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On the solvability of a semiperiodic boundary value problem for a
pseudohyperbolic equation
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aKaragandy University of the name of academician E.A. Buketov

Abstract. The solvability of the boundary value problem for pseudohyperbolic equations of the third
order is investigated. For the problem under study, an algorithm for finding an approximate solution is
proposed and sufficient conditions for unique solvability are established.

1. Introduction

On Ω = [0,X] × [0,Y] we consider the semiperiodic boundary value problem

∂3u
∂x2∂y

= A(x, y)
∂2u
∂x2 + C(x, y)

∂2u
∂y2 + f (x, y), (x, y) ∈ Ω, (1)

u(x, 0) = u(x,Y), x ∈ [0,X], (2)

u(0, y) = φ(y), y ∈ [0,Y], (3)

∂u(0, y)
∂x

= ψ(y), y ∈ [0,Y], (4)

where (n × n) - matrix functions A(x, y),C(x, y), n-vector functions f (x, y) are continuous on Ω, n-vector
functions φ(y), ψ(y) are continuously differentiable on [0,Y], here

∥u(x, y)∥ = max
i=1,n
|ui(x, y)|, ∥A(x, y)∥ = max

i=1,n

n∑
j=1

|ai j(x, y)|.

Let C(Ω,Rn) be the spaces of functions u : Ω → Rn, which are continuous on Ω, with the rate ∥u∥0 =
max ∥u(x, y)∥.

2020 Mathematics Subject Classification. Primary 39A10, 39A70; Secondary 47B39, 26D15.
Keywords. Pseudohyperbolic equation; Boundary value problem; Algorithm; Approximate solution.
Received: 01 June 2021; Accepted: 27 October 2022
Communicated by Marko Nedeljkov
Research supported by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No.

AP09259780).
Email addresses: orumbayevanurgul@gmail.com (N.T. Orumbayeva), tenggesh.tokmagambetova@gmail.com (T.D.

Tokmagambetova)



N.T. Orumbayeva, T.D. Tokmagambetova / Filomat 37:3 (2023), 925–933 926

Boundary value problems for hyperbolic equations of the third order have been investigated by many
authors [1-5]. The interest in this type of equations is explained both by the theoretical significance of
the results obtained and by their important practical applications [6]. Hyperbolic equations with two
independent variables of the third and higher order are used as mathematical models of various processes:
unsteady rectilinear flow of an incompressible fluid of the second order [7 ,8]; Navier-Stokes-Oldroyd fluid
flows [9]; vibrations of elastic-viscous thread [10,11]; vibrations of the rod in the presence of relaxation and
aftereffect of the simplest type [12]; the phenomenon of flutter of a cantilever wing [13, 14] and others.

In this paper, a semi-periodic boundary value problem for pseudohyperbolic equations of the third
order is reduced to an equivalent problem of a family of boundary value problems for ordinary differential
equations and functional relations. When solving a family of boundary value problems for ordinary
differential equations, the parametrization method is used. [15-19] Application of this approach allowed to
establish the coefficients of the unique solvability of the semiperidic problem for pseudhyperbolic equations
and to propose new algorithms for finding the approximate solution.

The function u(x, y) ∈ C(Ω,Rn), with partial derivatives
∂2u(x, y)
∂y2 ∈ C(Ω,Rn),

∂2u(x, y)
∂x2 ∈ C(Ω,Rn),

∂3u(x, y)
∂x2∂y

∈ C(Ω,Rn) is called the classical solution to the problem (1)-(4), if it satisfies the system (1) with

all (x, y) ∈ Ω, and boundary conditions(2)–(4).

2. Main result

To find the solution, we introduce the function 1(x, y) = ∂u(x,y)
∂x , w(x, y) = ∂2u(x,y)

∂y2 and the problem (1)-(4)
we write in the form

∂21

∂x∂y
= A(x, y)

∂1

∂x
+ C(x, y)w + f (x, y), (x, y) ∈ Ω, (5)

1(x, 0) = 1(x,Y), x ∈ [0,X], (6)

1(0, y) = ψ(y), y ∈ [0,Y], (7)

u(x, y) = φ(y) +

x∫
0

1(ξ1, y)dξ1, (8)

w(x, y) = φ
′′

(y) +

x∫
0

∂21(ξ1, y)
∂y2 dξ1. (9)

We reintroduce the notation z(x, y) = ∂1(x,y)
∂x and the problem (5)-(9)reduced to a family of periodic

boundary value problems for a system of ordinary differential equations of the form

∂z
∂y
= A(x, y)z + C(x, y)w + f (x, y), (x, y) ∈ Ω, (10)
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z(x, 0) = z(x,Y), x ∈ [0,X], (11)

1(x, y) = ψ(y) +

x∫
0

z(ξ, y)dξ, y ∈ [0,Y], (12)

u(x, y) = φ(y) + ψ(y)x +

x∫
0

ξ∫
0

z(ξ1, y)dξ1dξ, (13)

w(x, y) = φ
′′

(y) + ψ
′′

(y)x +

x∫
0

ξ∫
0

∂2z(ξ1, y)
∂y2 dξ1dξ, (14)

To solve problem (10)-(14) for the step h > 0 : Nh = Y we partition [0,Y) =
N⋃

r=1
[(r− 1)h, rh),N = 1, 2, ... [2].

In this case, the area Ω is divided into N parts. By ur(x, y), ωr(x, y), vr(x, y), 1r(x, y) we denote, respectively,
the restrictions of the functions v(x, y), 1(x, y),u(x, y),w(x, y) on Ωr = [0,X] × [(r − 1)h, rh), r = 1,N. By
λr(x) we denote the value of the function zr(x, y) at y = (r − 1)h, i.e. λr(x) = zr(x, (r − 1)h) and denote
vr(x, y) = zr(x, y) − λr(x), r = 1,N. We obtain an equivalent boundary value problem for the unknown
functions λr(x):

∂vr

∂y
= A(x, y)vr + A(x, y)λr(x) + C(x, y)wr + f (x, y), (x, y) ∈ Ωr, r = 1,N, (15)

vr(x, (r − 1)h) = 0, x ∈ [0,X], r = 1,N, (16)

λ1(x) − λN(x) − lim
y→Y−0

vN(x, y) = 0, x ∈ [0,X], (17)

λs(x) + lim
t→sh−0

vs(x, y) − λs+1(x) = 0, x ∈ [0,X], s = 1,N − 1. (18)

1(x, y) = ψ(y) +

x∫
0

vr(ξ, y)dξ +

x∫
0

λr(ξ, y)dξ, (19)

ur(x, y) = φ(y) + ψ(y)x +

x∫
0

ξ∫
0

vr(ξ1, y)dξ1dξ +

x∫
0

ξ∫
0

λr(ξ1)dξ1dξ, (20)
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wr(x, y) = φ
′′

(y) + ψ
′′

(y)x +

x∫
0

ξ∫
0

∂2vr(ξ1, y)
∂y2 dξ1dξ, (21)

where (x, y) ∈ Ωr, r = 1,N, (18)- the condition of gluing functions in the internal lines of the partition.
Problem (15),(16) for fixed λr(x),wr(x, y) is a one-parameter family of Cauchy problems for systems of

ordinary differential equations, where x ∈ [0,Y], which is equivalent to the integral equation

vr(x, y) =

y∫
(r−1)h

A(x, τ)vr(x, τ)dτ +

y∫
(r−1)h

A(x, τ)dτ · λr(x) +

y∫
(r−1)h

(C(x, τ)wr + f (x, τ))dτ, (22)

Instead of vr(x, τ) we substitute the corresponding right-hand side of (22) and repeating this process ν
(ν = 1, 2, ...) times we obtain

vr(x, y) = Dνr(x, y)λr(x) + Fνr(x, y,wr) + Gνr(x, y, vr), r = 1,N, (23)

where

Dνr(x, y) =
ν−1∑
j=0

y∫
(r−1)h

A(x, τ1)dτ1 . . .

τ j∫
(r−1)h

A(x, τ j+1)dτ j+1 . . . dτ1,

Fνr(x, y,wr) =

y∫
(r−1)h

[
C(x, τ1)wr(x, τ1) + f (x, τ1)

]
dτ1

+

ν−1∑
j=1

y∫
(r−1)h

A(x, τ1) . . .

τ j−1∫
(r−1)h

A(x, τ j)

τ j∫
(r−1)h

[
C(x, τ j+1)wr(x, τ j+1) + f (x, τ j+1)

]
dτ j+1dτ j . . . dτ1,

Gνr(x, y, vr) =

y∫
(r−1)h

A(x, τ1) . . .

τν−2∫
(r−1)h

A(x, τν−1)

τν−1∫
(r−1)h

A(x, τν)vr(x, τν)dτνdτν−1 . . . dτ1,

τ0 = y, r = 1,N. Passing to the limit as y→ rh − 0 in (23) we have

lim
y→rh−0

vr(x, y) = Dνr(x, rh)λr(x) + Fνr(x, rh,wr) + Gνr(x, rh, vr),

x ∈ [0, ω], r = 1,N. Substituting in (17),(18) instead of lim
y→rh−0

vr(x, y), r = 1,N, the corresponding to them

right-hand sides for the unknown functions λr(x), r = 1,N, we obtain the system of functional equations:

Qν(x, h)λ(x) = −Fν(x, h,w) − Gν(x, h, v), (24)
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where

Qν(x, h) =



I 0 . . . 0 −[I +DνN(x,Nh)]
I +Dν1(x, h) −I . . . 0 0

0 I +Dν2(x, 2h) . . . 0 0
0 0 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . I +Dν,N−1(x, (N − 1)h) −I


,

Fν(x, h,w) = (−FνN(x,Nh,wN),Fν1(x, h,w1), . . . ,Fν,N−1(x, (N − 1)h,wN−1)),

Gν(x, h, v) = (−GνN(x,Nh, vN),Gν1(x, h, v1), . . . ,Gν,N−1(x, (N − 1)h, vN−1)),

and I is the unit matrix of dimension of n.
For finding a system of three functions {λr(x), vr(x, y),wr(x, y), r = 1,N,we have a closed system consisting

of equations (24), (23) and (21).
Assuming the invertibility of the matrix Qν(x, h) for all x ∈ [0,X], from equation (24), where vr(x, y) = 0,

wr(x, y) = φ′′(t), we find λ(0)(x) = (λ(0)
1 (x), λ(0)

2 (x), . . . , λ(0)
N (x))′ :

λ(0)(x) = −[Qν(x, h)]−1
{
Fν(x, h, φ̈) + Gν(x, h, 0)

}
.

Using equation (23), at λr(x) = λ(0)
r (x) we find the functions {v(0)

r (x, y)}, r = 1,N, i.e.

v(0)
r (x, y) = Dνr(x, y)λ(0)

r (x) + Fνr(x, y, φ̇) + Gνr(x, y, 0)

. The functions 1(0)
r (x, y),u(0)

r (x, y),w(0)
r (x, y), r = 1,N, are defined from the relations

1
(0)
r (x, y) = ψ(y) +

x∫
0

v(0)
r (ξ, y)dξ +

x∫
0

λ(0)
r (ξ, y)dξ,

u(0)
r (x, y) = φ(y) + ψ(y)x +

x∫
0

ξ∫
0

v(0)
r (ξ1, y)dξ1dξ +

x∫
0

ξ∫
0

λ(0)
r (ξ1)dξ1dξ.

w(0)
r (x, y) = φ

′′

(y) + ψ
′′

(y)x +

x∫
0

ξ∫
0

∂v(0)
r (ξ1, y)
∂y2 dξ1dξ,

where (x, y) ∈ Ωr, r = 1,N.
For the initial approximation of problem (15)-(21) we take the system {λ(0)

r (x), v(0)
r (x, t), w(0)

r (x, y), r = 1,N
and construct successive approximations on the following algorithm :

Step 1. A) Assuming that wr(x, y) = w(0)
r (x, y), r = 1,N, we find the first approximations ofλr(x), ṽr(x, y), r =

1,N, by solving the problem (15)-(18). Taking λ(1,0)
r (x) = λ(0)

r (x), v(1,0)
r (x, y) = v(0)

r (x, y),we find the system of
couples {λ(1)

r (x), v(1)
r (x, y)}, r = 1,N, as the limit of the sequence λ(1,m)

r (x), v(1,m)
r (x, y), defined in the following

way:
Step 1.1. Assuming the invertibility of the matrix Qν(x, h), x ∈ [0,X], from equation (24), where vr(x, y) =

v(1,0)
r (x, y), we find λ(1,1)(x) = (λ(1,1)

1 (x), λ(1,1)
2 (x), . . . , λ(1,1)

N (x))′ :

λ(1,1)(x) = −[Qν(x, h)]−1
{
Fν(x, h,w(0) + Gν(x, h, v(1,0))

}
.
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Substituting the found λ(1,1)
r (x), r = 1,N, in (23) we find

v(1,1)
r (x, y) = Dνr(x, y)λ(1,1)

r (x) + Fνr(x, y,w(0)) + Gνr(x, y, v(1,0)).

Step 1.2. From equation (24), where vr(x, y) = v(1,1)
r (x, y), we define

λ(1,2)(x) = −[Qν(x, h)]−1
{
Fν(x, h,w(0)) + Gν(x, h, v(1,1))

}
.

Using as expression (20) again, we find the functions {v(1,2)
r (x, y)}, r = 1,N,

v(1,2)
r (x, y) = Dνr(x, y)λ(1,2)

r (x) + Fνr(x, y,w(0)) + Gνr(x, y, v(1,1)).

On step (1,m) we obtain the system of couples {λ(1,m)
r (x), v(1,m)

r (x, y)}, r = 1,N.
Suppose that the solution of problem (15)-(18) is a sequence of systems of couples

1
(1,m)
r (x, y)}, {λ(1,m)

r (x), v(1,m)
r (x, y)}

which are defined for x ∈ [0,X], (x, y) ∈ Ωr respectively, and converge as m → ∞ to continuous functions
λ(1)

r (x), v(1)
r (x, y), r = 1,N.

B) The functions 1(1)
r (x, y),w(1)

r (x, y),u(1)
r (x, y), r = 1,N, are defined from the relations

1
(1)
r (x, y) = ψ(y) +

x∫
0

v(1)
r (ξ, y)dξ +

x∫
0

λ(1)
r (ξ, y)dξ,

u(1)
r (x, y) = φ(y) + ψ(y)x +

x∫
0

ξ∫
0

v(1)
r (ξ1, y)dξ1dξ +

x∫
0

ξ∫
0

λ(1)
r (ξ1)dξ1dξ,

w(1)
r (x, y) = φ

′′

(y) + ψ
′′

(y)x +

x∫
0

ξ∫
0

∂v(1)
r (ξ1, y)
∂y

dξ1dξ,

where (x, y) ∈ Ωr, r = 1,N.
Step 2. A) Assuming that wr(x, y) = w(1)

r (x, y), r = 1,N, we find the second approximations of
λr(x), vr(x, y), r = 1,N, by solving problem (15)-(18). Taking

λ(2,0)
r (x) = λ(1)

r (x), v(2,0)
r (x, y) = v(1)

r (x, y),

we find the system of couples {λ(2)
r (x), v(2)

r (x, y)}, r = 1,N, as the limit of the sequence λ(2,m)
r (x), v(2,m)

r (x, y),
defined in the following way:

Step 2.1. Assuming the invertibility of the matrix Qν(x, h) from equation (24), where vr(x, y) = v(2,0)
r (x, y),

we find λ(2,1)(x) = (λ(2,1)
1 (x), λ(2,1)

2 (x), ..., λ(2,1)
N (x))′ :

λ(2,1)(x) = −[Qν(x, h)]−1
{
Fν(x, h,w(1)) + Gν(x, h, v(2,0))

}
.

Substituting the found λ(2,1)
r (x), r = 1,N, in (23) we find

v(2,1)
r (x, y) = Dνr(x, y)λ(2,1)

r (x) + Fνr(x, y,w(1)) + Gνr(x, y, v(2,0)).
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Step 2.2. From equation(24), where vr(x, y) = v(2,1)
r (x, y), we define

λ(2,2)(x) = −[Qν(x, h)]−1
{
Fν(x, h,w(1)) + Gν(x, h, v(2,1))

}
.

Using the expression (23), we find the functions {v(2,2)
r (x, y)}, r = 1,N :

v(2,2)
r (x, y) = Dνr(x, y)λ(2,2)

r (x) + Fνr(x, y,w(1)) + Gνr(x, y, v(2,1)).

On step (2,m) we obtain the system of couples {λ(2,m)
r (x), v(2,m)

r (x, y)}, where (x, y) ∈ Ωr, r = 1,N.
Suppose that the solution of problem (15)-(18) is a sequence of systems of couples {λ(2,m)

r (x), v(2,m)
r (x, y)}

which as m→∞ converges to {λ(2)
r (x), v(2)

r (x, y)}, r = 1,N.
B) The functions 1(2)

r (x, y),u(2)
r (x, y),w(2)

r (x, y), r = 1,N, are defined from the relations

1
(2)
r (x, y) = ψ(y) +

x∫
0

v(2)
r (ξ, y)dξ +

x∫
0

λ(2)
r (ξ, y)dξ,

u(2)
r (x, y) = φ(y) + ψ(y)x +

x∫
0

ξ∫
0

v(2)
r (ξ1, y)dξ1dξ +

x∫
0

ξ∫
0

λ(2)
r (ξ1)dξ1dξ,

w(2)
r (x, y) = φ

′′

(y) + ψ
′′

(y)x +

x∫
0

ξ∫
0

∂v(2)
r (ξ1, y)
∂y

dξ1dξ,

where (x, y) ∈ Ωr, r = 1,N. Continuing the process, at the k-th step we obtain the system {λ(k)
r (x), v(k)

r (x, y),
w(k)

r (x, y), u(k)
r (x, y)}, 1(k)

r (x, y)}, r = 1,N.
The conditions of the following statement ensure the feasibility and convergence of the proposed

algorithm, as well as the unique solvability of problem (15)-(21).
Theorem 1. Let for some 0 ≤ µ < 1, h > 0 : Nh = Y,N = 1, 2, ..., and ν, ν ∈ N, (nN × nN) the matrix Qν(x, h)

be invertible for all x ∈ [0,X] let the following inequalities be satisfied

1) ∥[Qν(x, h)]−1
∥ ≤ γν(x, h); 2) qν(x, h) =

{
1 + γν(x, h)

ν∑
j=1

(α(x)h) j

j!

}
(α(x)h)ν

ν! ≤ µ.

Then there exists a unique solution (λ∗r, v∗r) to problem (15)-(21) and the following estimates are valid

max
{
max
r=1,N

∥λ∗r(x) − λ(k)
r (x)∥ +max

r=1,N
sup

y∈[(r−1)h,rh)
∥v∗r(x, y) − v(k)

r (x, y)∥,max
r=1,N

sup
y∈[(r−1)h,rh)

∥∥∥∥∂2v∗r(x, y)
∂y2 −

∂2v(k)
r (x, y)
∂y2

∥∥∥∥,
x∫

0

(
max
r=1,N

∥λ∗r(x1) − λ(k)
r (x1)∥ +max

r=1,N
sup

y∈[(r−1)h,rh)
∥v∗r(x1, y) − v(k)

r (x1, y)∥
)
dx1

}
≤

≤

βν(x, h)
x∫

0
βν(ξ, h)dξ

)k−1

(k − 1)!

(
e

x∫
0
βν(ξ,h)dξ

x∫
0

max
{
χν(ξ, h), ϕν(ξ, h)

}
dξmax

{
[ max

y∈[0,T]
∥φ′′(y)∥+∥ f ∥0], [max

t∈[0,T]
∥φ′′′(y)∥+∥ f ′∥0]

}
,

max
r=1,N

sup
y∈[(r−1)h,rh]

∥w∗r(x, y) − w(k)
r (x, y)∥ ≤

x∫
0

max
{
max
r=1,N

∥λ∗r(ξ) − λ(k)
r (ξ)∥ +max

r=1,N
sup

y∈[(r−1)h,rh)
∥v∗r(ξ, t) − v(k)

r (ξ, y)∥,
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max
r=1,N

sup
y∈[(r−1)h,rh)

∥∥∥∥∂2v∗r(ξ, y)
∂y2 −

∂2v(k)
r (ξ, y)
∂y2

∥∥∥∥}dξ, k = 1, 2, ...

where α(x) = max
y∈[0,T]

∥A(x, y)∥, σ(x) = max
y∈[0,Y]

∥C(x, y)∥, δν(x, h) =
{
1 + γν(x, h)

ν∑
j=1

(α(x)h) j

j!

}
h
ν−1∑
j=0

(α(x)h) j

j!

θν(x, h) =
{
1 + γν(x, h)

ν∑
j=0

(α(x)h) j

j!

}
h
ν−1∑
j=0

(α(x)h) j

j!
,

ρν(x, h) =

x∫
0

ξ∫
0

[
α
′

(ξ1) max{σ(ξ1), 1}γν(ξ1, h)h
ν−1∑
j=0

(α(ξ1)h) j

j!
+max{σ

′

(ξ1), 1}
]
dξ1dξ

βν(x, h) = max
{[δν(x, h)σ(x)

1 − qν(x, h)
+
[ δν(x, h)
1 − qν(x, h)

(α(x)h)ν

ν!
+ h

ν−1∑
j=0

(α(x)h) j

j!

]
γν(x, h)

]
σ(x),

x∫
0

[
α(ξ)
(
1 + δν(ξ, h)

)
+ 1
]
(ξ)σ(ξ)dξ

}
,

χν(x, h) =
[ δν(x, h)
1 − qν(x, h)

[
1 + γν(x, h)

(α(x)h)ν

ν!

]
+ γν(x, h)h

ν−1∑
j=0

(α(x)h) j

j!

]
σ(x)ρν(x, h)+

+
[ 1
1 − qν(x, h)

[
1 + γν(x, h)

ν∑
j=1

(α(x)h) j

j!
+ γν(x, h)qν(x, h)

]
+ γν(x, h)

(α(x)h)ν

ν!

]
δν(x, h),

ϕν(x, h) =

x∫
0

ξ∫
0

{
α(ξ1)(1 + δν(ξ1, h)) + 1

}
σ(ξ1)ρν(ξ1, h)dξ1dξ.

The proof of Theorem 1 is similar to the proof of Theorem 1 from [1]. By virtue of the equivalence of
problems (1)-(4) and (15)-(21) from Theorem 1 follows

Theorem 2. Let the assumptions of Theorem 1 be satisfied. Then problem (1)-(4) as a unique solution u∗(x, y)
and the evaluation is performed.

max
(

max
r=1,N

sup
t∈[(r−1)h,rh)

∥
∂u∗r(x, y)
∂x

−
∂u(k)

r (x, y)
∂x

∥,

max
r=1,N

sup
y∈[(r−1)h,rh)

∥
∂u∗r(x, y)
∂y

−
∂u(k)

r (x, y)
∂y

∥,max
r=1,N

sup
y∈[(r−1)h,rh)

∥u∗r(x, y) − u(k)
r (x, y)∥

)
≤

≤ βν(x, h)
∞∑

j=k−1

1
j!

( x∫
0

β(ξ, h)dξ
) j x∫

0

max
{
χ(ξ, h), ϕ(ξ, h),

ξ1,h∫
0

χ(ξ1)dξ1

}
dξ×

×max
{

max
y∈[0,T]

∥φ
′′

(y)∥ + ∥ f ∥0, max
y∈[0,Y]

∥φ
′′′

(y)∥ + ∥ f
′

∥0

}
.
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