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Abstract. The main objective of this paper is to investigate the m-quasi Einstein manifold when the
potential function becomes subharmonic. In this article, it is proved that an m-quasi Einstein manifold
satisfying some integral conditions with vanishing Ricci curvature along the direction of potential vector
field has constant scalar curvature and hence the manifold turns out to be an Einstein manifold. It is also
shown that in an m-quasi Einstein manifold the potential function agrees with Hodge-de Rham potential
up to a constant. Finally, it is proved that if a complete non-compact and non-expanding m-quasi Einstein
manifold has bounded scalar curvature and the potential vector field has global finite norm, then the scalar
curvature vanishes.

1. Introduction and preliminaries

A Riemannian manifold (M, 1) of dimension n(> 2) is called an m-quasi Einstein manifold (see e.g.
[3, 5, 20]), if its Ricci tensor Ric satisfies the following relation:

Ric +
1
2

£X1 −
1
m

X♭ ⊗ X♭ = λ1, (1)

where X is a smooth vector field on M, X♭ is the dual 1-form of X with respect to the metric 1 and m, λ are
scalars such that 0 < m ≤ ∞. If we omit the Lie derivative term in (1), then we get the notion of quasi Einstein
manifold (see [10, 22, 23] and also references therein) which appeared in the literature while considering
the investigation of exact solution of Einstein field equation and also during the consideration of quasi
umbilical hypersurfaces, studied by Cartan. In [11] it is shown that 3-dimensional Cartan hypersurfaces
are quasi-Einstein manifolds. Throughout the paper we will consider the m-quasi Einstein manifolds ([5]),
which is a generalization of Ricci soliton in case of m-Bakry-Emery tensor. An m-quasi Einstein manifold
is said to be expanding (resp., steady or shrinking), if λ < 0 (resp., λ = 0 or λ > 0). If X is the gradient of a
smooth function f , then (1) reduces to the following form:

Ric + ∇2 f −
1
m

d f ⊗ d f = λ1. (2)

2020 Mathematics Subject Classification. Primary 53C20; 53C21; 53C44.
Keywords. Quasi Einstein manifold; Scalar curvature; Subharmonic function; Convex function; Einstein manifold.
Received: 25 April 2022; Accepted: 21 June 2023
Communicated by Pratulananda Das
* Corresponding author: Absos Ali Shaikh
Email addresses: aask2003@yahoo.co.in (Absos Ali Shaikh), prosenjitmandal235@gmail.com (Prosenjit Mandal),

chandanmondal@wbnsou.ac.in (Chandan Kumar Mondal), akramali133@gmail.com (Akram Ali)



A. A. Shaikh et al. / Filomat 37:29 (2023), 10125–10131 10126

The function f is called potential function of the m-quasi Einstein manifold. The tensor of the left hand side
of (2) is called the m-Bakry-Emery tensor. Further, if m = ∞, then (2) reduces to the equation of gradient
Ricci soliton (see [4, 8, 9, 13, 17, 19, 21, 24]) with the potential function f . If m and λ are smooth functions
on M, then (2) is called the generalized m-quasi Einstein manifold [6]. Moreover, taking the trace of (2), we
deduce

∆ f = λn − R +
1
m
|∇ f |2, (3)

where R denotes the scalar curvature of the manifold.
For a given vector field X on a compact oriented Riemannian manifold M, the Hodge-de Rham decom-

position theorem, (see [25]) states that we may decompose X as the sum of a divergence free vector field
and gradient of a smooth function h such that

X =W + ∇ξ,

where div W = 0 and ξ is a smooth function on M, called the Hodge-de Rham potential. Case et al. [5]
proved that a compact m-quasi Einstein metric with constant scalar curvature is trivial. They also showed
that all 2-dimensional m-quasi Einstein metrics on compact manifolds are trivial. In 2012, Barros and Ribeiro
[3] proved that in a complete non-compact m-quasi Einstein manifold if λn ≥ R and |∇ f | ∈ L1(M), then
the manifold becomes Einstein. In 2015, Hu et al. [14] classified m-quasi Einstein manifolds with parallel
Ricci tensor, and also in [15], they classified m-quasi Einstein manifolds with all eigenvalues of the Ricci
tensor as constant. Kim and Shin [16] also classified 3-dimensional m-quasi Einstein manifolds. Barros
and Gomes [2] studied compact m-quasi Einstein manifolds and also showed that if such a manifold is
Einstein, then its potential vector field vanishes. We note that the investigation of various structures of
Riemannian manifolds through the convexity revel several geometrical and topological properties of such
manifolds. Hence by motivating the above studies as well as the study of [1], in the present paper, we prove
the following:

Theorem 1.1. Suppose (M, 1) is an m-quasi Einstein manifold which is complete non-compact and Ric ≥ −(n− 1)K
for some positive constant K. If the Ricci curvature of the manifold vanishes along ∇ f and the positive subharmonic
potential function f satisfies∫

M−B(p,r)

f
d(x, p)2 < ∞, (4)

where B(p, r) is an open ball with center p and radius r, and d(x, p) is the shortest distance between x and p in M, then
the following holds:
(i) The manifold is Einstein,
(ii) The scalar curvature of the manifold is a non-positive constant,
(iii) The Ricci curvature of the manifold is non-positive everywhere in M,
(iv) The potential function f is harmonic.

Corollary 1.2. Let (M, 1) be an m-quasi Einstein manifold which is complete non-compact and Ric ≥ −(n − 1)K for
some positive constant K. If the Ricci curvature of the manifold vanishes along ∇ f and the positive convex potential
function f satisfies∫

M−B(p,r)

f
d(x, p)2 < ∞, (5)

where B(p, r) is an open ball with center p and radius r, and d(x, p) is the shortest distance between x and p in M, then
f is harmonic, thus f is constant and consequently the manifold is Einstein.

Theorem 1.3. If (M, 1) is a compact oriented m-quasi Einstein manifold such that f is a potential function on M,
then f agrees, upto a constant, with the Hodge-de Rham potential.
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Theorem 1.4. Let (M, 1) be a complete non-compact and non-expanding m-quasi Einstein manifold with finite
volume. If the potential vector field X is of finite global norm, then there exists an open ball where the scalar curvature
R ≥ λn.

Corollary 1.5. Let (M, 1) be a complete non-compact and non-expanding m-quasi Einstein manifold with finite
volume. If the potential vector field X is of finite global norm and the scalar curvature is bounded above by λn, then
the scalar curvature of M vanishes.

2. Proof of the results

To prove Theorem 1.1 we need the following result of Hu et al. [14], which we state first:

Theorem 2.1 ([14]). In an m-quasi Einstein manifold (M, 1) with constant scalar curvature, λ ≤ 0.

Proof. [Proof of Theorem 1.1] Let us consider the cut-off function, studied in [7], φr ∈ C2
0(B(p, 2r)) for r > 0,

where C2
0(B(p, 2r)) is a class of second order continuously differentiable functions with compact support

and C being a constant, (B(p, 2r)) ⊆M, p ∈M such that
φr = 1 in B(p, r)
0 ≤ φr ≤ 1 in B(p, 2r)
|∇φr|

2
≤

C
r2 in B(p, 2r)

∆φr ≤
C
r2 in B(p, 2r).

Then for r→∞, by the property of cut-off function, we have ∆φ2
r → 0 as ∆φ2

r ≤
4C
r2 . Since f is subharmonic,

i.e., ∆ f ≥ 0, in view of integration by parts, we obtain∫
M
∆ fφ2

r =

∫
M

f∆φ2
r . (6)

Since φr ≡ 1 in B(p, r), using (6), we get∫
B(p,r)
∆ f = 0.

Again, in view of integration by parts and also by our assumption, we obtain

0 ≤
∫

B(p,2r)
φ2

r∆ f =
∫

B(p,2r)−B(p,r)
f∆φ2

r ≤

∫
B(p,2r)−B(p,r)

f
C
r2 .

But the right hand side tends to zero as r→∞. Hence we get∫
M
∆ f = 0.

Thus, the subharmonocity of f implies that ∆ f = 0 in M. Therefore, (3) entails that

R − λn =
1
m
|∇ f |2, (7)

which implies that R ≥ λn. Taking u = log f and then simplifying we obtain

−∆u = |∇u|2 =
|∇ f |2

f 2 .
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Let l(x) be the distance of x ∈M from the fixed point p. For any r > 0, consider the function η : [0,∞)→ [0, 1]
satisfying the following properties:

η(t) = 1 for t ≤ r
η(t) = 0 for t ≥ 2r
η′ ≤ 0

(η′)2
≤

(η′)2

η ≤
C
r2

|η′′| ≤ C
r2 ,

for some constant C < ∞. Now define the function η on M by η(x) = η(l(x)) for x ∈ M. Then the function u
satisfies the following inequality:

|∇∇u|2 ≥
1
n

(∆u)2 =
1
n
|∇u|4.

By virtue of above inequality and the Bochner formula, we obtain

1
2
∆(η|∇u|2) =

1
2
∆η|∇u|2 + ∇η∇|∇u|2 +

1
2
η∆|∇u|2

=
1
2
∆η|∇u|2 + ∇η∇|∇u|2 + η|∇∇u|2 + η∇u∇(∆u) + ηRic(∇u,∇u)

=
1
2
∆η|∇u|2 + ∇η∇|∇u|2 + η|∇∇u|2 − η∇u∇|∇u|2 + ηRic(∇u,∇u)

≥

( 1
2η
∆η −

1
η2 |∇η|

2 +
1
η
∇η∇u

)
η|∇u|2 +

(1
η
∇η − ∇u

)
∇(η|∇u|2)

+
1
n
η|∇u|4 + ηRic(∇u,∇u).

Again, calculation shows that η satisfies the following inequality:

|∇η∇u| ≤
η|∇u|2

2n
+

n
2η
|∇η|2. (8)

Since |∇u|2 is non-zero, there is a point at which η|∇u|2 is maximum where η is smooth, and hence∆(η|∇u|2) ≤
0 and ∇(η|∇u|2) = 0 such that

0 ≥
1
2
∆η −

1
η
|∇η|2 + ∇η∇u +

1
n
η|∇u|2 +

η

|∇u|2
Ric(∇u,∇u).

By using (8), we have

−∆η +
n
η
|∇η|2 +

2
η
|∇η|2 = −∆η +

n
η
|∇η|2 +

2
η
|∇η|2 + 2∇η∇u − 2∇η∇u (9)

≥
n
η
|∇η|2 + 2∇η∇u +

2
n
η|∇u|2 +

2η
|∇u|2

Ric(∇u,∇u) (10)

≥
1
n
η|∇u|2 +

2η
|∇u|2

Ric(∇u,∇u). (11)

Therefore, the property of distance function (see [18], p. 41) and the chain rule together imply that

−η′∆l − η′′ +
n + 2
η

(η′)2
≥

1
n
η|∇u|2 +

2η
|∇u|2

Ric(∇u,∇u).

Since Ric ≥ −(n − 1)K, the Laplace comparison theorem implies that

∆l ≤
n − 1

l
(1 +

√

Kl) ≤
n − 1

r
+ (n − 1)

√

K,
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where η′ , 0. Hence, we obtain

1
n
η|∇u|2 +

2η
|∇u|2

Ric(∇u,∇u) ≤
C′(n)

r2 +
C′′(n)

r

√

K,

where C′(n) and C′′(n) are positive constants depend only on n. Consequently, we get

1
n
η|∇u|2 ≤

C′(n)
r2 +

C′′(n)
r

√

K −
2η
|∇u|2

Ric(∇u,∇u).

Taking limit as r→∞ in both sides, yields for all x ∈M,

|∇u|4x ≤ −2nRicx(∇u,∇u)

=
−2n

f 2 Ricx(∇ f ,∇ f ). (12)

But Ricci curvature vanishes along ∇ f , i.e., Ric(∇ f ,∇ f ) = 0, hence, we have |∇u| = 0, which shows that f is
constant. Therefore, (2) implies that the manifold becomes Einstein and R is equal to λn which is a constant.
Again, Theorem 2.1 implies that in an m-quasi Einstein manifold λ ≤ 0. Hence, R = λn ≤ 0 and it also
implies that Ricci curvature is non-positive.

To prove Corollary 1.2, we need the following result of Greene and Wu [12], which we state first:

Theorem 2.2 ([12]). If f : M→ R is a convex function on a Riemannian manifold M, then f is subharmonic.

Proof. [Proof of Corollary 1.2] Since the potential function f is convex, Theorem 2.2 implies that f is
subharmonic. Again, under the same conditions, in Theorem 1.1 we have showed that a subharmonic
function is harmonic, thus f is constant and consequently the manifold is Einstein. This completes the
proof of the Corollary.

Proof. [Proof of Theorem 1.3] If X is a vector field on M, then by virtue of Hodge-de Rham decomposition
theorem, (see [25]), X can be written as

X =W + ∇ξ, (13)

where div W = 0 and ξ is a smooth function called the Hodge-de Rham potential. We consider an m-quasi
Einstein manifold (M, 1) such that equation (1) yields

R + divX −
1
m
|X|2 = λn. (14)

Hence (13) entails that divX = ∆ξ and consequently (14) takes the form

R + ∆ξ −
1
m
|X|2 = λn. (15)

Again from (2) we have

R + ∆ f −
1
m
|∇ f |2 = λn.

From (15), it follows that

∆( f − ξ) = 0, (16)

which implies that f = ξ + C1, for some constant C1, this proves the result.
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Let (M, 1) be an oriented Riemannian manifold andΛk(M) be the set of all k-th differential forms in M. Now
for any integer k ≥ 0, the global inner product in Λk(M) is defined by

⟨η, ω⟩ =

∫
M
η ∧ ∗ω,

for η, ω ∈ Λk(M). Here ‘∗′ is the the Hodge star operator. Hence, we define the global norm of η ∈ Λk(M) by
∥η∥2 = ⟨η, η⟩ and remark that ∥η∥2 ≤ ∞.

Proof. [Proof of Theorem 1.4] For any r > 0 we have

1
r

∫
B(p,2r)

|X|dV ≤

( ∫
B(p,2r)

⟨X,X⟩dV
)1/2( ∫

B(p,2r)

(1
r

)2
dV
)1/2

≤ ∥X∥B(p,2r)
1
r

(
Vol(M)

)1/2
,

where Vol(M) denotes the volume of M. Thus we obtain

lim inf
r→∞

1
r

∫
B(p,2r)

|X|dV = 0.

Again, there exists a Lipschitz continuous function ωr such that for some constant K > 0, (see [27]),

|dωr| ≤
K
r

almost everywhere on M

0 ≤ ωr(x) ≤ 1 ∀x ∈M
ωr(x) = 1 ∀x ∈ B(p, r)
supp ωr ⊂ B(p, 2r).

Then taking limit, we get lim
r→∞
ωr = 1. Therefore, by using the function ωr, we have (see [28], p. 467)∣∣∣∣ ∫

B(p,2r)
ωrdivXdV

∣∣∣∣ ≤ C
r

∫
B(p,2r)

|X|dV.

In view of the m-quasi Einstein manifold equation (1), we get∫
M
{λn − R +

1
m
|X|2}dV = 0,

which yields∫
M

(λn − R)dV ≤ 0. (17)

Since R is continuous, there is an open ball where R ≥ λn.

Proof. [Proof of Corollary 1.5] Our assumption and (17) together imply that R = λn in M. Again, using
Theorem 2.1, we get λ ≤ 0. But the manifold is non-expanding m-quasi Einstein. Therefore, R = λn = 0 in
M.
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