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Abstract. The relationship between the forward order law product A†1A†2 · · ·A
†

n of the Moore-Penrose
inverses of A1,A2, · · · ,An and the seven common types of generalized inverse of A1A2 · · ·An will be studied
in this paper. Especially, we will give the necessary and sufficient condition for the n terms forward order
law

(A1A2 · · ·An)† = A†1A†2 · · ·A
†

n.

1. Introduction

In this paper we use the following notations. Cm×n denotes the set of m by n matrices of complex
entries, Cm = Cm×1, Im denotes the identity matrix of order m, Om×n is the m by n matrix with all zero entries
(if no confusion occurs, we will drop the subscript). For a matrix A ∈ Cm×n, r(A) is the rank of A, A∗ is the
conjugate transpose of A, R(A) and N(A) are respectively the range space and the rank of the matrix A.

Let A ∈ Cm×n and consider the following four Penrose equations [20]:

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA. (1)

For any matrix A ∈ Cm×n, let A{i, j, · · · , k} denote the set of matrices X ∈ Cn×m which satisfy equations
(i), ( j), · · · , (k) from among equations (1), (2), · · · , (4) of (1.1). A matrix in A{i, j, · · · , k} is called an {i, j, · · · , k}-
inverse of A and denoted by A(i, j,··· ,k). For example, an n by m matrix X of the set A{1} is called a {1}-inverse
of A and is denoted by X = A(1). The well-known seven common types of generalized inverse of A
introduced from (1.1) are, respectively, the {1}-inverse, {1, 2}-inverse, {1, 3}-inverse, {1, 4}-inverse, {1, 2, 3}-
inverse, {1, 2, 4}-inverse and {1, 2, 3, 4}-inverse, the last being the unique Moore-Penrose inverse of A and is
denoted by X = A(1,2,3,4) = A†. In particular, when A is nonsingular, then it is easily seen that A† = A−1. We
refer the reader to [1, 27] for basic results on generalized inverses.
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The concepts of generalized inverse were shown to be very useful in various applied mathematical
settings. For example, applications to singular differential or difference equations, Markov chains, cryptog-
raphy, iterative method or multibody system dynamics, and so on, which can be found in [1, 10, 16, 21, 22, 27].
In above applied mathematical settings, the large-scale scientific computing problems eventually translate
to the least square problems. Using generalized inverse to give some fast and effective iterative solution al-
gorithms for these least square problems has attracted considerable attention, and many interesting results
have been obtained, see [1, 6, 10, 21, 27].

Suppose Ai ∈ Cm×m, i = 1, 2, · · · ,n, and b ∈ Cm, the least squares problem is finding x ∈ Cm that minimizes
the norm:

∥(A1A2 · · ·An)x − b∥2 (2)

is used in many practical scientific problems. Any solution x of the above LS can be expressed as x =
(A1A2 · · ·An)(1,3)b. If the (A1A2 · · ·An)x = b is consistent, then the minimum norm solution x has the form
x = (A1A2 · · ·An)(1,4)b. The unique minimal norm least square solution x of the above LS is x = (A1A2 · · ·An)†b.
One of the problems concerning the above LS is under what condition the reverse order law

A(i, j,··· ,k)
n A(i, j,··· ,k)

n−1 · · ·A(i, j,··· ,k)
1 = (A1A2 · · ·An)(i, j,··· ,k) (3)

hold. The other problem concerns with the above LS is under what condition the forward order law

A(i, j,··· ,k)
1 A(i, j,··· ,k)

2 · · ·A(i, j,··· ,k)
n = (A1A2 · · ·An)(i, j,··· ,k) (4)

hold.
If (1.3) or (1.4) is true, then according to the reverse order law (1.3) or the forward order law (1.4) and

the iterative algorithm theory, we can naturally construct some ideal iterative sequence and then design
some fast and effective iterative algorithms to solve (1.2). If (1.3) or (1.4) is not necessarily true, can we
find the necessary and sufficient condition for (1.3) or (1.4) ? Then under certain conditions, some iterative
algorithms are designed to solve (1.2) according to the reverse order law or the forward order law. Applying
the reverse order law or the forward order law to design some fast and effective iterative algorithms to
solve (1.2), will avoid multiple decompositions of the correlation matrices and keep it in each iteration.
The structure of the iterative sequence reduces the amount of machine storage, maintains the convergence,
stability of the algorithm, and improves the operation speed, see [1, 6, 8, 19, 21, 27].

The reverse order law for generalized inverse of multiple matrix products (1.3) yields a class of interesting
problems that are fundamental in the theory of generalized inverse of matrices, see [1–5, 21, 27]. As one of
the core problems in reverse order law, finding the necessary and sufficient condition for the reverse order
law for generalized inverses of matrix products, is useful in both theoretical study and practical scientific
computing, which has attracted considerable attention and many interesting results have been obtained,
see [7, 9, 11–13, 15, 17, 24, 25].

The forward order law for generalized inverse of multiple matrix products (1.4), originally arose in study-
ing the inverse of multiple matrix kronecker products. Let Ai, i = 1, 2, · · · ,n, be n nonsingular matrices, then
the kronecker product A1

⊗
A2

⊗
· · ·

⊗
An is nonsingular too, and the inverse of A1

⊗
A2

⊗
· · ·

⊗
An

satisfies the forward order law A1
−1 ⊗

A2
−1 ⊗

· · ·
⊗

A−1
n = (A1

⊗
A2

⊗
· · ·

⊗
An)−1. However, this so-

called forward order law is not necessarily true for generalized inverse of multiple matrix products. An
interesting problem is for given {i, j, · · · , k} and matrices Ai, i = 1, 2, · · · ,n, with A1A2 · · ·An meaningful,
when

A(i, j,··· ,k)
1 A(i, j,··· ,k)

2 · · ·A(i, j,··· ,k)
n = (A1A2 · · ·An)(i, j,··· ,k)

holds, or when

A1{i, j, · · · , k}A2{i, j, · · · , k} · · ·An{i, j, · · · , k} ⊆ (A1A2 · · ·An){i, j, · · · , k}

In 2007, Xiong and Zheng [29] gave the necessary and sufficient condition for the forward order law
A1{1}A2{1} · · ·An{1} ⊆ (A1A2 · · ·An){1}. More equivalent conditions for the forward order law for generalized
inverse of multiple matrix products have been derived, see [14, 23, 27, 28, 30, 31].
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In this paper, we are interested on the relationship between A†1A†2 · · ·A
†
n and (A1 · · ·An)(i, j,··· ,k). We will

derive some necessary and sufficient conditions for A†1A†2 · · ·A
†
n ∈ (A1 · · ·An){i, j, · · · , k}, where {i, j, · · · , k} ∈

{{1}, {1, 2}, {1, 3}, {1, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}}. In particular, we will give the necessary and sufficient
condition for the n terms forward order law

(A1A2 · · ·An)† = A†1A†2 · · ·A
†

n.

As the main tools in our discussion, we first present the following lemmas.

Lemma 1.1. [1, 27] The Moore-Penrose inverse of matrix satisfy the following simple property:

A† = A∗(AA∗)† = (A∗A)†A∗ = A∗(A∗AA∗)†A∗. (5)

Lemma 1.2. [21] Let A ∈ Cm×n and X ∈ Cn×m.Then

(1)X ∈ A{1} ⇔ AXA = A;
(2)X ∈ A{1, 2} ⇔ AXA = A and r(X) = r(A);
(3)X ∈ A{1, 3} ⇔ A∗AX = A∗;
(4)X ∈ A{1, 4} ⇔ XAA∗ = A∗;
(5)X ∈ A{1, 2, 3} ⇔ A∗AX = A∗ and r(X) = r(A);
(6)X ∈ A{1, 2, 4} ⇔ XAA∗ = A∗ and r(X) = r(A);
(7)X = A† ⇔ A∗AX = XAA∗ = A∗ and r(X) = r(A).

Lemma 1.3. [18] Suppose matrices A, B, C and D satisfy the following conditions:

R(B) ⊆ R(A) and R(C∗) ⊆ R(A∗) (6)

or

R(C) ⊆ R(D) and R(B∗) ⊆ R(D∗). (7)

Then

r
(
A B
C D

)
= r(A) + r(D − CA†B) (8)

or

r
(
A B
C D

)
= r(D) + r(A − BD†C). (9)

Lemma 1.4. [26] Suppose Ai ∈ Csi×li , i = 1, 2, · · · ,n and Bi ∈ Csi×li+1 , i = 1, 2, · · · ,n − 1, satisfy

Bi = AiXiAi+1, i = 1, 2, · · · ,n − 1 for some Xi. (10)

Then

R(Bi) ⊆ R(Ai), R(B∗i ) ⊆ R(A∗i+1), i = 1, 2, · · · ,n − 1, (11)

and the Moore-Penrose inverse of the n × n block matrix

Jn =



O O · · · · · · O An
O O · · · O An−1 Bn−1
...

... ⧸ ⧸ ⧸ O
... O ⧸ ⧸ ⧸

...
O A2 B2 O · · · O
A1 B1 O O · · · O


,
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may be repressed as

J†n =


F(1,n) F(1,n − 1) · · · F(1, 2) F(1, 1)
F(2,n) F(2,n − 1) · · · F(2, 2) O
...

... ⧸ ⧸
...

F(n − 1,n) F(n − 1,n − 1) O · · · O
F(n,n) O O · · · O


, (12)

where

F(i, i) = A†i , i = 1, 2, · · · ,n,

F(i, j) = (−1) j−iA†i BiA†i+1Bi+1 · · ·A†j−1B j−1A†j , 1 ≤ i ≤ j ≤ n.

2. The relationship between the generalized inverses of A1A2 · · ·An and A†
1
A†

2
· · ·A†n

In this section, we will present the relationship between the forward order product A†1A†2 · · ·A
†
n of

the Moore-Penrose inverses of A1, A2, · · · , An and the seven common types of generalized inverse of the
product A1A2 · · ·An.

Theorem 2.1. Suppose Ai ∈ Cm×m, i = 1, 2, · · · ,n .Then the M-P inverse of the (n + 2) × (n + 2) block matrix

M =



O O O · · · O O Im
O O O · · · O A∗nAnA∗n A∗n
O O O · · · A∗n−1An−1A∗n−1 A∗n−1A∗n O
...

...
... ⧸ ⧸ ⧸

...
O O A∗2A2A∗2 ⧸ ⧸ O O
O A∗1A1A∗1 A∗1A∗2 ⧸ O O O
Im A∗1 O · · · O O O


(13)

may be repressed as

M† =


M(1,n + 2) M(1,n + 1) · · · M(1, 2) M(1, 1)
M(2,n + 2) M(2,n + 1) · · · M(2, 2) O

...
... ⧸ ⧸

...
M(n + 1,n + 2) M(n + 1,n + 1) O · · · O
M(n + 2,n + 2) O O · · · O


, (14)

where

M(1, 1) =M(n + 2,n + 2) = Im,

M(i, i) = (A∗i−1Ai−1A∗i−1)†, i = 2, 3, · · · ,n + 1,

M(1, j) = (−1) j−1A∗1(A∗1A1A∗1)†A∗1A∗2(A∗2A2A∗2)† · · ·A∗j−2A∗j−1(A∗j−1A j−1A∗j−1)†,

j = 2, 3, · · · ,n + 1
M(i,n + 2) = (−1)n+2−i(A∗i−1Ai−1A∗i−1)†A∗i−1A∗i (A

∗

i AiA∗i )
†
· · ·A∗n−1A∗n(A∗nAnA∗n)†A∗n,

i = 2, 3, · · · ,n + 1
M(i, j) = (−1) j−i(A∗i−1Ai−1A∗i−1)†A∗i−1A∗i (A

∗

i AiA∗i )
†
· · ·A∗j−2A∗j−1(A∗j−1A j−1A∗j−1)†,

2 ≤ i ≤ j ≤ n.
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In particular,

M(1,n + 2) = PM†Q
= (−1)n+2−1(Im)†A∗1(A∗1A1A∗1)†A∗1A∗2(A∗2A2A∗2)†A∗2A∗3 · · ·A

∗

n−1A∗n(A∗nAnA∗n)†A∗n(Im)†

= (−1)n+1A†1A†2 · · ·A
†

n, (15)

where P = (Im, O, · · · , O) and Q = (Im, O, · · · , O)∗.

Proof. Combining the formula (2.1) with Lemma 1.1 , we have

A∗1 = ImA†1A1A∗1 = Im(A∗1A1)†A∗1A1A∗1, and R(A∗1) ⊆ R(Im), R(A1) ⊆ R(A1A∗1A1). (16)

A∗i A
∗

i+1 = A∗i AiA†i A†i+1Ai+1A∗i+1 = A∗i AiA∗i (AiA∗i )
†(A∗i+1Ai+1)†A∗i+1Ai+1A∗i+1, and

R(A∗i A
∗

i+1) ⊆ R(A∗i AiA∗i ), R(Ai+1Ai) ⊆ R(Ai+1A∗i+1Ai+1), i = 1, 2, · · · ,n − 1. (17)

A∗n = A∗nAnA†nIm = A∗nAnA∗n(AnA∗n)†Im, and R(A∗n) ⊆ R(A∗nAnA∗n), R(An) ⊆ R(Im). (18)

From the formulas (2.4)-(2.6) and the formulas (1.10)-(1.12) in Lemma 1.4, we have the results in Theorem
2.1.

In particular, from Lemma 1.1, we have

A†i = A∗i (A
∗

i AiA∗i )
†A∗i , i = 1, 2, · · · ,n,

then the last equality in (2.3) holds. ■
We know that for any matrix S ∈ Cm×n,

r(S∗SS∗) = r(S∗S) = r(S∗) = r(S). (19)

By the formula (2.7) and the structure of M in (2.1), we at once see that it has the following simple
properties, which will be used in the sequel.

Theorem 2.2. Let M, P and Q be given as in Theorem 2.1 and let A = A1A2 · · ·An. Then

r(M) = 2m + r(A1) + r(A2) + · · · + r(An), (20)

R(Q) ⊆ R(M) and R(P∗) ⊆ R(M∗), (21)

R(QA) ⊆ R(M) and R(P∗A∗) ⊆ R(M∗). (22)

Proof. Let

D1 =


Im −A∗1 O · · · O
O Im O · · · O
O O Im · · · O
...

...
... ⧹

...
O O O · · · Im


, D2 =


Im O O · · · O
O Im −(A1A∗1)†A∗2 · · · O
O O Im · · · O
...
...

... ⧹
...

O O O · · · Im


, · · · ,

Dn =


Im · · · O O O
... ⧹

...
...

...
O · · · Im −(AnAn−1)† O
O · · · O Im O
O · · · O O Im


,Dn+1 =


Im · · · O O O
... ⧹

...
...

...
O · · · Im O O
O · · · O Im −(AnA∗n)†

O · · · O O Im


,

Dn+2 =


O
O
...

O
Im


, (23)
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and let

T1 =


Im O O · · · O
−A∗n Im O · · · O

O O Im · · · O
...

...
... ⧹

...
O O O · · · Im


, T2 =


Im O O · · · O
O Im O · · · O
O −A∗n−1(A∗nAn)† Im · · · O
...

...
... ⧹

...
O O O · · · Im


, · · · ,

Tn =


Im · · · O O O
... ⧹

...
...
...

O · · · Im O O
O · · · −A∗1(A∗2A2)† Im O
O · · · O O Im


,Tn+1 =


Im · · · O O O
... ⧹

...
...

...
O · · · Im O O
O · · · O Im O
O · · · O −(A∗1A1)† Im


,

Tn+2 =
(
O,O, · · · ,O, Im

)
. (24)

From the formulas (2.1) and (2.11), we have

MD1 · · ·Dn+1 =


O O · · · O Im
O O · · · A∗nAnA∗n O
...

... ⧸
...

...
O A∗1A1A∗1 · · · O O
Im O · · · O O


and MD1 · · ·Dn+1Dn+2 = Q. (25)

Since Di, i = 1, 2, · · · ,n + 1 are nonsingular, then combining the formula (2.7) with (2.13), we have

r(M) = r(MD1D2 · · ·Dn+1) = 2m + r(A1) + r(A2) + · · · + r(An), (26)

and

R(QA) ⊆ R(Q) = R(MD1D2 · · ·Dn+1Dn+2) ⊆ R(M). (27)

On the other hand, from the formulas (2.1) and (2.12), we have

Tn+1 · · ·T1M =


O O · · · O Im
O O · · · A∗nAnA∗n O
...

... ⧸
...

...
O A∗1A1A∗1 · · · O O
Im O · · · O O


and Tn+2Tn+1 · · ·T2T1M = Q∗ = P.

(28)

From the formula (2.16), we have

R(P∗A∗) ⊆ R(P∗) = R((Tn+2Tn+1 · · ·T2T1M)∗) = R(M∗T∗1T∗2 · · ·T
∗

n+1T∗n+2) ⊆ R(M∗). (29)

Combining the formulas (2.14), (2.15) with (2.17), we have the results in Theorem 2.2. ■
From Theorem 2.1 and Theorem 2.2, the necessary and sufficient condition can be derived for X =

A†1A†2 · · ·A
†
n to be a {1}-inverse, {1, 2}-inverse, {1, 3}-inverse, {1, 4}-inverse, {1, 2, 3}-inverse, {1, 2, 4}-inverse or

the Moore-Penrose inverse of A = A1A2 · · ·An.

Theorem 2.3. Suppose A = A1A2 · · ·An and X = A†1A†2 · · ·A
†
n, where Ai ∈ Cm×m, i = 1, 2, · · · ,n. M, P and Q are

given by Theorem 2.1. Then X is a inner inverse of A, that is, X ∈ A{1} if and only if A1,A2, · · · ,An and A satisfy
the following rank equality:

r
(
(−1)nA E1

E2 N

)
= 2m + r(A1) + r(A2) + · · · + r(An) − r(A), (30)
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where E1 = (O, · · · , O, Im), E2 = (O, · · · , O, Im)∗ and

N =



O O · · · O A∗nAnA∗n A∗n
O O · · · A∗n−1An−1A∗n−1 A∗n−1A∗n O
...

... ⧸ ⧸ ⧸
...

O A∗2A2A∗2 ⧸ ⧸ O O
A∗1A1A∗1 A∗1A∗2 ⧸ O O O

A∗1 O · · · O O O


.

Proof. From the formulas (2.1)-(2.3) in Theorem 2.1, we have

X = A†1A†2 · · ·A
†

n = (−1)n+1PM†Q (31)

and

M =
(

O E1
E2 N

)
. (32)

By Lemma 1.2 (1), we know that X ∈ A{1} if and only if

r(A − AXA) = 0.

Since

r(A − AXA) = r(A − (−1)n+1APM†QA) = r((−1)n+1A − APM†QA), (33)

we get that X ∈ A{1} if and only if

r((−1)n+1A − APM†QA) = 0.

Combining Lemma 1.3 with (2.9) and (2.10) in Theorem 2.2, we have

r((−1)n+1A − APM†QA)

= r
(
(−1)n+1A AP

QA M

)
− r(M)

= r
(
(−1)n+1A O

O M − (−1)n+1QAP

)
− r(M)

= r(M + (−1)nQAP) + r(A) − r(M). (34)

From the structures of M, P and Q shown in (2.3) and the results in (2.20), we have

r(M + (−1)nQAP) = r[
(

O E1
E2 N

)
+ r

(
(−1)nA O

O O

)
] = r

(
(−1)nA E1

E2 N

)
(35)

Substituting (2.23) and (2.8) into (2.22), and combining (2.21), we arrive at (2.18). ■

Theorem 2.4. Suppose M, P and Q are given by Theorem 2.1, A and X are given by Theorem 2.3. Then X is a
reflexive inner inverse of A, that is, X ∈ A{1, 2} if and only if A1,A2, · · · ,An and A satisfy (2.18) and the following
rank equality:

r(N) = r(A) + r(A1) + r(A2) + · · · + r(An), (36)

where N is given as in (2.18).
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Proof. By Lemma 1.2 (2), we know that X ∈ A{1, 2} if and only if

r(A − AXA) = 0 and r(X) = r(A). (37)

The result in Theorem 2.3 shows that the first rank equality in (2.25) is equivalent to (2.18). We will now
prove the second rank equality in (2.25) is equivalent to (2.24).

From (2.19), we easily see that

r(X) = r((−1)n+1PM†Q) = r(−PM†Q). (38)

By Lemma 1.3 and Theorem 2.2, we have

r(X) = r((−1)n+1PM†Q) = r
(
M Q
P O

)
− r(M)

= r

O E1 Im
E2 N O
Im O O

 − r(M) = r

O O Im
O N O
Im O O

 − r(M) = 2m + r(N) − r(M). (39)

Combining (2.26) and (2.27), the second rank equality in (2.25) will lead to (2.24). ■

Theorem 2.5. Suppose M, P and Q are given by Theorem 2.1, A and X are given by Theorem 2.3. Then X is a least
squares inner inverse of A, that is, X ∈ A{1, 3} if and only if A1,A2, · · · ,An and A satisfy the following rank equality:

r
(
(−1)nA∗A A∗E1

E2 N

)
= m + r(A1) + r(A2) + · · · + r(An), (40)

where E1, E2 and N are given as in (2.18).

Proof. According to Lemma 1.2 (3) and (2.19), X ∈ A{1, 3} if and only if

r(A∗ − A∗AX) = 0.

Since

r(A∗ − A∗AX) = r(A∗ − (−1)n+1A∗APM†Q) = r((−1)n+1A∗ − A∗APM†Q), (41)

we get that X ∈ A{1, 3} if and only if

r((−1)n+1A∗ − A∗APM†Q) = 0.

According to Lemma 1.3 and the formulas (2.9) and (2.10) in Theorem 2.2, we have

r(A∗ − A∗AX) = r((−1)n+1A∗ − A∗APM†Q) = r
(

M Q
A∗AP (−1)n+1A∗

)
− r(M)

= r

 O E1 Im
E2 N O

A∗A O (−1)n+1A∗

 − r(M) = r

 O O Im
E2 N O

A∗A (−1)nA∗E1 O

 − r(M)

= r
(
A∗A (−1)nA∗E1
E2 N

)
+m − r(M) = r

(
(−1)nA∗A A∗E1

E2 N

)
+m − r(M). (42)

Combining (2.8), (2.29) with (2.30), we have the results in Theorem 2.5. ■
The next conclusion can be derived form the formulas (3), (4) in Lemma 1.2 and the results in Theorem

2.5.
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Theorem 2.6. Suppose M, P and Q are given by Theorem 2.1, A and X are given by Theorem 2.3. Then X is a
minimum norm inner inverse of A, that is, X ∈ A{1, 4} if and only if A1,A2, · · · ,An and A satisfy the following rank
equality:

r
(
(−1)nAA∗ E1

E2A∗ N

)
= m + r(A1) + r(A2) + · · · + r(An), (43)

where E1, E2 and N is given as in (2.18).

The next three theorems can be seen form the formulas (3)-(6) in Lemma 1.2 and the results in Theorem
2.4 − Theorem 2.6.

Theorem 2.7. Suppose M, P and Q are given by Theorem 2.1, A and X are given by Theorem 2.3. Then X ∈ A{1, 2, 3}
if and only if A1,A2, · · · ,An and A satisfy the rank equalities in (2.24) and (2.28).

Theorem 2.8. Suppose M, P and Q are given by Theorem 2.1, A and X are given by Theorem 2.3. Then X ∈ A{1, 2, 4}
if and only if A1,A2, · · · ,An and A satisfy the rank equalities in (2.24) and (2.31).

Theorem 2.9. Suppose M, P and Q are given by Theorem 2.1, A and X are given by Theorem 2.3. Then X ∈ A{1, 3, 4}
if and only if A1,A2, · · · ,An and A satisfy the rank equalities in (2.28) and (2.31).

According to the formula (7) in Lemma 1.2, we have X = A†1A†2 · · ·A
†
n = (A1A2 · · ·An)† = A† if and only if

the following three rank equalities hold:

r(X) = r(A) and r(A∗ − A∗AX) = 0 and r(A∗ − XAA∗) = 0.

Thus, from Theorem 2.4 − Theorem 2.6 we immediately obtain the following key result.

Theorem 2.10. Suppose M, P and Q are given by Theorem 2.1, A and X are given by Theorem 2.3. Then X is the
Moore-Penrose inverse of A, that is, the forward order law in (2.32) holds, if and only if A1,A2, · · · ,An and A satisfy
the three rank equalities in (2.24), (2.28) and (2.31).

3. The forward order law for Moore-Penrose inverse of A1A2 · · ·An

In addition to the result in Theorem 2.10, we can also deduce another rank equality as a necessary
and sufficient condition for the forward order law in (2.32) to hold.

Theorem 3.1. Suppose M, P and Q are given by Theorem 2.1, A and X are given by Theorem 2.3. Then X is the
Moore-Penrose inverse of A, that is, the forward order law

A†1A†2 · · ·A
†

n = (A1A2 · · ·An)† (44)

holds if and only if A1,A2, · · · ,An and A satisfy the following equality:

r
(
(−1)nA∗AA∗ A∗E1

E2A∗ N

)
= r(A1) + r(A2) + · · · + r(An) + r(A), (45)

where E1, E2 and N are given as in (2.18).

Proof. From (2.3) in Theorem 2.1, we know that X = A†1A†2 · · ·A
†
n = (A1A2 · · ·An)† = A† holds if and only

if A1,A2, · · · ,An and A satisfy the following equality:

r(A† − X) = r(A† − (−1)n+1PM†Q) = r((−1)n+1A† − PM†Q) = 0. (46)

Now using the matrices in (3.3), we construct a 3 × 3 block matrix as follows:

G =

M O Q
O (−1)nA∗AA∗ A∗

P A∗ O

 .
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It follows from Theorem 2.2 that

R
(

Q
A∗

)
⊆ R

(
M O
O (−1)nA∗AA∗

)
,

R(
(
P, A∗

)∗
) ⊆ R

(
M∗ O
O (−1)nAA∗A

)
.

Hence by the rank formulas in Lemma 1.3, we have

r(G) = r
(
M O
O (−1)nA∗AA∗

)
+ r(−

(
P, A∗

) (M O
O (−1)nA∗AA∗

)† (
Q
A∗

)
)

= r(M) + r(A∗AA∗) + r(PM†Q − (−1)n+1A∗(A∗AA∗)†A∗). (47)

Combining the formulas (2.7), (3.3), (3.4) with Lemma 1.1 and Theorem 2.2, we have

A† = A∗(A∗AA∗)†A∗ and r(A∗AA∗) = r(A∗A) = r(A∗) = r(A)

and

r(G) = r(M) + r(A) + r[(−1)n+1A† − PM†Q]
= 2m + r(A1) + r(A2) + · · · + r(An) + r(A) + r(A† − X). (48)

On the other hand, substituting the complete expression of M in (2.20) and then calculating the rank of
G will produce the following result

r(G) = r


O E1 O Im
E2 N O O
O O (−1)nA∗AA∗ A∗

Im O A∗ O

 = r


O O O Im
E2 N O O
O −A∗E1 (−1)nA∗AA∗ A∗

Im O A∗ O


= r


O O O Im
O N −E2A∗ O
O −A∗E1 (−1)nA∗AA∗ A∗

Im O A∗ O

 = r


O O O Im
O N −E2A∗ O
O −A∗E1 (−1)nA∗AA∗ O
Im O O O


= r

(
N −E2A∗

−A∗E1 (−1)nA∗AA∗

)
+ 2m = r

(
(−1)nA∗AA∗ A∗E1

E2A∗ N

)
+ 2m. (49)

Combining (3.3), (3.4),(3.5) with (3.6) will yield the results in Theorem 3.1. ■
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