ∅, then
(Vx ∩ Vn0 ) − (Ax ∪ An0 ) = ∅. But |Vn0 ∩ Vx| > ω, and |An0 ∪ Ax| ≤ ω. This is a contradiction.

2. For any countable set D, since R\D is non-empty open and disjoint from D, then D is not dense in
(R, τ′). So (R, τ′) is not hereditarily separable.

Remark 2.6. Example 2.5 show that the quasi-separability is weaker than the hereditarily separability. Thus
Theorem 2.3 improves Proposition 2.2 of [1].

Recall that a space X is said to be 1-star-Lindelöf [2] if for every open coverU of X, there exists a countable
subset V ⊂ U such that X = st(

⋃
V,U), where st(

⋃
V,U) =

⋃
{U ∈ U : U ∩ (

⋃
V) , ∅}. So we give the

following definition.

Definition 2.7. A space X is said to be quasi-1-star-Lindelöf if for each clopen subset F of X and every cover
U of F by sets open in X, there exists a countable subsetV ⊂ U such that F ⊂ st(

⋃
V,U).

Obviously, each quasi-1-star-Lindelöf space is 1-star-Lindelöf.

Theorem 2.8. If X is a quasi-Menger space, then X is quasi-1-star-Lindelöf.

Proof. Suppose thatU is a cover of clopen subset F ⊂ X by sets open in X. LetUn = U, then {Un : n ∈ N}
is a sequence of open covers of F. There exists a finite subset Vn ⊂ Un such that F ⊂

⋃
n∈N
⋃
Vn. Let

V =
⋃

n∈NVn, then V is countable. Thus F ⊂ st(
⋃
V,U). In fact, let x ∈ F, there exists U ∈ U such that

x ∈ U. There exist n0 ∈N and V ∈ Vn0 such that U ∩ V , ∅. Thus x ∈ U ⊂ st(
⋃
Vn0 ,U) ⊂ st(

⋃
V,U). So X

is quasi-1-star-Lindelöf.

We denote

• qs : quasi-separable;
• qR : quasi-Rothberger;
• qM : quasi-Menger;
• q-1-s-L : quasi-1-star-Lindelöf.

So we have Row 3 of Diagram 2.

qs ↚
−−−−−→ qR −−−−−→ qM −−−−−→ q-1-s-L

Diagram 3 : Quasi-selection principle case.

Recall that a π-base [4] of X is a familyV of non-empty open subsets in X such that for each non-empty
open subset U of X, there exists V ∈ V such that V ⊂ U. The π-weight of X, denoted πw(X), is defined as
follows:

πw(X) = ω +min{|V| :V is a π-base of X}.

In order to give a new characterization of the quasi-selection principles, we define weak π-bases weaker
than π-bases.
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Definition 2.9. A familyV (X < V) of non-empty open subsets of X is said to be a weak π-base of X, if for
each non-empty open subset U of X, there exists V ∈ V such that V ∩U , ∅.

The weak π-weight of X, denoted wπw(X), is defined as follows:

wπw(X) = ω +min{|V| :V is a weak π-base of X}.

Note that wπw(X) ≤ d(X) ≤ πw(X), where d(X) denotes the density of X.

Example 2.10. There is a space X such that wπw(X) < d(X).

Proof. Let R be endowed with discrete topology, we denote

V = {(x, y) : x < y, x, y ∈ Q},where Q is the set of rational numbers.

ThenV is a countable weak π-base for discrete topology onR. So wπw(R) = ω. But d(R) = c > wπw(R).

Definition 2.11. Let F ⊆ X. A family V of open subsets of X is said to be a weak π-base on F, if for each
open subset U of X with U ∩ F , ∅, there exists V ∈ V such that V ∩U , ∅.

Note that for a subset F ⊆ X, if F = X, then a weak π-base of F and a weak π-base on F are the same; if
F ⊊ X, then a weak π-base of F and a weak π-base on F are different.

Lemma 2.12. A familyV of open subsets of X is a weak π-base on F ⊆ X if and only if F ⊆
⋃
V.

Proof. SupposeV is a weak π-base on F, let x ∈ F, and suppose U is an open subset of X with x ∈ U. Since
U ∩ F , ∅, there is some V ∈ V so that V ∩U , ∅. That is, U ∩

⋃
V , ∅. Since U was arbitrary, x ∈

⋃
V. So

F ⊆
⋃
V.

Suppose F ⊆
⋃
V and let U be an open subset of X with U ∩ F , ∅. Now, observe that it must be the

case that U ∩
⋃
V , ∅, so there is some V ∈ V with V ∩U , ∅.

By Lemma 2.12, we can obtain the following Theorems 2.13-2.14.

Theorem 2.13. For a space X, the following are equivalent:
(1) X is quasi-Rothberger;
(2) For each closed subset F of X and each sequence {Un : n ∈ N} of covers of F by sets open in X, there exists

Un ∈ Un such that {Un : n ∈N} is a weak π-base on F.

Theorem 2.14. For a space X, the following are equivalent:
(1) X is quasi-Menger;
(2) For each closed subset F of X and each sequence {Un : n ∈ N} of covers of F by sets open in X, there exists a

finite subsetVn ⊂ Un such that {
⋃
Vn : n ∈N} is a weak π-base on F.

3. Strongly quasi-selection principles

Definition 3.1. A space X is said to be strongly quasi-separable if each subspace of X has a countable weakly
dense subset.

Definition 3.2. A space X is said to be
1. strongly quasi-Rothberger if for each subset F ⊂ X and each sequence {Un : n ∈N} of covers of F by sets

open in X, there exists Un ∈ Un for each n ∈N such that F ⊂
⋃

n∈NUn.
2. strongly quasi-Menger if for each subset F ⊂ X and each sequence {Un : n ∈ N} of covers of F by sets

open in X there exists a finite subsetVn ⊂ Un for each n ∈N such that F ⊂
⋃

n∈N
⋃
Vn.
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Theorem 3.3. If X is a strongly quasi-separable space, then X is strongly quasi-Rothberger.

Theorem 3.4. If X is a hereditarily weakly Rothberger (resp., hereditarily weakly Menger) space, then X is strongly
quasi-Rothberger (resp., strongly quasi-Menger).

Proof. We only show the case of the hereditarily weakly Rothberger. Suppose that {Un : n ∈N} is a sequence
of covers of a subset F by sets open in X, thenVn = {U ∩ F : U ∈ Un} is an open cover of subspace F of X.
There exists a Un ∩ F ∈ Vn such that F = ClτF (

⋃
n∈N(Un ∩ F)). So F ⊂

⋃
n∈NUn. Indeed, let x ∈ F and Ux be

an open neighborhood of x in X. There exists n0 ∈N such that (Ux ∩ F) ∩ (Un0 ∩ F) , ∅. Thus Ux ∩Un0 , ∅.
So X is strongly quasi-Rothberger.

Obviously, every strongly quasi-Rothberger (resp., strongly quasi-Menger) space is quasi-Rothberger
(resp., quasi-Menger). Hence we obtain the following implications (Column 2 of Diagram 2). Note that
Example 3.5-3.6 and Example 4.5 show that each converse of the implications is not true.

hwR ↚
−−−−−→ sqR ↚

−−−−−→ qR ↚
−−−−−→ wR

Diagram 4 : Rothberger case.

Example 3.5. ([6]) There is a quasi-Rothberger space which is not strongly quasi-Rothberger.

Proof. Let X = [0, 1], we denote
τ = {[0, 1]}

⋃
{V : V ⊂ (0, 1]}.

Then τ is a topology on X. (X, τ) is quasi-Rothberger but is not strongly quasi-Rothberger. In fact, for each
closed subspace F of X, we have 0 ∈ F. Since {0} is a weak dense subset of F, then X is quasi-separable.
So X is quasi-Rothberger. But (0, 1] is an uncountable discrete open subset of X. So X is not strongly
quasi-Rothberger.

Example 3.6. There is a strongly quasi-Rothberger space which is not hereditarily weakly Rothberger.

Proof. Let X be the subset of the plane R2 defined by y ≥ 0, i.e., X = {(x, y) ∈ R2 : y ≥ 0}. Endow X with the
following topology τ: For every point P(x, y) ∈ X, let

UP = {(x′, y′) ∈ X : |x′ − x| ≤ y′ − y}.

The family {UP : P ∈ X} is a base of X for the topology τ.
(X, τ) is strongly quasi-Rothberger. In fact, suppose that F is a subset of X and {Un : n ∈ N} is a family

of open covers of F by sets open in X. Pick DF = {xn : n ∈ N} being a countable subset of F. Take Un ∈ Un

such that xn ∈ Un for each n ∈N, then F ⊂
⋃

n∈NUn. Thus X is a strongly quasi-Rothberger space.
(X, τ) is not hereditarily weakly Rothberger. In fact, pick subset X1 = {(x, y) ∈ R2 : y = 0} of X, then X1 is

uncountable and its subspace topology τX1 is discrete. So (X1, τX1 ) is not weakly Rothberger. Thus (X, τ) is
not hereditarily weakly Rothberger.

Recall that a space X satisfies CCC (countable chain condition) [2,4] if each pairwise disjoint collection of
non-empty open subsets of X is countable.

From Fig. 1 of [4], we have that if a space X has countable spread, then X satisfies CCC.

Theorem 3.7. If X satisfies CCC, then X is quasi-1-star-Lindelöf.

Proof. Let U be a cover of a clopen subset F of X by sets open in X, then U
⋃
{X − F} is an open cover of

X. There exists a countable subset V of U such that
⋃

(U
⋃
{X − F}) ⊆

⋃
V
⋃
{X − F} =

⋃
V
⋃
{X − F} [4,

Proposition 3.4]. Then F ⊂
⋃
V. For each x ∈ F, take U ∈ U such that x ∈ U. Then U ∩ (

⋃
V) , ∅. Thus

F ⊆ st(
⋃
V,U). So X is quasi-1-star-Lindelöf.
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Question 3.8. Whether Theorem 3.7 would still hold if the clopenness in the definition of quasi-1-star-Lindelöf can
be weakened to just closed subspaces?

Thus we obtain Column 4 of Diagram 2.

Theorem 3.9. If X is a strongly quasi-Menger space, then X satisfies CCC.

Proof. Suppose that U = {Uα : α ∈ Λ} is a pairwise disjoint family of non-empty open subsets of X. Pick
xα ∈ Uα for each α ∈ Λ and let F = {xα : α ∈ Λ}. LetUn =U for each n ∈N, then {Un : n ∈N} is a sequence
of open covers of subset F of X. Thus there exists a finite subset Vn ⊂ Un, where Vn = {Uα : α ∈ Λn}

with |Λn| < ω such that F ⊂
⋃

n∈N
⋃
Vn. If |Λ| > ω, then there exists α0 ∈ Λ −

⋃
n∈NΛn. Since Uα0 is

a neighborhood of xα0 , then Uα0 ∩ (
⋃

n∈N
⋃
Vn) , ∅. There exists Uα ∈ Vn for some n ∈ N such that

Uα0 ∩Uα , ∅, a contradiction. Hence |Λ| ≤ ω. So X is CCC.

We denote

• sqs : strongly quasi-separable;
• sqR : strongly quasi-Rothberger;
• sqM : strongly quasi-Menger;
• CCC : countable chain condition.

Hence we have Row 2 of Diagram 2.

sqs −−−−−→ sqR −−−−−→ sqM −−−−−→ CCC

Diagram 5 : Strongly quasi-selection principle case.

Similarly, we can prove:

Theorem 3.10. For a space X, the following are equivalent:
(1) X is strongly quasi-Rothberger;
(2) For each subset F of X and each sequence {Un : n ∈N} of covers of F by sets open in X, there exists Un ∈ Un

such that {Un : n ∈N} is a weak π-base on F.

Theorem 3.11. For a space X, the following are equivalent:
(1) X is strongly quasi-Menger;
(2) For each subset F of X and each sequence {Un : n ∈ N} of covers of F by sets open in X, there exists a finite

subsetVn ⊂ Un such that {
⋃
Vn : n ∈N} is a weak π-base on F.

4. Weakly selection principles

Definition 4.1. A space X is said to be weakly separable if X has a countable weakly dense subset.

Definition 4.2. ([1]) A space X is said to be
1. weakly Rothberger if for every sequence {Un : n ∈ N} of open covers of X, there exists Un ∈ Un such

that X =
⋃

n∈NUn.
2. weakly Menger if for every sequence {Un : n ∈ N} of open covers of X, there exists a finite subset

Vn ⊂ Un such that X =
⋃

n∈N
⋃
Vn.

Theorem 4.3. If X is a weakly separable space, then X is weakly Rothberger.

Proof. Let {xn : n ∈ N} be a countable weakly dense subset of X and {Un : n ∈ N} be a sequence of open
covers of X. Take Un ∈ Un for each n ∈ N such that xn ∈ Un. Then X =

⋃
n∈NUn since X is a weakly

separable space. So X is weakly Rothberger.



Z. Li / Filomat 37:29 (2023), 10015–10024 10022

Example 4.4. ([6]) There is a weakly Rothberger space which is not weakly separable.

Proof. Let X be an uncountable set and X∗ = X
⋃
{∞}, where∞ < X. Endow X∗ with the following topology

τ∗:
τ∗ = {X∗ − A : A ∈ [X]≤ω}

⋃
{U : U ⊆ X}.

Then
1. (X∗, τ∗) is weakly Rothberger. In fact, let {Un : n ∈ N} be a sequence of open covers of X∗. Pick

U1 = X∗ − A ∈ U1 such that∞ ∈ U1, where A = {xn : n ∈ N}. Choose Un+1 ∈ Un+1 for each n ∈ N such that
xn ∈ Un+1. Then X∗ =

⋃
n∈NUn. Thus (X∗, τ∗) is Rothberger. So (X∗, τ∗) is weakly Rothberger.

2. (X∗, τ∗) is not weakly separable. Let C = {cn : n ∈ N} be any countable subset of X∗. (i) If ∞ ∈ C, we
can put c1 = ∞. Let B = {bn : n ∈ N} ⊂ X with B ∩ C = ∅. Take U1 = X∗ − B and Un+1 = {cn+1} for n ∈ N.
Then Un is an open neighborhood of cn for each n ∈ N. Thus X∗ ,

⋃
n∈NUn since each bn <

⋃
n∈NUn. (ii)

If ∞ < C, take Un = {cn} for each n ∈ N, then Un is an open neighborhood of cn. Thus X∗ ,
⋃

n∈NUn since
∞ <

⋃
n∈NUn. So (X∗, τ∗) is not weakly separable.

Example 4.5. There is a weakly Rothberger space which is not quasi-Rothberger.

Proof. Such a space is described in [1, Example 2.10], where it is shown that X is almost Rothberger but it is
not quasi-Rothberger. Thus X is weakly Rothberger since the weakly Rothberger is weaker than the almost
Rothberger.

Similar to Theorem 2.8, one can prove:

Theorem 4.6. If X is a weakly-Menger space, then X is 1-star-Lindelöf.

We denote

• ws : weakly separable;
• wR : weakly Rothberger;
• wM : weakly Menger;
• 1-s-L : 1-star-Lindelöf.

Hence we have Row 4 of Diagram 2.

ws ↚
−−−−−→ wR −−−−−→ wM −−−−−→ 1-s-L

Diagram 6 : Weakly selection principle case.

Similarly, one proves:

Theorem 4.7. For a space X, the following are equivalent:
(1) X is weakly-Rothberger;
(2) For each sequence {Un : n ∈ N} of open covers of X, there exists Un ∈ Un such that {Un : n ∈ N} is a weak

π-base of X.

Theorem 4.8. For a space X, the following are equivalent:
(1) X is weakly-Menger;
(2) For each sequence {Un : n ∈ N} of open covers of X, there exists a finite subset Vn ⊂ Un such that

{
⋃
Vn : n ∈N} is a weak π-base of X.
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5. Hereditarily weak selection principles

Definition 5.1. A space X is said to be
1. hereditarily weakly Rothberger if each subspace of X is weakly Rothberger;
2. hereditarily weakly Menger if each subspace of X is weakly Menger.

Theorem 5.2. If X is a hereditarily separable space, then X is hereditarily weakly Rothberger.

Proof. Assume that F is a subspace of X and {xn : n ∈N} be a countable dense subset of F. If {Un : n ∈N} is a
sequence of open subset covers of F, take Un ∈ Un for each n ∈N such that xn ∈ Un. Then F = ClτF (

⋃
n∈NUn),

where τF is the topology of F. So X is hereditarily weakly Rothberger.

The spread of X, denoted s(X), is defined as follows [4]:

s(X) = ω + sup{|D| : D ⊂ X,D is discrete}.

Theorem 5.3. If X is a hereditarily weakly Menger space, then X has countable spread, i.e., s(X) = ω.

Proof. Let F = {xα : α ∈ Λ} be a discrete subset of X. TakeU = {{xα} : α ∈ Λ} andUn =U, then {Un : n ∈N}
is a sequence of open subset covers of discrete subspace F. There exists a finite Λn ⊂ Λ for each n ∈N such
that F = ClτF (

⋃
n∈N
⋃
α∈Λn
{xα}) =

⋃
n∈N
⋃
α∈Λn
{xα}. Then |F| = |

⋃
n∈N
⋃
α∈Λn
{xα}| = ω. So s(X) = ω.

We denote

• hs : hereditarily separable;
• hwR : hereditarily weakly Rothberger;
• hwM : hereditarily weakly Menger;
• cs : countable spread.

Thus we have Row 1 of Diagram 2.

hs −−−−−→ hwR −−−−−→ hwM −−−−−→ cs

Diagram 7 : Hereditarily weak selection principle case.

Similar to Theorems 2.13-2.14, one can prove:

Theorem 5.4. For a space X, the following are equivalent:
(1) X is hereditarily weakly Rothberger;
(2) For each subspace F of X and each sequence {Un : n ∈N} of open covers of F, there exists Un ∈ Un such that

{Un : n ∈N} is a π-base of F.

Theorem 5.5. For a space X, the following are equivalent:
(1) X is hereditarily weakly Menger;
(2) For each subspace F of X and each sequence {Un : n ∈N} open covers of F, there exists a finite subsetVn ⊂ Un

such that {
⋃
Vn : n ∈N} is a weak π-base of F.

6. Remarks on separable properties

It is easy to show following implications about the separable property. We point the converse of each
implication is not true.

hs ↚
−−−−−→ sqs ↚

−−−−−→ qs ↚
−−−−−→ ws ↛

←−−−−− s

Diagram 8 : Separability case.

Example 6.1. There is a strongly quasi-separable space which is not hereditarily separable.
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Proof. In fact, in Example 2.5, the space (R, τ′) is strongly quasi-separable, but it is not hereditarily separable.
Example 2.5 also means that a strongly quasi-separable space need not be separable.

Example 6.2. There is a quasi-separable space which is not strongly quasi-separable.

Proof. Example 3.5 is a quasi-separable space and not strongly quasi-separable.

Example 6.3. There is a weakly separable space which is not quasi-separable.

Proof. In Example 2.4, it is shown that (X∗, τ∗) is not quasi-separable. Since {∞} is a weakly dense subset of
(X∗, τ∗), then (X∗, τ∗) is weakly-separable.

Example 6.4. There is a weakly separable space which is not separable.

Proof. Let X be an uncountable set endowed with countable complement topology, then X is weakly
separable and not separable.

Acknowledgement

The author thanks the referees for valuable suggestions and comments that helped to improve this
paper.

References
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