2-normal composition operators with linear fractional symbols on H^{2}

Rong Yang ${ }^{\text {a }}$, Songxiao Li ${ }^{\text {b,* }}$, Lian Hu ${ }^{\text {a }}$
${ }^{a}$ Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, Sichuan, P.R. China
${ }^{b}$ Department of Mathematics, Shantou University, 515063, Shantou, Guangdong, P.R. China

Abstract

In this paper, some sufficient and necessary conditions for the composition operator C_{φ} to be 2-normal are investigated when the symbol φ is a linear fractional self-map of \mathbb{D}.

1. Introduction

Let H be a complex Hilbert space, $B(H)$ be the space of all bounded linear operators defined in H. An operator $T \in B(H)$ is called normal if it satisfies the condition $\left[T, T^{*}\right]=0$, where $\left[T, T^{*}\right]=T T^{*}-T^{*} T$. An operator $T \in B(H)$ is subnormal if there is a Hilbert space K containing H and a normal operator M on K such that $M H \subset H$ and $T=M \mid H$. An operator T is called quasinormal if $\left[T, T^{*} T\right]=0$. An operator $T \in B(H)$ is called p-hyponormal if $\left(T^{*} T\right)^{p} \geq\left(T T^{*}\right)^{p}$, where $0<p \leq 1$. If $p=1, T$ is said to be hyponormal. An operator $T \in B(H)$ is called binormal when $\left[T^{*} T, T T^{*}\right]=0$. An operator T is said to belong to Θ class if $\left[T^{*} T, T+T^{*}\right]=0$. From $[1,9]$, we see that

$$
\begin{gathered}
\text { quasinormal } \subset \text { binormal } \\
\text { normal } \subset \text { quasinormal } \subset \text { subnormal } \subset \text { hyponormal. }
\end{gathered}
$$

The operator T is said to be n-normal if T^{*} commutes with T^{n}, that is $\left[T^{*}, T^{n}\right]=0$. When $n=2$, the operator T is called 2-normal, that is, $\left[T^{*}, T^{2}\right]=0$. It is clear that a normal operator is a 2-normal operator, but the converse is not true.

Let \mathbb{D} denote the open unit disk in the complex plane \mathbb{C}. Let $H(\mathbb{D})$ be the space of those analytic functions on \mathbb{D}. The Hardy space $H^{2}(\mathbb{D})$ is the space of all $f \in H(\mathbb{D})$ for which

$$
\|f\|_{H^{2}(\mathbb{D})}^{2}=\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<\infty,
$$

where $\left\{a_{n}\right\}$ is the sequence of Maclaurin coefficients for f. The space H^{2} is a reproducing kernel Hilbert space. In other word, for any $w \in \mathbb{D}$ and $f \in H^{2}$, there exists a unique function $K_{w} \in H^{2}$ such that

$$
f(w)=\left\langle f, K_{w}\right\rangle .
$$

[^0]It is well known that $K_{w}(z)=\frac{1}{1-\bar{w} z}$.
Let φ be an analytic self-map of \mathbb{D}. The composition operator C_{φ} with $\operatorname{symbol} \varphi$ is defined by

$$
C_{\varphi} f=f \circ \varphi
$$

It is easy to see that $C_{\varphi}^{*} K_{\alpha}(z)=K_{\varphi(\alpha)}(z)$ for any $\alpha \in \mathbb{D}$. For $f \in L^{\infty}(\partial \mathbb{D})$ and $g \in H^{2}$, the Toeplitz operator T_{f} on H^{2} is defined by $T_{f}(g)=P(f g)$, where P denotes the orthogonal projection of L^{2} onto H^{2}. It is easy to check that

$$
T_{f}^{*} K_{\alpha}=\overline{f(\alpha)} K_{\alpha}
$$

for any $\alpha \in \mathbb{D}$ and $f \in H^{\infty}(\mathbb{D})$, the bounded analytic function space in \mathbb{D}.
H. Schwarz [11] showed that C_{φ} is normal if and only if $\varphi(z)=a z$ with $|a| \leq 1$. S. Jung, Y. Kim and E. Ko [10] proved that C_{φ} is quasinormal if and only if C_{φ} is normal, where $\varphi(z)=\frac{a z+b}{c z+d}$ is a linear fractional self-map of \mathbb{D} with $\varphi(0)=0$. Also they proved that, when $\varphi(z)=\frac{z}{u z+v}$ with $u \neq 0$ and $|v| \geq 1+|u|, C_{\varphi}$ is binormal if and only if C_{φ} is hyponormal, or C_{φ} is subnormal. Fatehi, Shaabani and Thompson studied hyponormal and quasinormal weighted composition operators on H^{2} and the weighted Bergman space A_{α}^{2} in [8]. For more study on composition operators on H^{2}, see [2-11].

In this paper, we discuss 2-normal composition operators with linear fractional symbols on H^{2}. The necessary and sufficient conditions for C_{φ} to be 2-normal are given when $\varphi(z)=\frac{a z+b}{c z+d}$ is a linear fractional self-map of \mathbb{D}. In particular, when $\varphi(z)=\frac{a z+b}{c z+d}$ is a linear fractional self-map of \mathbb{D}, we prove that C_{φ} is 2-normal if and only if C_{φ} is normal when $b=0$ or $c=0$. We also give an example of a linear fractional self-map φ which induces a 2-normal operator C_{φ} but not a normal operator.

2. Auxiliary results

In this section, we state some lemmas which will be used in this paper.
Lemma 1. [11] Let φ be an analytic self-map of \mathbb{D}. Then C_{φ} is normal if and only if $\varphi(z)=\alpha z$ with $|\alpha| \leq 1$.
Lemma 2. [3, Theorem 2] Let $\varphi(z)=\frac{a z+b}{c z+d}$ be a linear fractional transformation mapping \mathbb{D} into itself, where $a d-b c \neq 0$. Then $\sigma(z)=\frac{\bar{a} z-\bar{c}}{\overline{-} z+\bar{d}}$ maps \mathbb{D} into itself, $g(z)=\frac{1}{-\bar{b} z+\bar{d}}$ and $h(z)=c z+d$ are in H^{∞}, and

$$
C_{\varphi}^{*}=T_{g} C_{\sigma} T_{h}^{*} .
$$

The map σ is called the Krein adjoint of $\varphi . g$ and h are called the Cowen auxiliary functions.
Lemma 3. Let $\varphi(z)=\frac{a z+b}{c z+d}$ be a linear fractional self-map of \mathbb{D}. Then

$$
\begin{aligned}
C_{\varphi}^{*} C_{\varphi} C_{\varphi} K_{\alpha}(z)= & \frac{c(a+d)}{c(a+d)-\left(a^{2}+b c\right) \bar{\alpha}} K_{\varphi(0)}(z) \\
& +\left(\frac{b c+d^{2}}{b c+d^{2}-b(a+d) \bar{\alpha}}-\frac{c(a+d)}{c(a+d)-\left(a^{2}+b c\right) \bar{\alpha}}\right) K_{\varphi\left(\sigma_{2}(\alpha)\right)}(z)
\end{aligned}
$$

for any $\alpha \in \mathbb{D}$ with $c(a+d) \neq\left(a^{2}+b c\right) \bar{\alpha}$, where $\sigma(z)=\frac{\bar{a} z-\bar{c}}{\overline{-} \bar{z}+\bar{d}}$.
Proof. Let $\alpha \in \mathbb{D}$ with $c(a+d) \neq\left(a^{2}+b c\right) \bar{\alpha}$. Then

$$
\begin{aligned}
C_{\varphi}^{*} C_{\varphi} C_{\varphi} K_{\alpha}(z) & =C_{\varphi}^{*} K_{\alpha}\left(\varphi_{2}(z)\right)=C_{\varphi}^{*} \frac{1}{1-\bar{\alpha} \varphi_{2}(z)} \\
& =C_{\varphi}^{*} \frac{1}{1-\bar{\alpha} \frac{\left(a^{2}+b c\right) z+a b+b d}{(a c+c d) z+b c+d^{2}}}=C_{\varphi}^{*} \frac{A z+B}{C z+D}
\end{aligned}
$$

where

$$
\begin{aligned}
A=a c+c d, & & B=b c+d^{2}, \\
C=c(a+d)-\bar{\alpha}\left(a^{2}+b c\right), & & D=\left(b c+d^{2}\right)-b(a+d) \bar{\alpha} .
\end{aligned}
$$

From [10, Lemma 2.3] and $C \neq 0$, we have

$$
C_{\varphi}^{*} \frac{A z+B}{C z+D}=\frac{A}{C} K_{\varphi(0)}(z)+\left(\frac{B}{D}-\frac{A}{C}\right) K_{\varphi\left(-\frac{\overline{\bar{D}}}{D}\right)}(z) .
$$

Since $\frac{A}{C}=\frac{c(a+d)}{c(a+d)-\bar{\alpha}\left(a^{2}+b c\right)}$,

$$
\frac{B}{D}-\frac{A}{C}=\frac{b c+d^{2}}{b c+d^{2}-b(a+d) \bar{\alpha}}-\frac{c(a+d)}{c(a+d)-\left(a^{2}+b c\right) \bar{\alpha}},
$$

and

$$
-\frac{\bar{C}}{\bar{D}}=\frac{\alpha\left(\bar{a}^{2}+\overline{b c}\right)-(\overline{a c}+\overline{c d})}{\left(\overline{b c}+\bar{d}^{2}\right)-\alpha(\overline{a b}+\overline{b d})}=\sigma_{2}(\alpha)
$$

we obtain

$$
\begin{aligned}
C_{\varphi}^{*} C_{\varphi} C_{\varphi} K_{\alpha}(z)= & \frac{c(a+d)}{c(a+d)-\left(a^{2}+b c\right) \bar{\alpha}} K_{\varphi(0)}(z) \\
& +\left(\frac{b c+d^{2}}{b c+d^{2}-b(a+d) \bar{\alpha}}-\frac{c(a+d)}{c(a+d)-\left(a^{2}+b c\right) \bar{\alpha}}\right) K_{\varphi\left(\sigma_{2}(\alpha)\right)}(z) .
\end{aligned}
$$

Lemma 4. Let $\varphi(z)=\frac{a z+b}{c z+d}$ be a linear fractional self-map of \mathbb{D}. Then

$$
\begin{aligned}
C_{\varphi} C_{\varphi} C_{\varphi}^{*} K_{\alpha}(z)= & \frac{c(a+d)}{c(a+d)-\left(a^{2}+b c\right) \overline{\varphi(\alpha)}} \\
& +\left(\frac{b c+d^{2}}{b c+d^{2}-b(a+d) \overline{\varphi(\alpha)}}-\frac{c(a+d)}{c(a+d)-\left(a^{2}+b c\right) \overline{\varphi(\alpha)}}\right) K_{\sigma_{2}(\varphi(\alpha))}(z) \\
= & \frac{(\overline{c \alpha}+\bar{d})\left[(a c+c d) z+b c+d^{2}\right]}{(\bar{c} \bar{\alpha}+\bar{d})\left[(a c+c d) z+b c+d^{2}\right]-(\bar{a} \bar{\alpha}+\bar{b})\left[\left(a^{2}+b c\right) z+a b+b d\right]}
\end{aligned}
$$

for any $\alpha \in \mathbb{D}$ with $c(a+d) \neq\left(a^{2}+b c\right) \overline{\varphi(\alpha)}$, where $\sigma(z)=\frac{\bar{a} z-\bar{c}}{-\bar{b} z+\bar{d}}$.
Proof. For any $\alpha \in \mathbb{D}$ with $c(a+d) \neq\left(a^{2}+b c\right) \overline{\varphi(\alpha)}$, according to the proof of [10, Lemma 2.3], we have that

$$
\begin{aligned}
C_{\varphi} C_{\varphi} C_{\varphi}^{*} K_{\alpha}(z)= & \frac{c(a+d)}{c(a+d)-\left(a^{2}+b c\right) \overline{\varphi(\alpha)}} \\
& +\left(\frac{b c+d^{2}}{b c+d^{2}-b(a+d) \overline{\varphi(\alpha)}}-\frac{c(a+d)}{c(a+d)-\left(a^{2}+b c\right) \overline{\varphi(\alpha)}}\right) K_{\sigma_{2}(\varphi(\alpha))}(z) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
C_{\varphi} C_{\varphi} C_{\varphi}^{*} K_{\alpha}(z) & =C_{\varphi} C_{\varphi} K_{\varphi(\alpha)}(z)=K_{\varphi(\alpha)}\left(\varphi_{2}(z)\right)=\frac{1}{1-\overline{\varphi(\alpha)}) \varphi_{2}(z)} \\
& =\frac{1}{1-\frac{\overline{\alpha a}+\bar{b}}{\overline{c \alpha}+\bar{d}} \frac{\left(a^{2}+b c\right) z+a b+b d}{(a c+c d) z+b c+d^{2}}} \\
& =\frac{(\overline{c \alpha}+\bar{d})\left[(a c+c d) z+b c+d^{2}\right]}{(\overline{c \alpha}+\bar{d})\left[(a c+c d) z+b c+d^{2}\right]-(\bar{a} \bar{\alpha}+\bar{b})\left[\left(a^{2}+b c\right) z+a b+b d\right]} .
\end{aligned}
$$

Lemma 5. Let φ be an analytic self-map of \mathbb{D}. If C_{φ} is 2-normal, then $\overline{\varphi(0)} \varphi_{2}(0)=0$.
Proof. Note that

$$
\left\langle C_{\varphi}^{*} C_{\varphi} C_{\varphi} K_{0}, K_{0}\right\rangle=\left\langle K_{0} \circ \varphi_{2}, K_{0}\right\rangle=K_{0}\left(\varphi_{2}(0)\right)=\frac{1}{1-\overline{0} \varphi_{2}(0)}=1
$$

and

$$
\left\langle C_{\varphi} C_{\varphi} C_{\varphi}^{*} K_{0}, K_{0}\right\rangle=\left\langle K_{\varphi(0)} \circ \varphi_{2}, K_{0}\right\rangle=\frac{1}{1-\overline{\varphi(0)} \varphi_{2}(0)}
$$

Since C_{φ} is 2-normal, we get the desired result.
As an application of Lemma 5, we get the following simple example.
Example 1. If $\varphi(z)=\frac{1}{2}$ iz $+\frac{1}{4}$, then $\varphi_{2}(z)=-\frac{1}{4} z+\frac{1}{8} i+\frac{1}{4}$. Since $\overline{\varphi(0)} \varphi_{2}(0) \neq 0, C_{\varphi}$ is not 2-normal by Lemma 5 .

3. Main results and proofs

3.1. Automorphism

Theorem 1. Let φ be an automorphism of \mathbb{D}. Then the following statements are equivalent.
(i) C_{φ} is 2-normal;
(ii) $\varphi(z)=-\lambda z,|\lambda|=1$ or $\varphi(z)=\frac{z-a}{\overline{a z} z-1}$ for $a \in \mathbb{D}$.

Proof. (ii) \Rightarrow (i). If $\varphi(z)=-\lambda z,|\lambda|=1$, then C_{φ} is normal by Lemma 1 and hence C_{φ} is 2-normal. If $\varphi(z)=\frac{z-a}{\overline{a z-1}}$ for $a \in \mathbb{D}$, we note that $(\varphi \circ \varphi)(z)=z$, which implies that

$$
C_{\varphi}^{*} C_{\varphi} C_{\varphi}=C_{\varphi} C_{\varphi} C_{\varphi}^{*} .
$$

Thus, C_{φ} is 2-normal.
(i) $\Rightarrow(i i)$. Assume that C_{φ} is 2-normal and $\varphi(z)=\frac{\lambda(z-a)}{\bar{a} z-1}$, where $a \in \mathbb{D}$ and $|\lambda|=1$. We note that

$$
\overline{\varphi(0)} \varphi_{2}(0)=\frac{|a|^{2}(\lambda-1)}{\lambda|a|^{2}-1}=0
$$

from Lemma 5. Then $|a|^{2}(\lambda-1)=0$. Hence $|a|=0$ or $\lambda=1$.

3.2. Linear fractional self-maps with $\varphi(0)=0$

Theorem 2. Let $\varphi(z)=\frac{a z+b}{c z+d}$ be a linear fractional self-map of \mathbb{D} and $\varphi(0)=0$. Then C_{φ} is 2-normal if and only if C_{φ} is normal.

Proof. Sufficiency. It is obvious.
Necessity. Assume that C_{φ} is 2-normal. Since $\varphi(0)=0, a \neq 0$, and $\varphi(\mathbb{D}) \subset \mathbb{D}$, we can set

$$
\varphi(z)=\frac{z}{m z+n^{\prime}}
$$

where $m=\frac{c}{a}, n=\frac{d}{a}$ and $|n| \geq 1+|m|$. If $m=0$, then $\varphi(z)=\frac{z}{n}$. So C_{φ} is normal.
Now we assume that $m \neq 0$. Then $|n|>1$. For Lemma 3 we obtain that

$$
\begin{equation*}
C_{\varphi}^{*} C_{\varphi} C_{\varphi} K_{\alpha}(z)=\frac{m(1+n)}{m(1+n)-\bar{\alpha}}-\frac{\bar{\alpha}}{m(1+n)-\bar{\alpha}} \frac{1}{1-\frac{\bar{\alpha}-m(1+n)}{\bar{m}(\bar{\alpha}-m(1+n))+|n|^{2} n} z} \tag{1}
\end{equation*}
$$

for $\bar{\alpha} \neq m(1+n)$. From Lemma 4 we get that

$$
\begin{equation*}
C_{\varphi} C_{\varphi} C_{\varphi}^{*} K_{\alpha}(z)=\frac{m(1+n)(\overline{m \alpha}+\bar{n})}{m(1+n)(\overline{m \alpha}+\bar{n})-\bar{\alpha}}-\frac{\bar{\alpha}}{m(1+n)(\overline{m \alpha}+\bar{n})-\bar{\alpha}} \frac{1}{1-\frac{\bar{\alpha}-m(1+n)(\overline{m \alpha}+\bar{n})}{(\overline{m \alpha}+\bar{n}) n^{2}} z} \tag{2}
\end{equation*}
$$

for $\bar{\alpha} \neq m(1+n)(\overline{m \alpha}+\bar{n})$. Since C_{φ} is 2-normal, by (1) and (2) we get that

$$
\begin{aligned}
& \frac{m(1+n)}{m(1+n)-\bar{\alpha}}-\frac{\bar{\alpha}}{m(1+n)-\bar{\alpha}} \frac{1}{1-\frac{\bar{\alpha}-m(1+n)}{\bar{m}(\bar{\alpha}-m(1+n))+|n|^{2} n} z} \\
= & \frac{m(1+n)(\overline{m \alpha}+\bar{n})}{m(1+n)(\overline{m \alpha}+\bar{n})-\bar{\alpha}}-\frac{\bar{\alpha}}{m(1+n)(\overline{m \alpha}+\bar{n})-\bar{\alpha}} \frac{1}{1-\frac{\bar{\alpha}-m(1+n)(\overline{m \alpha \alpha}+\bar{n})}{(m \alpha+\bar{n}) n^{2}} z}
\end{aligned}
$$

for any $\alpha \in \mathbb{D}$ with $\bar{\alpha} \neq m(1+n)$ and $\bar{\alpha} \neq m(1+n)(\overline{m \alpha}+\bar{n})$. That is,

$$
\begin{aligned}
0= & \frac{\bar{\alpha} m(1+n)(\overline{m \alpha}+\bar{n}-1)}{[m(1+n)-\bar{\alpha}][m(1+n)(\overline{m \alpha}+\bar{n})-\bar{\alpha}]}-\frac{\bar{\alpha}}{m(1+n)-\bar{\alpha}} \frac{1}{1-\frac{\bar{\alpha}-m(1+n)}{\overline{m(\alpha}-m(1+n))+|n|^{2} n} z} \\
& +\frac{\bar{\alpha}}{m(1+n)(\overline{m \alpha}+\bar{n})-\bar{\alpha}} \frac{1}{1-\frac{\bar{\alpha}-m(1+n)(\overline{\bar{\alpha}}+\bar{n})}{(\overline{m \alpha}+\bar{n}) n^{2}} z}
\end{aligned}
$$

which gives that

$$
\begin{aligned}
0= & \bar{\alpha} m(1+n)(\overline{m \alpha}+\bar{n}-1)\left(1-\frac{\bar{\alpha}-m(1+n)}{\bar{m}(\bar{\alpha}-m(1+n))+|n|^{2} n} z\right)\left(1-\frac{\bar{\alpha}-m(1+n)(\overline{m \alpha}+\bar{n})}{(\overline{m \alpha}+\bar{n}) n^{2}} z\right) \\
& -\bar{\alpha}[m(1+n)(\overline{m \alpha}+\bar{n})-\bar{\alpha}]\left(1-\frac{\bar{\alpha}-m(1+n)(\overline{m \alpha}+\bar{n})}{(\overline{m \alpha}+\bar{n}) n^{2}} z\right) \\
& +\bar{\alpha}[m(1+n)-\bar{\alpha}]\left(1-\frac{\bar{\alpha}-m(1+n)}{\bar{m}(\bar{\alpha}-m(1+n))+|n|^{2} n} z\right)
\end{aligned}
$$

for any $\alpha \in \mathbb{D}$ with $\bar{\alpha} \neq m(1+n)$ and $\bar{\alpha} \neq m(1+n)(\overline{m \alpha}+\bar{n})$. Multiply this by $(\overline{m \alpha}+\bar{n})$, we get

$$
\begin{align*}
0= & \bar{\alpha} m(1+n)(\overline{m \alpha}+\bar{n}-1)\left(1-\frac{\bar{\alpha}-m(1+n)}{\bar{m}(\bar{\alpha}-m(1+n))+|n|^{2} n} z\right) \\
& \cdot\left(\overline{m \alpha}+\bar{n}-\frac{\bar{\alpha}-m(1+n)(\overline{m \alpha}+\bar{n})}{n^{2}} z\right) \tag{3}\\
& -\bar{\alpha}[m(1+n)(\overline{m \alpha}+\bar{n})-\bar{\alpha}]\left(\overline{m \alpha}+\bar{n}-\frac{\bar{\alpha}-m(1+n)(\overline{m \alpha}+\bar{n})}{n^{2}} z\right) \\
& +\bar{\alpha}[m(1+n)-\bar{\alpha}]\left(1-\frac{\bar{\alpha}-m(1+n)}{\bar{m}(\bar{\alpha}-m(1+n))+|n|^{2} n} z\right)(\overline{m \alpha}+\bar{n})
\end{align*}
$$

for any $\alpha \in \mathbb{D}$ with $\bar{\alpha} \neq m(1+n)$ and $\bar{\alpha} \neq m(1+n)(\overline{m \alpha}+\bar{n})$. Since (3) holds for any $z \in \mathbb{D}$, the coefficient of z^{2} in (3) must be zero. This implies that

$$
\bar{\alpha} m(1+n)(\overline{m \alpha}+\bar{n}-1) \frac{\bar{\alpha}-m(1+n)}{\bar{m}(\bar{\alpha}-m(1+n))+|n|^{2} n} \frac{\bar{\alpha}-m(1+n)(\overline{m \alpha}+\bar{n})}{n^{2}}=0 .
$$

Since $m \neq 0$, from the last equality we obtain that

$$
\bar{\alpha}(1+n)(\overline{m \alpha}+\bar{n}-1)=0
$$

for any $\alpha \in \mathbb{D}$ with $\bar{\alpha} \neq m(1+n)$ and $\bar{\alpha} \neq m(1+n)(\overline{m \alpha}+\bar{n})$. After a calculation, we get

$$
\bar{m}(1+n) \bar{\alpha}^{2}+(1+n)(\bar{n}-1) \bar{\alpha}=0
$$

for any $\alpha \in \mathbb{D}$ with $\bar{\alpha} \neq m(1+n)$ and $\bar{\alpha} \neq m(1+n)(\overline{m \alpha}+\bar{n})$, which is a contradiction. So $m=0$ and $\varphi(z)=\frac{z}{n},|n| \geq 1$. Therefore C_{φ} is normal. The proof is complete.
3.3. Linear fractional self-maps with $c=0$

Lemma 6. [9] If $\varphi(z)=\frac{a z+b}{c z+d}$ is a linear fractional self-map into \mathbb{D} and $c=0$, then

$$
C_{\varphi}=C_{\tilde{\sigma}}^{*} T_{\tilde{g}}^{*}
$$

where $\tilde{\sigma}(z)=\frac{\bar{a} z}{-\bar{b} z+\bar{d}}$ and $\tilde{g}(z)=\frac{\bar{d}}{-\bar{b} z+\bar{d}}$.
Theorem 3. Let $\varphi(z)=\frac{a z+b}{c z+d}$ be a linear fractional self-map into \mathbb{D} with $c=0$. Then C_{φ} is 2 -normal if and only if C_{φ} is normal.

Proof. Sufficiency. It is obvious.
Necessity. Suppose that C_{φ} is 2-normal, that is,

$$
C_{\varphi}^{*} C_{\varphi} C_{\varphi} K_{\alpha}(z)=C_{\varphi} C_{\varphi} C_{\varphi}^{*} K_{\alpha}(z)
$$

for any $\alpha, z \in \mathbb{D}$. Since $c=0$, we set $\varphi(z)=s z+t$, where $s=\frac{a}{d}, t=\frac{b}{d}$ and $|s|+|t| \leq 1$. Put

$$
\sigma(z)=\frac{\bar{s} z}{1-\bar{t} z}, g(z)=\frac{1}{1-\bar{t} z}
$$

According to the proof of [9, Theorem 2.4], by Lemma 6 we obtain that

$$
\begin{aligned}
C_{\varphi}^{*} C_{\varphi} C_{\varphi} K_{\alpha}(z) & =C_{\varphi}^{*} C_{\sigma}^{*} T_{g}^{*} C_{\sigma}^{*} T_{g}^{*} K_{\alpha}(z)=\overline{g(\alpha) g(\sigma(\alpha))} K_{\varphi\left(\sigma_{2}(\alpha)\right)}(z) \\
& =\frac{1}{1-t(s+1) \bar{\alpha}-\left[\bar{t}+\left(|s|^{2} s-|t|^{2} s-|t|^{2}\right) \bar{\alpha}\right] z}
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
C_{\varphi} C_{\varphi} C_{\varphi}^{*} K_{\alpha}(z) & =C_{\sigma}^{*} T_{g}^{*} C_{\sigma}^{*} T_{g}^{*} K_{\varphi(\alpha)}(z)=\overline{g(\varphi(\alpha)) g(\sigma(\varphi(\alpha)))} K_{\sigma_{2}(\varphi(\alpha))}(z) \\
& =\frac{1}{1-t \overline{\varphi(\alpha)}} \frac{1}{1-t \overline{\sigma(\varphi(\alpha))}} \frac{1}{1-\overline{\sigma_{2}(\varphi(\alpha))} z} \\
& =\frac{1}{1-\overline{t \varphi(\alpha)}} \frac{1}{1-t \overline{\sigma(\varphi(\alpha))}} \frac{1}{1-\frac{s \overline{\sigma(\varphi(\alpha))}}{1-\overline{\bar{\sigma}(\varphi(\alpha))}} z} \\
& =\frac{1}{1-\overline{t \varphi(\alpha)}} \frac{1}{1-t \overline{\sigma(\varphi(\alpha))}}-s \overline{\sigma(\varphi(\alpha))} z \\
& =\frac{1}{1-\overline{t \varphi(\alpha)}-s t \overline{\varphi(\alpha)}-s^{2} \overline{\overline{\varphi(\alpha)} z}} \\
& =\frac{1}{1-t \overline{s \alpha}-|t|^{2}-t|s|^{2} \bar{\alpha}-s|t|^{2}-s|s|^{2} \bar{\alpha} z-s^{2} \bar{t} z} .
\end{aligned}
$$

Since C_{φ} is 2-normal, we get

$$
\begin{align*}
& \frac{1}{1-t(s+1) \bar{\alpha}-\left[\bar{t}+\left(|s|^{2} s-|t|^{2} s-|t|^{2}\right) \bar{\alpha}\right] z} \\
= & \frac{1}{1-t \overline{s \alpha}-|t|^{2}-t|s|^{2} \bar{\alpha}-s|t|^{2}-s|s|^{2} \bar{\alpha} z-s^{2} \bar{t} z} \tag{4}
\end{align*}
$$

for any $\alpha, z \in \mathbb{D}$. Taking $\alpha=0$ in (4), we obtain

$$
\begin{equation*}
\frac{1}{1-|t|^{2}-s|t|^{2}-s^{2} \bar{t} z}=\frac{1}{1-\bar{t} z} \tag{5}
\end{equation*}
$$

for any $z \in \mathbb{D}$. So we have $t=0$ or $s=-1$. If $s=-1$, we know that $t=0$ since $|s|+|t| \leq 1$. Therefore, by Lemma 1 we get the desired result. The proof is complete.

3.4. Linear fractional self-maps with $\varphi(0) \neq 0$ and $a=0$

Lemma 7. Let $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ be a constant function. Then C_{φ} is 2 -normal if and only if φ is zero on \mathbb{D}.
Proof. Let $\varphi(z) \equiv c$ for some $c \in \mathbb{D}$. Then

$$
C_{\varphi}^{*} C_{\varphi} C_{\varphi} K_{\alpha}(z)=C_{\varphi}^{*} C_{\varphi} K_{\alpha}(\varphi(z))=\frac{1}{1-\bar{\alpha} c} C_{\varphi}^{*} C_{\varphi} K_{0}(z)=\frac{1}{1-\bar{\alpha} c} K_{\varphi(0)}(z)=\frac{1}{1-\bar{\alpha} c} \frac{1}{1-\bar{c} z},
$$

and

$$
C_{\varphi} C_{\varphi} C_{\varphi}^{*} K_{\alpha}(z)=K_{\varphi(\alpha)}\left(\varphi_{2}(z)\right)=\frac{1}{1-\overline{\varphi(\alpha)} \varphi_{2}(z)}=\frac{1}{1-|c|^{2}}
$$

for any $\alpha, z \in \mathbb{D}$. Hence C_{φ} is 2-normal if and only if $c=0$.
Theorem 4. Let $\varphi(z)=\frac{a z+b}{c z+d}$ be a linear fractional self-map of \mathbb{D} with $\varphi(0) \neq 0$ and $a=0$. Then C_{φ} is not 2-normal.
Proof. Since $\varphi(0) \neq 0$ and $a=0$, we can set $\varphi(z)=\frac{1}{u z+v}$ where $u=\frac{c}{b}$ and $v=\frac{d}{b}$. If $u=0$, then $\varphi(z)=\frac{1}{v} \neq 0$ and so C_{φ} is not 2-normal from Lemma 7. Suppose C_{φ} is 2-normal and $u \neq 0$ and $v \neq 0$. Form Lemma 3, we get

$$
\begin{equation*}
C_{\varphi}^{*} C_{\varphi} C_{\varphi} K_{\alpha}(z)=\frac{u v}{u v-u \bar{\alpha}} K_{\varphi(0)}(z)+\left(\frac{u+v^{2}}{u+v^{2}-v \bar{\alpha}}-\frac{u v}{u v-u \bar{\alpha}}\right) K_{\varphi\left(\sigma_{2}(\alpha)\right)}(z) \tag{6}
\end{equation*}
$$

for any $z \in \mathbb{D}$ and $\alpha \in \mathbb{D}$ with $u v \neq u \bar{\alpha}$. From Lemma 4, we have

$$
\begin{equation*}
C_{\varphi} C_{\varphi} C_{\varphi}^{*} K_{\alpha}(z)=\frac{(\overline{u \alpha}+\bar{v})\left(u v z+u+v^{2}\right)}{(\bar{u} \bar{\alpha}+\bar{v})\left(u v z+u+v^{2}\right)-(u z+v)} \tag{7}
\end{equation*}
$$

for any $z \in \mathbb{D}$ and $\alpha \in \mathbb{D}$. In particular, taking $\alpha=0$ in (6) and (7), we get

$$
\begin{equation*}
C_{\varphi}^{*} C_{\varphi} C_{\varphi} K_{0}(z)=\frac{\bar{v}}{\bar{v}-z} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{\varphi} C_{\varphi} C_{\varphi}^{*} K_{0}(z)=\frac{\bar{v}\left(u v z+u+v^{2}\right)}{\bar{v}\left(u v z+u+v^{2}\right)-(u z+v)} . \tag{9}
\end{equation*}
$$

Since C_{φ} is 2-normal, (8) and (9) are equal, that is,

$$
\begin{equation*}
\frac{\bar{v}}{\bar{v}-z}=\frac{\bar{v}\left(u v z+u+v^{2}\right)}{\bar{v}\left(u v z+u+v^{2}\right)-(u z+v)} \tag{10}
\end{equation*}
$$

for any $z \in \mathbb{D}$. After a calculation, we obtain that

$$
u|v|^{2} z^{2}+|v|^{2} v z-|v|^{2}=0
$$

for any $z \in \mathbb{D}$. Since $v \neq 0$, dividing both sides by $|v|^{2}$, we get

$$
\begin{equation*}
u z^{2}+v z-1=0 \tag{11}
\end{equation*}
$$

for any $z \in \mathbb{D}$, which is a contradiction. Hence C_{φ} is not 2-normal.
3.5. Linear fractional self-maps with $\varphi(0) \neq 0, a \neq 0$ and $c \neq 0$

Lemma 8. Let $\varphi(z)=\frac{a z+b}{c z+1}$ be a linear fractional self-map of \mathbb{D} with $\varphi(0) \neq 0, a \neq 0$ and $c \neq 0$. If C_{φ} is 2-normal, then

$$
\left(a^{2}+b c\right) \overline{\varphi(0)} \neq c(a+1)
$$

Proof. If $\left(a^{2}+b c\right) \overline{\varphi(0)}=c(a+1)$, then we obtain that $a^{2} \bar{b}=\left(a+1-|b|^{2}\right) c$. Since $a \neq 0$ and $\varphi(0)=b \neq 0$, it must be hold that $a+1-|b|^{2} \neq 0$, and so $c=\frac{a^{2} \bar{b}}{a+1-|b|^{2}}$. Therefore,

$$
\varphi(z)=\frac{a z+b}{\frac{a^{2} \bar{b}}{a+1-|b|^{2}} z+1}
$$

After a calculation,

$$
\overline{\varphi(0)} \varphi_{2}(0)=\frac{\left(a+1-|b|^{2}\right)|b|^{2}}{1+(a-1)|b|^{2}}
$$

Since $a+1-|b|^{2} \neq 0$ and $b \neq 0, \overline{\varphi(0)} \varphi_{2}(0) \neq 0$. Thus C_{φ} is not 2-normal by Lemma 5 .
Theorem 5. Let $\varphi(z)=\frac{a z+b}{c z+1}$ be a linear fractional self-map with $\varphi(0) \neq 0, a \neq-1$ and $c \neq 0$, then C_{φ} is not 2 -normal. Proof. Assume that C_{φ} is 2-normal. By Lemma 3, we get

$$
\begin{align*}
C_{\varphi}^{*} C_{\varphi} C_{\varphi} K_{\alpha}(z)= & \frac{c(a+1)}{c(a+1)-\left(a^{2}+b c\right) \bar{\alpha}} K_{\varphi(0)}(z) \\
& +\left(\frac{b c+1}{b c+1-b(a+1) \bar{\alpha}}-\frac{c(a+1)}{c(a+1)-\left(a^{2}+b c\right) \bar{\alpha}}\right) K_{\varphi\left(\sigma_{2}(\alpha)\right)}(z) \tag{12}
\end{align*}
$$

for any $\alpha \in \mathbb{D}$ with $c(a+1) \neq\left(a^{2}+b c\right) \bar{\alpha}$.
From Lemma 4, we see

$$
\begin{align*}
C_{\varphi} C_{\varphi} C_{\varphi}^{*} K_{\alpha}(z)= & \frac{c(a+1)}{c(a+1)-\left(a^{2}+b c\right) \overline{\varphi(\alpha)}} \\
& +\left(\frac{b c+1}{b c+1-b(a+1) \overline{\varphi(\alpha)}}-\frac{c(a+1)}{c(a+1)-\left(a^{2}+b c\right) \overline{\varphi(\alpha)}}\right) K_{\sigma_{2}(\varphi(\alpha))}(z) \tag{13}
\end{align*}
$$

for any $\alpha \in \mathbb{D}$ with $c(a+1) \neq\left(a^{2}+b c\right) \overline{\varphi(\alpha)}$. Since $c(a+1) \neq 0$ and $\left(a^{2}+b c\right) \overline{\varphi(0)} \neq c(a+1)$ from Lemma 8 , we can take $\alpha=0$ in (12) and (13). Then

$$
\begin{equation*}
C_{\varphi}^{*} C_{\varphi} C_{\varphi} K_{0}(z)=\frac{1}{1-\bar{b} z} \tag{14}
\end{equation*}
$$

and

$$
\begin{align*}
& C_{\varphi} C_{\varphi} C_{\varphi}^{*} K_{0}(z) \\
= & \frac{c(a+1)}{c(a+1)-\left(a^{2}+b c\right) \bar{b}}+\left(\frac{b c+1}{b c+1-b(a+1) \bar{b}}-\frac{c(a+1)}{c(a+1)-\left(a^{2}+b c\right) \bar{b}}\right) K_{\sigma_{2}(\varphi(0))}(z) \tag{15}\\
= & \frac{c(a+1)}{c(a+1)-\left(a^{2}+b c\right) \bar{b}}-\frac{\bar{b}\left[(b c+1)\left(a^{2}+b c\right)-b c(a+1)^{2}\right]}{\left[b c+1-|b|^{2}(a+1)\right]\left[c(a+1)-\left(a^{2}+b c\right) \bar{b}\right]} \frac{1}{1-\frac{\left(a^{2}+b c\right) \bar{b}-(a+1) c}{-|b|^{2}(a+1)+b c+1} z} .
\end{align*}
$$

Let

$$
A=b c+1-|b|^{2}(a+1), \quad B=c(a+1)-\left(a^{2}+b c\right) \bar{b}
$$

Since C_{φ} is 2-normal, (14) and (15) are equal, i,e.,

$$
\frac{1}{1-\bar{b} z}=\frac{c(a+1)}{B}-\frac{\bar{b}\left[(b c+1)\left(a^{2}+b c\right)-b c(a+1)^{2}\right]}{A B} \frac{A}{A+B z}
$$

for any $z \in \mathbb{D}$. Hence,

$$
\frac{\bar{b}\left[(b c+1)\left(a^{2}+b c\right)-b c(a+1)^{2}\right] A}{A B(A+B z)}=\frac{c(a+1)(1-\bar{b} z)-B}{B(1-\bar{b} z)}
$$

for any $z \in \mathbb{D}$. Calculating the above equation and noting that the coefficients of z^{2} must be zero, we obtain that $A B^{2} c(a+1) \bar{b}=0$. However, $b, c(a+1), A$ and B are all nonzero, which gives a contradiction. Hence C_{φ} is not 2-normal.

In the end of this paper, we give an example of a linear fractional self-map φ which induces a 2-normal operator C_{φ} but not a normal operator.

Example 2. Let $\varphi(z)=\frac{-z+b}{c z+1}$ be a linear fractional self-map of \mathbb{D} with $\varphi(0) \neq 0$ and $c \neq 0$. Since

$$
\varphi_{2}(z)=\varphi(\varphi(z))=z, C_{\varphi}^{2}=C_{\varphi_{2}}=I
$$

and so

$$
C_{\varphi}^{*} C_{\varphi} C_{\varphi}=C_{\varphi} C_{\varphi} C_{\varphi}^{*} .
$$

Hence C_{φ} is a 2-normal operator. However, according to Lemma 1 we see that C_{φ} is not a normal operator.
Data Availability No data were used to support this study.
Conflicts of Interest The authors declare that they have no conflicts of interest.

References

[1] J. Conway, The Theory of Subnormal Operators, Mathematical Surveys and Monographs, 36, American Mathematical Society, Providence, RI, 1991. xvi+436 pp.
[2] C. Cowen, Composition operators on H^{2}, J. Operator Theory 9 (1983), 77-106.
[3] C. Cowen, Linear fractional composition operators on H^{2}, Integral Equations Operator Theory 11(2) (1988), 151-160.
[4] C. Cowen, E. Ko, Hermitian weighted composition operators on H ${ }^{2}$, Trans. Amer. Math. Soc. 362 (2010), 5771-5801.
[5] C. Cowen, B. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, 1995.
[6] M. Fatehi, M. Shaabani, Normal, cohyponormal and normaloid weighted composition operators on the Hardy and weighted Bergman spaces, J. Korean Math. Soc. 54 (2017), 599-612.
[7] M. Fatehi, M. Shaabani, Norms of hyponormal weighted composition operators on the Hardy and weighted Bergman spaces, Oper. Matrices 12 (2018), 997-1007.
[8] M. Fatehi, M. Shaabani and D. Thompson, Quasinormal and hyponormal weighted composition operators on H^{2} and A_{α}^{2} with linear fractional compositional symbol, Complex Anal. Oper. Theory 12 (2018), 1767-1778.
[9] S. Jung, Y. Kim and E. Ko, Composition operators for which $C_{\varphi}^{*} C_{\varphi}$ and $C_{\varphi}+C_{\varphi}^{*}$ commute, Complex Var. Elliptic Equ. 59 (2014), 1608-1625.
[10] S. Jung, Y. Kim and E. Ko, Characterizations of binormal composition operators with linear fractional symbols on H^{2}, Appl. Math. Comput. 261 (2015), 252-263.
[11] H. Schwartz, Composition operators on H^{p}, Thesis (Ph.D.) The University of Toledo, 1969, 84 pp .

[^0]: 2020 Mathematics Subject Classification. Primary 30H10; Secondary 47B38.
 Keywords. Hardy space; Composition operator; Normal.
 Received: 10 April 2023; Accepted: 06 June 2023
 Communicated by Dragan S. Djordjević
 Research supported by GuangDong Basic and Applied Basic Research Foundation (no. 2022A1515010317, no. 2023A1515010614).

 * Corresponding author: Songxiao Li

 Email addresses: yangrong071428@163.com (Rong Yang), jyulsx@163.com (Songxiao Li), hl152808@163.com (Lian Hu)

