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Operators with complex Gaussian kernels: asymptotic behaviours
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Abstract. In this paper we derive Abelian theorems for the operators with complex Gaussian kernels.
Specifically, we establish some results in which known the behaviour of the function and its domain
variable approaches to −∞ or +∞ is used to infer the asymptotic behaviour of the transform as its domain
variable approaches to +∞ or −∞. For this purpose we use a formula concerning the computation of
potential functions by means of these operators with complex Gaussian kernels. This formula allows us to
analyse the asymptotic behaviour of these operators in both cases: when the variable approaches to +∞ or
−∞. Our results include systematically the noncentered and centered cases of these operators. Here we
analyse the Gauss-Weierstrass semigroup onR as a particular case. We also point out Abelian theorems for
other kinds of operators which have been studied in several papers.

1. Introduction

In this paper we consider the following operators with complex Gaussian kernels

(Fβ,ε,δ,ξ,γ f )(y) =
∫ +∞

−∞

f (x) exp
[
−βy2

− εx2 + 2δxy + ξy + γx
]

dx, (1)

where y ∈ R, β, ε, δ, ξ, γ ∈ C and f is a suitable complex-valued function defined on R.
These operators has been studied in several papers (see [1], [6], [7], [9], [10], [11], [20], amongst others).
Some interesting contributions in the context of this work are given in [13], [14], [16], [17] and [19].
The subject of this paper was originally of interest in the context of Quantum Field Theory (see [2]).

The complex Gaussian operator (1) has an intrinsic interest due to the basic role of the extended oscillator
semigroup introduced by Howe [8] (see also Folland [4, Chapter 5]). In his important paper [9], Lieb extends
the operator (1) to n dimensions and develops an extensive study of (1) in the context of the spaces Lp(Rn),
1 < p < ∞.

Here we use formula (1.1) in [11] given by

Hβ,ε,δ,ξ,γ,n(y) =
∫ +∞

−∞

xnexp
[
−βy2

− εx2 + 2δxy + ξy + γx
]

dx
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=

√
π
ε

exp
[
(−β +

δ2

ε
)y2 + (ξ +

δγ

ε
)y +

γ2

4ε

]
·

[n/2]∑
m=0

n!
(n − 2m)!m!2m (2δy + γ)n−2m(2ε)m−n (2)

forℜε > 0, y ∈ R, n ∈N ∪ {0} and where [n/2] denotes the entire part of n/2.
In section 2 we obtain Abelian theorems for the operator (1). Specifically, we establish some results in

which known the behaviour of the function as its domain variable approaches to −∞ or +∞ is used to infer
the asymptotic behaviour of the transform (1) as its domain variable approaches to +∞ or −∞.

In section 3 we analyse the Gauss-Weierstrass semigroup on R as a particular case (see [1] and [18],
amongst others).

Abelian theorems for other integral operators have been also studied in several papers (see [5], [12], and
[15], amongst others).

2. Abelian theorems for Operators with Complex Gaussian Kernels

The next result establishes the asymptotic behaviour of the transform (1) as its domain variable ap-
proaches to +∞ or −∞ as long as the domain variable approaches to −∞.

Theorem 2.1. Set n ∈ N ∪ {0} and ℜε > 0. Let f be a complex-valued measurable function on R such that
exp

(
−ℜεx2

)
f (x) be Lebesgue integrable on every interval (T,+∞), for all T. Assume that

lim
x→−∞

[
x−n f (x)

]
= λ, (3)

where λ ∈ C. Then
(i) For (ℜδ)2 < ℜβℜε, ℜδ ≤ 0 and all ξ, γ ∈ C, or alternatively, (ℜδ)2 = ℜβℜε, ℜδ ≤ 0 and ℜξℜε +

ℜδℜγ < 0, one has

lim
y→+∞

[
F(y) − λHβ,ε,δ,ξ,γ,n(y)

]
= 0.

(ii) For (ℜδ)2 < ℜβℜε, ℜδ ≥ 0 and all ξ, γ ∈ C, or alternatively, (ℜδ)2 = ℜβℜε, ℜδ ≥ 0 and ℜξℜε +
ℜδℜγ > 0, one has

lim
y→−∞

[
F(y) − λHβ,ε,δ,ξ,γ,n(y)

]
= 0.

In both cases F = Fβ,ε,δ,ξ,γ f is given by (1) and Hβ,ε,δ,ξ,γ,n is given by (2).

Proof. From (3) one obtains that for a fixed ε∗ > 0 there exists a T(ε∗) depending on ε∗ such that

sup
−∞<x≤T(ε∗)

∣∣∣x−n f (x) − λ
∣∣∣ < ε∗.

Observe that

|F(y) − λHβ,ε,δ,ξ,γ,n(y)|

=

∣∣∣∣∣∣
∫ +∞

−∞

(x−n f (x) − λ)xnexp
[
−βy2

− εx2 + 2δxy + ξy + γx
]

dx

∣∣∣∣∣∣
≤

∫ T(ε∗)

−∞

∣∣∣x−n f (x) − λ
∣∣∣ |x|nexp

[
−ℜβy2

−ℜεx2 + 2ℜδxy +ℜξy +ℜγx
]

dx

+

∫ +∞

T(ε∗)

∣∣∣x−n f (x) − λ
∣∣∣ |x|nexp

[
−ℜβy2

−ℜεx2 + 2ℜδxy +ℜξy +ℜγx
]

dx
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≤ sup
−∞<x≤T(ε∗)

∣∣∣x−n f (x) − λ
∣∣∣ ∫ T(ε∗)

−∞

|x|nexp
[
−ℜβy2

−ℜεx2 + 2ℜδxy +ℜξy +ℜγx
]

dx

+

∫ +∞

T(ε∗)

∣∣∣x−n f (x) − λ
∣∣∣ |x|nexp

[
−ℜβy2

−ℜεx2 + 2ℜδxy +ℜξy +ℜγx
]

dx

≤ ε∗
∫ +∞

−∞

|x|nexp
[
−ℜβy2

−ℜεx2 + 2ℜδxy +ℜξy +ℜγx
]

dx

+

∫ +∞

T(ε∗)

∣∣∣x−n f (x) − λ
∣∣∣ |x|nexp

[
−ℜβy2

−ℜεx2 + 2ℜδxy +ℜξy +ℜγx
]

dx. (4)

Sinceℜδ ≤ 0 and taking y > 0, expression (4) is less than or equal to

ε∗exp
[
−ℜβy2 +ℜξy

] ∫ +∞

−∞

|x|nexp
[
−ℜεx2 + 2ℜδxy +ℜγx

]
dx

+exp
[
−ℜβy2 +ℜξy + 2ℜδT(ε∗)y

] ∫ +∞

T(ε∗)

∣∣∣x−n f (x) − λ
∣∣∣ |x|nexp

[
−ℜεx2 +ℜγx

]
dx. (5)

Observe that for n = 0 or n even, one has∫ +∞

−∞

|x|nexp
[
−ℜβy2

−ℜεx2 + 2ℜδxy +ℜξy +ℜγx
]

dx = Hℜβ,ℜε,ℜδ,ℜξ,ℜγ,n(y).

Also, for n odd and by using Mathematica Version 9, Wolfram Research, Champaign, IL., one has∫ +∞

−∞

|x|nexp
[
−ℜβy2

−ℜεx2 + 2ℜδxy +ℜξy +ℜγx
]

dx

= (ℜε)−
n+1

2 Γ
(n + 1

2

)
exp(−ℜβy2 +ℜξy)1F1

(
n + 1

2
;

1
2

;
(2ℜδy +ℜγ)2

4ℜε

)
,

where 1F1 is the confluent hypergeometric function (see [3, Chap. 6]).
Now, using the conditions on ℜβ, ℜε, ℜδ, ℜξ, ℜγ, the hypothesis on f and having into account the

behaviour of the function 1F1 (see [3, formula (3), p. 278]), expression (5) tends to 0 as y tends to +∞.
Therefore

lim
y→+∞

[
F(y) − λHβ,ε,δ,ξ,γ,n(y)

]
= 0.

This establishes (i).
Analogously one obtains (ii).

The next result establishes the asymptotic behaviour of the transform (1) as its domain variable ap-
proaches to +∞ or −∞ as long as the domain variable approaches to +∞.

Theorem 2.2. Set n ∈ N ∪ {0} and ℜε > 0. Let f be a complex-valued measurable function on R such that
exp

(
−ℜεx2

)
f (x) be Lebesgue integrable on every interval (−∞,T), for all T. Assume that

lim
x→+∞

[
x−n f (x)

]
= λ, (6)

where λ ∈ C. Then
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(i) For (ℜδ)2 < ℜβℜε, ℜδ ≥ 0 and all ξ, γ ∈ C, or alternatively, (ℜδ)2 = ℜβℜε, ℜδ ≥ 0 and ℜξℜε +
ℜδℜγ < 0, one has

lim
y→+∞

[
F(y) − λHβ,ε,δ,ξ,γ,n(y)

]
= 0.

(ii) For (ℜδ)2 < ℜβℜε, ℜδ ≤ 0 and all ξ, γ ∈ C, or alternatively, (ℜδ)2 = ℜβℜε, ℜδ ≤ 0 and ℜξℜε +
ℜδℜγ > 0, one has

lim
y→−∞

[
F(y) − λHβ,ε,δ,ξ,γ,n(y)

]
= 0.

In both cases F = Fβ,ε,δ,ξ,γ f is given by (1) and Hβ,ε,δ,ξ,γ,n is given by (2).

Proof. From (6) one obtains that for a fixed ε∗ > 0 there exists a T(ε∗) depending on ε∗ such that

sup
T(ε∗)≤x<+∞

∣∣∣x−n f (x) − λ
∣∣∣ < ε∗.

Observe that

|F(y) − λHβ,ε,δ,ξ,γ,n(y)|

=

∣∣∣∣∣∣
∫ +∞

−∞

(x−n f (x) − λ)xnexp
[
−βy2

− εx2 + 2δxy + ξy + γx
]

dx

∣∣∣∣∣∣
≤

∫ T(ε∗)

−∞

∣∣∣x−n f (x) − λ
∣∣∣ |x|nexp

[
−ℜβy2

−ℜεx2 + 2ℜδxy +ℜξy +ℜγx
]

dx

+

∫ +∞

T(ε∗)

∣∣∣x−n f (x) − λ
∣∣∣ |x|nexp

[
−ℜβy2

−ℜεx2 + 2ℜδxy +ℜξy +ℜγx
]

dx

≤

∫ T(ε∗)

−∞

∣∣∣x−n f (x) − λ
∣∣∣ |x|nexp

[
−ℜβy2

−ℜεx2 + 2ℜδxy +ℜξy +ℜγx
]

dx

+ sup
T(ε∗)≤x<+∞

∣∣∣x−n f (x) − λ
∣∣∣ ∫ +∞

T(ε∗)
|x|nexp

[
−ℜβy2

−ℜεx2 + 2ℜδxy +ℜξy +ℜγx
]

dx

≤

∫ T(ε∗)

−∞

∣∣∣x−n f (x) − λ
∣∣∣ |x|nexp

[
−ℜβy2

−ℜεx2 + 2ℜδxy +ℜξy +ℜγx
]

dx

+ε∗
∫ +∞

−∞

|x|nexp
[
−ℜβy2

−ℜεx2 + 2ℜδxy +ℜξy +ℜγx
]

dx. (7)

Sinceℜδ ≥ 0 and taking y > 0, expression (7) is less than or equal to

exp
[
−ℜβy2 +ℜξy + 2ℜδT(ε∗)y

] ∫ T(ε∗)

−∞

∣∣∣x−n f (x) − λ
∣∣∣ |x|nexp

[
−ℜεx2 +ℜγx

]
dx

+ε∗exp
[
−ℜβy2 +ℜξy

] ∫ +∞

−∞

|x|nexp
[
−ℜεx2 + 2ℜδxy +ℜγx

]
dx. (8)

Now, arguing as in the proof of (i) in Theorem 2.1 above, one obtains that expression (8) tends to 0 as y
tends to +∞.

Therefore

lim
y→+∞

[
F(y) − λHβ,ε,δ,ξ,γ,n(y)

]
= 0.

This establishes (i).
Analogously one obtains (ii).
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Remark 1. The functions onR given by f (x) = λxn, for λ ∈ C, n ∈N∪{0}, satisfy the conditions of Theorems
2.1 and 2.2.

3. A particular case: the Gauss-Weierstrass semigroup

The Gauss-Weierstrass semigroup on R (see [20]) is given by

(
ez∆ f

)
(y) = (4πz)−1/2

∫ +∞

−∞

exp
[
−

(y − x)2

4z

]
f (x)dx

whereℜz ≥ 0 (and z , 0).

Excepting for the factor (4πz)−1/2, this operator corresponds to the case when β = ε = δ =
1
4z

and
ξ = γ = 0.

In Elliott H. Lieb terminology [9], the kernel of this operator corresponds to a centered Gaussian kernel.
By virtue of Theorem 2.1 (ii) we get

Corollary 3.1. Set n ∈ N ∪ {0} and ℜz > 0. Let f be a complex-valued measurable function on R such that
exp

(
−
ℜz
4|z|2 x2

)
f (x) be Lebesgue integrable on every interval (T,+∞), for all T. Assume that

lim
x→−∞

[
x−n f (x)

]
= λ,

where λ ∈ C. Then forℜa > 0 one has

lim
y→−∞

[
eay

(
ez∆ f

)
(y)

]
= 0.

Proof. By using Theorem 2.1 (ii) for the operator with complex Gaussian kernel given by (4πz)1/2eay
(
ez∆ f

)
(y)

one obtains that

lim
y→−∞

[
(4πz)1/2eay

(
ez∆ f

)
(y) − λH 1

4z ,
1
4z ,

1
4z ,a,0,n

(y)
]
= 0.

Now observe that

H 1
4z ,

1
4z ,

1
4z ,a,0,n

(y) = (4πz)1/2eay
[n/2]∑
m=0

n!
(n − 2m)!m!

zmyn−2m,

which tends to zero as y→ −∞.
Thus the result holds.

Now, by virtue of Theorem 2.2 (i) we get

Corollary 3.2. Set n ∈ N ∪ {0} and ℜz > 0. Let f be a complex-valued measurable function on R such that
exp

(
−
ℜz
4|z|2 x2

)
f (x) be Lebesgue integrable on every interval (−∞,T), for all T. Assume that

lim
x→+∞

[
x−n f (x)

]
= λ,

where λ ∈ C. Then forℜa < 0 one has

lim
y→+∞

[
eay

(
ez∆ f

)
(y)

]
= 0.



B. J. González, E. R. Negrı́n / Filomat 37:3 (2023), 833–838 838

Proof. By using Theorem 2.2 (i) for the operator with complex Gaussian kernel given by (4πz)1/2eay
(
ez∆ f

)
(y)

one obtains that

lim
y→+∞

[
(4πz)1/2eay

(
ez∆ f

)
(y) − λH 1

4z ,
1
4z ,

1
4z ,a,0,n

(y)
]
= 0.

Now observe that

H 1
4z ,

1
4z ,

1
4z ,a,0,n

(y) = (4πz)1/2eay
[n/2]∑
m=0

n!
(n − 2m)!m!

zmyn−2m,

which tends to zero as y→ +∞.
Thus the result holds.

Remark 2. The Gauss-Weierstrass semigroup also appears in [1, p. 521], amongst others.
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