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Abstract. We present some new characterizations of some spaces such as stratifiable spaces, MCP-spaces
in terms of real-valued functions.

1. Introduction and preliminaries

A space always means a topological space. The set of all positive integers is denoted byN. For a space
X, denote by CX the family of all compact subsets of X. τ and τc denote the topology of X and the family of
all closed subsets of X, respectively. For a subset A of a space, we write A for the closure of A. Also, we use
χA to denote the characteristic function of A.

Let f be a real-valued function on a space X and r a real number, denote { f > r} = {x ∈ X : f (x) > r} and
analogously for the others. f is called lower (upper) semi-continuous [4] if for any real number r, the set
{ f > r} ({ f < r}) is open. We write L(X) (U(X)) for the set of all lower (upper) semi-continuous functions
from X into [0, 1]. C(X) is the set of all continuous functions from X into [0, 1].

Definition 1.1. A space X is called stratifiable [2] (semi-stratifiable [3]) if there is a map ρ : N × τc
→ τ such

that
(1) F =

⋂
n∈N ρ(n,F) =

⋂
n∈N ρ(n,F) (F =

⋂
n∈N ρ(n,F)) for each F ∈ τc;

(2) if F,H ∈ τc and F ⊂ H, then ρ(n,F) ⊂ ρ(n,H) for all n ∈N.
X is called k-semi-stratifiable [10] if there is a map ρ : N × τc

→ τ satisfies the conditions for a semi-
stratifiable space and

(3) For each K ∈ CX and F ∈ τc with K ∩ F = ∅, there is m ∈N such that K ∩ ρ(m,F) = ∅.

The map ρ is called the stratification (semi-stratification, k-semi-stratification) for X.

Definition 1.2. ([5]) A space X is called an MCP-spaces (MCM-spaces) if there is an operator U assigning
to each decreasing sequence ⟨F j⟩ of closed subsets of X with empty intersection, a sequence of open sets
{U(n, ⟨F j⟩) : n ∈N} such that

(1) Fn ⊂ U(n, ⟨F j⟩) for each n ∈N,
(2) if ⟨F j⟩ ⪯ ⟨G j⟩, then U(n, ⟨F j⟩) ⊂ U(n, ⟨G j⟩) for all n ∈N,
(3)
⋂

n∈NU(n, ⟨F j⟩) = ∅ (
⋂

n∈NU(n, ⟨F j⟩) = ∅).
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Definition 1.3. ([11]) A space X is called a k-MCM space if there is an operator U assigning to each decreasing
sequence ⟨F j⟩ of closed subsets of X with empty intersection, a decreasing sequence {U(n, ⟨F j⟩)}n∈N of open
subsets of X such that

(1) Fn ⊂ U(n, ⟨F j⟩) for each n ∈N,
(2) if ⟨F j⟩ ⪯ ⟨H j⟩, then U(n, ⟨F j⟩) ⊂ U(n, ⟨H j⟩) for each n ∈N,
(3) for each K ∈ CX, there exists m ∈N such that K ∩U(m, ⟨F j⟩) = ∅.

Characterizations of some topological spaces such as stratifiable spaces, MCP-spaces in terms of real-
valued functions which are known to be insertion theorems were studied extensively in literature [8, 9, 12–
15]. Various conditions formulated with real-valued functions which guarantee a space possesses some
corresponding properties were presented. For example.

Theorem 1.4. For a space X, the following are equivalent.
(a) X is stratifiable.
(b) ([8]) There exists an order-preserving map ϕ : L(X) → C(X) such that for each h ∈ L(X), ϕ(h) ≤ h and

0 < ϕ(h)(x) < h(x) whenever h(x) > 0.
(c) ([12]) There exist two order-preserving maps ϕ : L(X) → U(X) and ψ : L(X) → L(X) such that for each

h ∈ L(X), ψ(h) ≤ ϕ(h) ≤ h and 0 < ψ(h)(x) ≤ ϕ(h)(x) < h(x) whenever h(x) > 0.

In this paper, we shall present some new characterizations of some spaces such as stratifiable spaces,
MCP-spaces in terms of real-valued functions. Conditions in these results are simplified and are easier to
be verified.

The following lemma will be frequently used in the proof of the main results.

Lemma 1.5. Let {An : n ∈ N} be a decreasing sequence of subsets of a space X. For each x <
⋂

n∈N An, let
nx = min{n ∈ N : x < An}. Define a map h : X → [0, 1] by letting for each x ∈ X, h(x) = 0 whenever x ∈

⋂
n∈N An

and h(x) = 1
nx

whenever x <
⋂

n∈N An.
(1) If An is open for each n ∈N then h ∈ U(X).
(2) If An is closed for each n ∈N then h ∈ L(X).

Proof. (1) Let r ∈ R and h(x) < r.
Case 1. x ∈

⋂
n∈N An. Then 0 = h(x) < r. There exists m ∈ N such that 1

m < r. Then Am is an open
neighborhood of x. For each y ∈ Am, if y ∈

⋂
n∈N An, then h(y) = 0 < r. If y <

⋂
n∈N An, then m < ny and thus

h(y) = 1
ny
< 1

m < r.
Case 2. x <

⋂
n∈N An. If nx = 1, then 1 = h(x) < r. For each y ∈ X, h(y) ≤ 1 < r. If nx > 1, then Anx−1 is an

open neighborhood of x. For each y ∈ Anx−1, if y ∈
⋂

n∈N An, then h(y) = 0 < 1
nx
= h(x) < r. If y <

⋂
n∈N An,

then nx − 1 < ny and thus h(y) = 1
ny
≤

1
nx
= h(x) < r.

The above argument shows that h is upper semi-continuous.
(2) Let r ∈ R and h(x) > r.
Case 1. x ∈

⋂
n∈N An. Then r < h(x) = 0. For each y ∈ X, h(y) ≥ 0 > r.

Case 2. x <
⋂

n∈N An. Then W = X \ Anx is an open neighborhood of x. For each y ∈ W, ny ≤ nx from
which it follows that h(x) = 1

nx
≤

1
ny
= h(y). Thus h(y) > r.

The above argument shows that h is lower semi-continuous.

2. On stratifiable spaces

This section is devoted to the characterizations of spaces having stratifications, such as stratifiable spaces
and k-semi-stratifiable spaces.

Theorem 2.1. For a space X, the following are equivalent.
(a) X is a stratifiable space.
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(b) There exist two order-preserving maps ϕ : L(X) → U(X) and ψ : L(X) → L(X) such that for each h ∈ L(X),
ψ(h) ≤ ϕ(h) and h(x) = 0 if and only if ϕ(h)(x) = 0 = ψ(h)(x).

(c) There exists an order-preserving map ϕ : L(X) → U(X) such that for each h ∈ L(X) and x ∈ X, if h(x) = 0
then ϕ(h)(x) = 0, and if h(x) , 0 then there exists an open neighborhood Vx of x such that inf{ϕ(h)(y) : y ∈ Vx} > 0.

Proof. (a)⇒ (b) Let ρ be the stratification for X which is decreasing with respect to n. For each h ∈ L(X) and
n ∈ N, let F(n, h) = {h ≤ 1

n }. Then {F(n, h) : n ∈ N} is a decreasing sequence of closed subsets of X such that⋂
n∈N F(n, h) = h−1(0). For each x ∈ X, if x <

⋂
n∈N F(n, h) then there exists i ∈N such that x < ρ(i,F(i, h)). Let

nx(h) = min{n ∈N : x < ρ(n,F(n, h))}, mx(h) = min{n ∈N : x < ρ(n,F(n, h))}.

For each x ∈ X, let ϕ(h)(x) = 0 = ψ(h)(x) whenever x ∈
⋂

n∈N F(n, h) and ϕ(h)(x) = 1
nx(h) , ψ(h)(x) = 1

mx(h)
whenever x <

⋂
n∈N F(n, h). Since⋂

n∈N

F(n, h) =
⋂
n∈N

ρ(n,F(n, h)) =
⋂
n∈N

ρ(n,F(n, h)),

by Lemma 1.5, ϕ(h) ∈ U(X) and ψ(h) ∈ L(X).
Let x ∈ X. If x ∈

⋂
n∈N F(n, h) thenϕ(h)(x) = 0 = ψ(h)(x). If x <

⋂
n∈N F(n, h), since x < ρ(mx(h),F(mx(h), h)) ⊃

ρ(mx(h),F(mx(h), h)), we have that nx(h) ≤ mx(h). It follows that ψ(h)(x) = 1
mx(h) ≤

1
nx(h) = ϕ(h)(x). Therefore,

ψ(h) ≤ ϕ(h).
Let x ∈ X. Then h(x) = 0 if and only if x ∈

⋂
n∈N F(n, h) if and only if ϕ(h)(x) = 0 = ψ(h)(x).

Suppose that h1 ≤ h2. For each x ∈ X, if ϕ(h1)(x) = 0 then ϕ(h1)(x) ≤ ϕ(h2)(x). If ϕ(h1)(x) = 1
nx(h1) then

x <
⋂

n∈N F(n, h1). From h1 ≤ h2 it follows that F(n, h2) ⊂ F(n, h1) for each n ∈ N and thus x <
⋂

n∈N F(n, h2).
Since x < ρ(nx(h1),F(nx(h1), h1)) ⊃ ρ(nx(h1),F(nx(h1), h2)), we have nx(h2) ≤ nx(h1) and thus ϕ(h1)(x) = 1

nx(h1) ≤

1
nx(h2) = ϕ(h2)(x). Similarly, ψ(h1) ≤ ψ(h2).

(b)⇒ (c) Assume (b). If h(x) , 0 then ψ(h)(x) , 0 and thus there exists r > 0 such that ψ(h)(x) > r. Let
Vx = {ψ(h) > r}. Then Vx is an open neighborhood of x. For each y ∈ Vx, ϕ(h)(y) ≥ ψ(h)(y) > r which implies
that inf{ϕ(h)(y) : y ∈ Vx} > 0.

(c)⇒ (a) Assume (c). For each F ∈ τc, let hF = 1 − χF. Then hF ∈ L(X).
For each F ∈ τc and n ∈N, let ρ(n,F) = {ϕ(hF) < 1

n }. Then ρ(n,F) ∈ τ.
If x ∈ F then hF(x) = 0. It follows that ϕ(hF)(x) = 0 and thus x ∈ ρ(n,F) for each n ∈N.
If x < F then hF(x) , 0. By (c), there exists an open neighborhood Vx of x and m ∈N such thatϕ(hF)(y) > 1

m

for each y ∈ Vx. It follows that Vx ∩ {ϕ(hF) < 1
m } = ∅ and thus x < ρ(m,F). This implies that

⋂
n∈N ρ(n,F) ⊂ F.

Suppose that F1 ⊂ F2. For each x ∈ X, if x ∈ F2 then hF2 (x) = 0 and thus hF2 (x) ≤ hF1 (x). If x < F2 then
x < F1 and thus hF2 (x) = 1 = hF1 (x). This implies that hF2 ≤ hF1 . Then ϕ(hF2 ) ≤ ϕ(hF1 ) from which it follows
that ρ(n,F1) ⊂ ρ(n,F2) for each n ∈N.

Therefore, X is a stratifiable space.

Theorem 2.2. A space X is k-semi-stratifiable if and only if there exists an order-preserving map ϕ : L(X)→ U(X)
such that for each h ∈ L(X) and K ∈ CX, K ∩ h−1(0) = ∅ if and only if inf{ϕ(h)(x) : x ∈ K} > 0.

Proof. Let ρ be the k-semi-stratification for X which is decreasing with respect to n. For each h ∈ L(X) and
n ∈ N, let F(n, h) = {h ≤ 1

n }. Then {F(n, h) : n ∈ N} is a decreasing sequence of closed subsets of X such that⋂
n∈N F(n, h) = h−1(0). For each x ∈ X, if x <

⋂
n∈N F(n, h) then there exists i ∈N such that x < ρ(i,F(i, h)). Let

nx(h) = min{n ∈N : x < ρ(n,F(n, h))}.

For each x ∈ X, let ϕ(h)(x) = 0 whenever x ∈
⋂

n∈N F(n, h) and ϕ(h)(x) = 1
nx(h) whenever x <

⋂
n∈N F(n, h).

Since
⋂

n∈N F(n, h) =
⋂

n∈N ρ(n,F(n, h)), by Lemma 1.5 (1), ϕ(h) ∈ U(X).
Let K ∈ CX. If K ∩ h−1(0) = ∅ then K ∩

⋂
n∈N F(n, h) = ∅ and thus K ∩ F(i, h) = ∅ for some i ∈N. It follows

that K ∩ ρ(m,F(m, h)) = ∅ for some m ∈ N. Then for each x ∈ K, nx(h) ≤ m and so ϕ(h)(x) ≥ 1
m . This implies

that inf{ϕ(h)(x) : x ∈ K} > 0.
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If inf{ϕ(h)(x) : x ∈ K} > 0, then for each x ∈ K, ϕ(h)(x) > 0 which implies that x <
⋂

n∈N F(n, h) = h−1(0).
Therefore, K ∩ h−1(0) = ∅.

That ϕ is order-preserving can be shown analogously to the proof of (a)⇒ (b) of Theorem 2.1.
Conversely, for each F ∈ τc, let hF = 1 − χF. Then hF ∈ L(X).
For each F ∈ τc and n ∈N, let ρ(n,F) = {ϕ(hF) < 1

n }. Then ρ(n,F) ∈ τ.
If x ∈ F ∈ τc, then hF(x) = 0. It follows that x ∈ h−1

F (0) and thus ϕ(hF)(x) = 0. Hence x ∈ ρ(n,F) for each
n ∈N.

Let K ∈ CX and F ∈ τc with K ∩ F = ∅. Then K ∩ h−1
F (0) = ∅ and thus inf{ϕ(hF)(x) : x ∈ K} > 0. It follows

that K ∩ {ϕ(hF) < 1
m } = ∅ for some m ∈N. That is, K ∩ ρ(m,F) = ∅.

Suppose that F1 ⊂ F2. With a similar argument to the proof of (c) ⇒ (a) of Theorem 2.1, one readily
shows that ρ(n,F1) ⊂ ρ(n,F2) for each n ∈N.

Therefore, X is k-semi-stratifiable.

Similarly, we have the following.

Proposition 2.3. A space X is semi-stratifiable if and only if there exists an order-preserving map ϕ : L(X)→ U(X)
such that for each h ∈ L(X) and x ∈ X, h(x) = 0 if and only if ϕ(h)(x) = 0.

A space X is perfectly normal [4] if and only if there is a map ρ :N×τc
→ τ such that F =

⋂
n∈N ρ(n,F) =⋂

n∈N ρ(n,F) for each F ∈ τc.

Theorem 2.4. For a space X, the following are equivalent.
(a) X is perfectly normal.
(b) There exist two maps ϕ : L(X) → U(X) and ψ : L(X) → L(X) such that for each h ∈ L(X), ψ(h) ≤ ϕ(h) and

h(x) = 0 if and only if ϕ(h)(x) = 0 = ψ(h)(x).
(c) There exists a mapϕ : L(X)→ U(X) such that for each h ∈ L(X) and x ∈ X, h(x) = 0 if and only ifϕ(h)(x) = 0,

and if h(x) , 0 then there exists an open neighborhood Vx of x such that inf{ϕ(h)(y) : y ∈ Vx} > 0.

Proof. (a)⇒ (b) Let ρ be the map for a perfectly normal space which is decreasing with respect to n. For each
h ∈ L(X) and n ∈N, let F(n, h) = {h ≤ 1

n }. Then {F(n, h) : n ∈N} is a decreasing sequence of closed subsets of
X such that

⋂
n∈N F(n, h) = h−1(0). For each n ∈ N, let σ(n,F(n, h)) =

⋂
j≤n ρ(n,F( j, h)). Then σ(n,F(n, h)) ∈ τ.

We show that⋂
n∈N

F(n, h) =
⋂
n∈N

σ(n,F(n, h)) =
⋂
n∈N

σ(n,F(n, h)).

For each n ∈ N and j ≤ n, F(n, h) ⊂ F( j, h) ⊂ ρ(n,F( j, h)) which implies that F(n, h) ⊂
⋂

j≤n ρ(n,F( j, h)) =
σ(n,F(n, h)). It follows that

⋂
n∈N F(n, h) ⊂

⋂
n∈N σ(n,F(n, h)). If x <

⋂
n∈N F(n, h) then x < F(i, h) =⋂

n∈N ρ(n,F(i, h)) for some i ∈N. Then there exists m ≥ i such that

x < ρ(m,F(i, h)) ⊃
⋂
j≤m

ρ(m,F( j, h)) = σ(m,F(m, h)).

Hence
⋂

n∈N σ(n,F(n, h)) ⊂
⋂

n∈N F(n, h).
For each x ∈ X, if x <

⋂
n∈N F(n, h) then there exists i ∈N such that x < σ(i,F(i, h)). Let

nx(h) = min{n ∈N : x < σ(n,F(n, h))}, mx(h) = min{n ∈N : x < σ(n,F(n, h))}.

For each x ∈ X, let ϕ(h)(x) = 0 = ψ(h)(x) whenever x ∈
⋂

n∈N F(n, h) and ϕ(h)(x) = 1
nx(h) , ψ(h)(x) = 1

mx(h)
whenever x <

⋂
n∈N F(n, h). Since⋂

n∈N

F(n, h) =
⋂
n∈N

σ(n,F(n, h)) =
⋂
n∈N

σ(n,F(n, h)),
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by Lemma 1.5, ϕ(h) ∈ U(X) and ψ(h) ∈ L(X).
Let x ∈ X. If x ∈

⋂
n∈N F(n, h) thenϕ(h)(x) = 0 = ψ(h)(x). If x <

⋂
n∈N F(n, h), since x < σ(mx(h),F(mx(h), h)) ⊃

σ(mx(h),F(mx(h), h)), we have that nx(h) ≤ mx(h). It follows that ψ(h)(x) = 1
mx(h) ≤

1
nx(h) = ϕ(h)(x). Therefore,

ψ(h) ≤ ϕ(h).
Let x ∈ X. Then h(x) = 0 if and only if x ∈

⋂
n∈N F(n, h) if and only if ϕ(h)(x) = 0 = ψ(h)(x).

(b)⇒ (c) Similar to the proof of (b)⇒ (c) of Theorem 2.1.
(c)⇒ (a) Similar to the proof of (c)⇒ (a) of Theorem 2.1.

A space X is perfect [4] if and only if there is a map ρ : N × τc
→ τ such that F =

⋂
n∈N ρ(n,F) for each

F ∈ τc.

Proposition 2.5. A space X is perfect if and only if there exists a map ϕ : L(X)→ U(X) such that for each h ∈ L(X)
and x ∈ X, h(x) = 0 if and only if ϕ(h)(x) = 0.

3. On MCP-spaces

In this section, we present characterizations of some weak covering properties, such as MCP-spaces
and countably paracompact spaces.

Denote by L+(X) = {h ∈ L(X) : h > 0} and U+(X) = {h ∈ U(X) : h > 0}.

Theorem 3.1. For a space X, the following are equivalent.
(a) X is an MCP-space.
(b) There exist two order-preserving maps ϕ : L+(X) → U(X) and ψ : L+(X) → L+(X) such that for each

h ∈ L+(X), ψ(h) ≤ ϕ(h) and {h ≤ 1
n } ⊂ {ϕ(h) < 1

n } for each n ∈N.
(c) There exists an order-preserving map ϕ : L+(X) → U(X) such that for each h ∈ L+(X) and n ∈ N,

{h ≤ 1
n } ⊂ {ϕ(h) < 1

n } and for each x ∈ X, there exists an open neighborhood Vx of x such that inf{ϕ(h)(y) : y ∈ Vx} > 0.

Proof. (a) ⇒ (b) Let U be the operator in Definition 1.2 such that {U(n, ⟨F j⟩) : n ∈ N} is decreasing with
respect to n. For each h ∈ L+(X) and n ∈ N, let Fn(h) = {h ≤ 1

n }. Then ⟨Fn(h)⟩ is a decreasing sequence of
closed subsets of X with an empty intersection. For each x ∈ X, let

nx(h) = min{n ∈N : x < U(n, ⟨F j(h)⟩)},mx(h) = min{n ∈N : x < U(n, ⟨F j(h)⟩)}.

Then let ϕ(h)(x) = 1
nx(h) and ψ(h)(x) = 1

mx(h) . It is clear that ψ(h) > 0. By Lemma 1.5, ϕ(h) ∈ U(X) and
ψ(h) ∈ L(X). Moreover, since nx(h) ≤ mx(h) for each x ∈ X, we have ψ(h) ≤ ϕ(h).

Let x ∈ {h ≤ 1
n }. Since x < U(nx(h), ⟨F j(h)⟩) ⊃ Fnx(h)(h), we have n < nx(h). It follows that ϕ(h)(x) = 1

nx(h) <
1
n

and thus x ∈ {ϕ(h) < 1
n }.

Suppose that h1 ≤ h2. Then ⟨F j(h2)⟩ ⪯ ⟨F j(h1)⟩ and hence U(n, ⟨F j(h2)⟩) ⊂ U(n, ⟨F j(h1)⟩) for each n ∈ N.
Let x ∈ X. Since x < U(nx(h1), ⟨F j(h1)⟩) ⊃ U(nx(h1), ⟨F j(h2)⟩), we have that nx(h2) ≤ nx(h1) and thus ϕ(h1)(x) ≤
ϕ(h2)(x). Therefore, ϕ(h1) ≤ ϕ(h2). Similarly, ψ(h1) ≤ ψ(h2).

(b) ⇒ (c) Since ψ(h) > 0, for each x ∈ X, there exists r > 0 such that ψ(h)(x) > r. Let Vx = {ψ(h) > r}.
Then Vx is an open neighborhood of x. For each y ∈ Vx, ϕ(h)(y) ≥ ψ(h)(y) > r which implies that
inf{ϕ(h)(y) : y ∈ Vx} > 0.

(c) ⇒ (a) For each decreasing sequence ⟨F j⟩ of closed subsets of X with empty intersection and each
x ∈ X, let

nx(⟨F j⟩) = min{n ∈N : x < Fn}, h⟨F j⟩(x) =
1

nx(⟨F j⟩)
.

Then h⟨F j⟩ > 0. By Lemma 1.5 (2), h⟨F j⟩ ∈ L(X).
For each n ∈N, let

U(n, ⟨F j⟩) = {ϕ(h⟨F j⟩) <
1
n
}.
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Then ⟨U(n, ⟨F j⟩)⟩ is a decreasing sequence of open subsets of X. By (c), for each x ∈ X, there exists an open
neighborhood Vx of x and m ∈ N such that Vx ∩ {ϕ(h⟨F j⟩) <

1
m } = ∅. It follows that x < U(m, ⟨F j⟩) and thus⋂

n∈NU(n, ⟨F j⟩) = ∅.
Let n ∈ N and x ∈ Fn. Then n < nx(⟨F j⟩). It follows that h⟨F j⟩(x) = 1

nx(⟨F j⟩)
< 1

n . By (c), x ∈ {ϕ(h⟨F j⟩) <
1
n } =

U(n, ⟨F j⟩). Hence Fn ⊂ U(n, ⟨F j⟩).
Suppose that ⟨F j⟩ ⪯ ⟨H j⟩. For each x ∈ X, since x < Hnx(⟨H j⟩) ⊃ Fnx(⟨H j⟩), we have nx(⟨F j⟩) ≤ nx(⟨H j⟩) and

thus h⟨H j⟩(x) ≤ h⟨F j⟩(x). This implies that h⟨H j⟩ ≤ h⟨F j⟩. Hence, ϕ(h⟨H j⟩) ≤ ϕ(h⟨F j⟩) from which it follows that
U(n, ⟨F j⟩) ⊂ U(n, ⟨H j⟩) for each n ∈N.

By Definition 1.2, X is an MCP-space.

Theorem 3.2. X is a k-MCM space if and only if there exists an order-preserving map ϕ : L+(X)→ U(X) such that
for each h ∈ L+(X) and n ∈N, {h ≤ 1

n } ⊂ {ϕ(h) < 1
n } and for each K ∈ CX, inf{ϕ(h)(x) : x ∈ K} > 0.

Proof. Let U be the operator in Definition 1.3 such that {U(n, ⟨F j⟩) : n ∈ N} is decreasing with respect to n.
For each h ∈ L+(X), define a map ϕ(h) ∈ U(X) as that in the proof of (a)⇒ (b) of Theorem 3.1. Then we only
need to show that for each K ∈ CX, inf{ϕ(h)(x) : x ∈ K} > 0.

Let K ∈ CX. Then there exists m ∈ N such that K ∩ U(m, ⟨F j(h)⟩) = ∅. For each x ∈ K, x < U(m, ⟨F j(h)⟩)
and thus nx(h) ≤ m. It follows that ϕ(h)(x) = 1

nx(h) ≥
1
m . Therefore, inf{ϕ(h)(x) : x ∈ K} > 0.

Conversely, for each decreasing sequence ⟨F j⟩ of closed subsets of X with empty intersection, define a
decreasing sequence ⟨U(n, ⟨F j⟩)⟩ of open subsets of X as that in the proof of (c)⇒ (a) of Theorem 3.1. Then
we only need to show that for each K ∈ CX, there exists m ∈N such that K ∩U(m, ⟨F j⟩) = ∅.

Let K ∈ CX. Then inf{ϕ(h⟨F j⟩)(x) : x ∈ K} > 0. There exists m ∈ N such that ϕ(h⟨F j⟩)(x) > 1
m for each x ∈ K.

It follows that K ∩U(m, ⟨F j⟩) = K ∩ {ϕ(h⟨F j⟩) <
1
m } = ∅.

Similarly, we have the following.

Proposition 3.3. X is an MCM-space if and only if there exists an order-preserving map ϕ : L+(X)→ U+(X) such
that for each h ∈ L+(X) and n ∈N, {h ≤ 1

n } ⊂ {ϕ(h) < 1
n }.

A space X is countably paracompact [7] (countably metacompact [6], countably mesocompact [1]) if and
only if for each decreasing sequence {Fn : n ∈ N} of closed subsets of X with empty intersection, there is a
decreasing sequence {Un : n ∈ N} of open subsets of X such that Fn ⊂ Un for each n ∈ N and

⋂
n∈NUn = ∅

(
⋂

n∈NUn = ∅, for each compact subset K ⊂ X, there exists m ∈N such that K ∩Um = ∅).
The following three results can be shown with similar arguments to the proof of Theorem 3.1, Theorem

3.2 and Proposition 3.3 respectively.

Theorem 3.4. For a space X, the following are equivalent.
(a) X is countably paracompact.
(b) There exist two maps ϕ : L+(X)→ U(X) and ψ : L+(X)→ L+(X) such that for each h ∈ L+(X), ψ(h) ≤ ϕ(h)

and {h ≤ 1
n } ⊂ {ϕ(h) < 1

n } for each n ∈N.
(c) There exists a map ϕ : L+(X)→ U(X) such that for each h ∈ L+(X) and n ∈N, {h ≤ 1

n } ⊂ {ϕ(h) < 1
n } and for

each x ∈ X, there exists an open neighborhood Vx of x such that inf{ϕ(h)(y) : y ∈ Vx} > 0.

Theorem 3.5. X is countably mesocompact if and only if there exists a map ϕ : L+(X) → U(X) such that for each
h ∈ L+(X) and n ∈N, {h ≤ 1

n } ⊂ {ϕ(h) < 1
n } and for each K ∈ CX, inf{ϕ(h)(x) : x ∈ K} > 0.

Proposition 3.6. X is countably metacompact if and only if there exists a map ϕ : L+(X) → U+(X) such that for
each h ∈ L+(X) and n ∈N, {h ≤ 1

n } ⊂ {ϕ(h) < 1
n }.
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