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Abstract. We prove a number of nonexistence theorems for metrics projectively and holomorphically
projectively equivalent to parabolic metrics and metrics of finite volume of complete Riemannian and
Kähler manifolds, respectively.

1. Introduction

Two metrics on a manifold are said to be pointwise projectively equivalent if the geodesics of one are,
after suitable reparametrization, the geodesics of the other. Pointwise projectively equivalent metrics on
manifolds are a classical object of research in differential geometry. Back in 1865, Beltrami was the first
to formulate the problem of finding all pairs of projectively equivalent metrics. For example, his classical
theorem states that a metric projectively equivalent to a metric of constant curvature is itself a metric of
constant curvature. Later, projectively equivalent metrics were considered by Dini, Levi-Civita, Weyl,
Cartan, Thomas, Eisenhart, Shirokov, Sinyukov, Solodovnikov, Petrov, Lichnerowicz, Aminova, Mikeš,
Venzi, Formella, Sobchuk, Voss, Taber, Pogorelov, Matveev and other geometers. The theory of pointwise
projectively equivalent metrics has a very long and interesting history, which is described in more detail
in the voluminous monograph [20] of the authors of this article. Moreover, many beautiful local tensor
properties of projectively equivalent metrics can be found in this monograph and the following paper of
last years [3–6, 16, 17, 21, 28, 29, 31].

However, the global behavior of projectively equivalent metrics is not understood completely. To make
up for this, we will consider metrics that are pointwise projectively equivalent to the metrics of complete
non-compact Riemannian manifolds.

We also consider Kähler metrics that are pointwise holomorphically projectively equivalent to the met-
rics of complete Kähler manifolds (see details in [13], [19] and [24]). In both cases, we mainly focus on
parabolic Riemannian and Kähler manifolds and, in particular, manifolds of finite volume. By applying
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Liouville-type theorems for subharmonic and superharmonic functions on complete non-compact Rieman-
nian manifolds, we prove some vanishing theorems for nontrivial projective transformations of metrics
of complete Riemannian manifolds and nontrival holomorphic projective transformations of metrics of
complete Kähler manifolds. In particular, we generalize theorems from [8] and [12] proved for compact
Riemannian manifolds. All results of this article belong to the generalized Bochner technique that falls under
the general heading of “curvature and topology of a complete Riemannian manifold” (see, for example,
[10], [15], [25]). On the other hand, the classical Bochner technique works on compact Riemannian manifolds
(see [35] and [23, p. 333–363], for instance). More details about the Bochner technique and its generalization
can be found in the monograph [33].

This paper is organized as follows. In the next section of the paper, we consider subharmonic and
superharmonic functions on complete noncompact parabolic Riemannian manifolds and, in particular,
manifolds of finite volume. In the other two sections, we give applications of these results to the theories of
projectively equivalent Riemannian metrics on a connected non-compact smooth manifold and holomor-
phically projective equivalent Kähler metrics on a connected manifold with an almost complex structure.
More precisely, we shall prove a number of nonexistence theorems for metrics projectively and holomor-
phically projectively equivalent to parabolic metrics and metrics of finite volume of complete Riemannian
and Kähler manifolds, respectively.

In the presented paper, we continue our research begun in [2] and [27].

2. Vanishing theorems for subharmonic and superharmonic functions on a complete Riemannian man-
ifold having finite volume

We further assume that (M, 1) is a connected bounderless complete Riemannian manifold with the Levi-
Civita connection ∇. The Laplace-Beltrami operator with respect to the Riemannian metric 1 is defined by
the identity ∆ := div◦∇. In this case, the function u : M→ R is said to be harmonic if it satisfies the equation
∆u = 0. In turn, when the equality is replaced by the inequality ∆u ≥ 0 we will say that u is subharmonic.
Finally reversing the inequality ∆u ≤ 0 we get a superharmonic function.
Remark 2.1 Easy application of the Hoph maximum principle shows that (see [35, p. 30]): every harmonic
(subharmonic, superharmonic) function is constant on a compact manifold (M, 1). Therefore, throughout
the article, we will consider these functions defined on complete non-compact manifolds.

At the same time, we know a similar statement from [1] about superharmonic functions on a complete
noncompact Riemannian manifold with finite volume.

Theorem 2.1. A complete Riemannian manifold of finite volume does not carry non-constant positive superharmonic
functions.

We recall here that a complete Riemannian manifold is said to be parabolic if it admits no non-constant
positive superharmonic function (see [11] and [10, p. 313], for instance). Then a complete Riemannian
manifold of finite volume is an example of a parabolic manifold.

Some of the most natural spaces of smooth functions on a complete manifold (M, 1) are those consisting
of Lp-functions on (M, 1), denoted this space by Lp(M, 1), where integration is defined with respect to the

Riemannian measure d vol1 =
√

det
(
1i j

)
dx1
∧ . . . ∧ dxn where x1, . . . , xn is a local coordinate system on

(M, 1). Moreover, the Lp-norm of a function or a tensor is denoted by
∫

M ∥ · , · ∥
pd vol1 where to simplify the

notation, we will write ∥ · , · ∥ =
√
1 ( · , · ).

Yau proved the following famous theorem: let u be a nonnegative smooth subharmonic function on a
complete Riemannian manifold (M, 1), then

∫
M updvol1 = +∞ for any p > 1, unless u is a constant function

(see Theorem 3 in [37]). In particular, let u ∈ Lp(M, 1) be a positive subharmonic function, then by Yau’s
theorem it can be a positive constant C > 0 for some p > 1. In this case, the inequality

∫
M upd vol1 < +∞

becomes Cp
∫

M d vol1 < +∞ and, therefore, Vol (M, 1) < +∞. Then we can formulate the following statement
which is a modification of Yau’s theorem.
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Theorem 2.2. If a complete Riemannian manifold (M, 1) admits a nonnegative subharmonic function u such that
u ∈ Lp(M, 1) for some p > 1, then u must be identically constant. Moreover, in this case (M, 1) is a manifold of finite
volume, unless the constant is zero.

Remark 2.2 Obviously, a statement similar to Theorem 2.2 is also true for harmonic Lp-functions on a
complete manifold (M, 1).

Let u be a subharmonic function defined on a complete manifold of finite volume (M, 1). Then the
following theorem holds (see [36, p. 318]).

Theorem 2.3. Let (M, 1) be a complete manifold of finite volume. If a subharmonic function u satisfies the integral
inequality

∫
M ∥ du ∥2 d vol1 < ∞ then it is a constant function.

Convex functions are an example of subharmonic functions. In addition, we recall here that u ∈ C2M
is called a convex function if its Hessian Hess1u := ∇ du is positive semi-definite. In this case, ∆u =
trace1 (∇ du) ≥ 0 and, therefore, u is a subharmonic function. It’s obvious that the existence of subharmonic
functions is a much weaker condition than the existence of convex functions.

The following theorem of Bishop and O’Neil is well known: if (M, 1) is a connected complete Riemannian
manifold having finite volume, then all convex functions on (M, 1) are constant (see [7]). On the other hand,
Yau gave in [36] a proof of another wonderful result: if (M, 1) is a complete Riemannian manifold on which
there exists a non-constant convex function then the volume of the manifold is infinite. In this case, taking
into account Theorem 2.2, we can conclude that the following statement holds.

Corollary 2.4. Let (M, 1) be a complete Riemannian manifold. Then there no non-constant nonnegative convex
Lp-functions for any p > 1.

3. Applications to the theory of pointwise projectively equivalent metrics

Let (M, 1) be a connected Riemannian manifold (without boundary) of dimension n ≥ 3. We say that
another metric 1̄ on M is pointwise projectively equivalent to 1, if each geodesic in (M, 1) is a geodesic in
(M̄, 1̄), with possibly different parameterizations. As it was known, the two Levi-Civita connections∇ and ∇̄
of 1 and 1̄, respectively, have the same geodesics, if and only if these connections are related by Levi-Civita
equation (see [14], [9, p. 133] and [20, p. 329])

∇̄ = ∇ + idTM ⊗ dψ + dψ ⊗ idTM (1)

for the scalar function

ψ =
1

2 (n + 1)
ln

(
det 1̄
det 1

)
. (2)

A geodesic equivalence is called trivial or, in the other words, affine equivalence if ∇̄ = ∇. In this case, the
Riemann curvatures of 1̄ and 1 are equal.

We obtain from (1) that the Ricci tensors Ric and Ric of 1 and 1̄, respectively, are related by equation
(see [14], [9, p. 135] and [20, p. 299])

Ric = Ric + (n − 1)
(
∇ dψ − dψ ⊗ dψ

)
. (3)

The identity (3) can be rewritten in the form

Hess1ψ =
1

n − 1

(
Ric − Ric

)
+ dψ ⊗ dψ. (4)

If we suppose now that ψ is a non-constant function and Ric ≥ Ric, then from (4) we conclude that the
Hessian ofψ is positive semi-definite and, therefore,ψ is a convex function. Taking into account the theorem
of Bishop and O’Neil, we can formulate the following statement.
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Theorem 3.1. Let (M, 1) be a connected complete n-dimensional (n ≥ 3) Riemannian manifold having finite volume.
Assume that 1̄ is another metric on (M, 1) which is pointwise projectively equivalent to 1. If Ric ≥ Ric for the Ricci
curvatures of 1̄ and 1, respectively, then the geodesic equivalence is trivial.

Let the geodesic equivalence defined by equations (1) be nontrivial, then the function ψ defined by
formula (2) is a non-constant convex function. Taking into account Yau’s theorem, we can formulate the
following statement.

Theorem 3.2. Let (M, 1) be a connected complete Riemannian manifold of dimension n ≥ 3. Let 1̄ be another
Riemannian metric on (M, 1) which is pointwise projectively equivalent to 1. If the geodesic equivalence is not trivial
and Ric ≥ Ric for the Ricci curvatures of 1̄ and 1, respectively, then (M, 1) has an infinite volume.

From (4) we obtain the following equation

∆ψ =
1

n − 1

(
trace1Ric − s

)
+

∥∥∥ dψ
∥∥∥2

(5)

where ∆ψ = trace1
(
∇ dψ

)
and s = trace1Ric is the scalar curvature of (M, 1). If we suppose that trace1Ric ≥ s

(and, in particular, Ric ≥ Ric), then from (5) we obtain ∆ψ ≥ 0. In this case, ψ is a subharmonic function. If
it belongs to Lp(M, 1) for some 1 < p < +∞, then by Theorem 2.2 the manifold (M, 1) has a finite volume. At
the same time, we proved above that (M, 1) has an infinite volume if Ric ≥ Ric. Therefore, we can formulate
the corollary of our Theorem 2.1.

Corollary 3.3. Let (M, 1) be a connected complete Riemannian manifold of dimension n ≥ 3. Let 1̄ be another metric
on (M, 1) such that Ric ≥ Ric for the Ricci curvatures of the metrics 1̄ and 1, respectively. If the scalar function ψ
defined by formula (2) satisfies the condition

∫
M ψpdvol1 < +∞ for some 1 < p < +∞, then 1̄ and 1 can not be

pointwise projectively equivalent.

Remark 3.1 In contrast to our results, it was shown in [8] that if two Riemannian metrics 1̄ and 1 are
pointwise projectively equivalent and their Ricci curvatures satisfy Ric ≤ Ric, then the geodesic equivalence
is trivial provided that 1 is complete. In this case, ∇̄ = ∇ and, therefore, the Riemann curvatures of 1 and 1̄
are equal. It is easy to conclude that the projective equivalence is an affine equivalence.

Let now (M, 1) be a complete manifold of finite volume. Then from Theorem 2.2 we conclude that if the

subharmonic function ψ defined by formula (2) satisfies the integral inequality
∫

M

∥∥∥ dψ
∥∥∥2

d vol1 < ∞, then
it is a constant function. Therefore, the following theorem holds.

Theorem 3.4. Let (M, 1) be a connected complete Riemannian manifold of dimension n ≥ 3 having finite volume.
Suppose that there is another metric 1̄ that is pointwise projectively equivalent to the metric 1. If trace1Ric ≥ s for
the Ricci tensor Ric and the scalar curvature s of 1̄ and 1, respectively, and

∥∥∥ dψ
∥∥∥ ∈ L2(M, 1) for the scalar function

(2), then the metrics 1̄ and 1 are affine equivalent. Moreover, if (M, 1) is irreducible, then 1̄ = const · 1.

Remark 3.2 Recall that a Riemannian manifold (M, 1) is irreducible if it cannot be represented as a non-trivial
Riemannian product. It is irreducible if and only if its holonomy group Hol (1x) acts irreducibly on TxM
for any x ∈ M. In this case, if φ ∈ C∞S2M is parallel with respect to the Levi-Civita connection of 1, then
φ = c · 1 for some constant c.

The equality (2) can be rewritten in the form

ψ =
1

n + 1
ln

(
dvol1̄
dvol1̄

)
(6)

where d vol1̄ =
√

det
(
1̄i j

)
dx1
∧ . . . ∧ dxn is the Riemannian measure of 1̄. From (6) we obtain the equality

d vol1̄ = e(n+1)ψd vol1. (7)
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which is true at every point x ∈ M. In this case, if we denote by f = eψ > 0, then (7) can be rewritten in the
form

d vol1̄ = f (n+1)d vol1. (8)

Therefore, if we assume that the complete Riemannian manifold (M̄, 1̄) has a finite volume, then from (8)
we obtain the inequality ∫

M
f (n+1)d vol1 < ∞.

Moreover, in this case (5) can be rewritten in the form

∆ f =
1

n − 1

(
Ric − Ric

)
f +

2
f

∥∥∥ d f
∥∥∥2
. (9)

If we suppose here that trace1Ric ≥ s, then from (9) we obtain ∆ f ≥ 0. Then f is a positive subharmonic
function such that f ∈ L(n+1) (M, 1). Taking into account Theorem 2.1, we can conclude that the following
theorem holds.

Theorem 3.5. Let 1̄ and 1 be two complete Riemannian metrics on a connected smooth manifold M such that they
are pointwise projectively equivalent and their Ricci curvature Ric and scalar curvature s satisfy the inequality
trace1Ric ≥ s. If the Riemannian manifold (M̄, 1̄) has a finite volume, then the geodesic equivalence is trivial.
Moreover, if (M, 1) is irreducible, then 1̄ = const · 1.

On the other hand, if we assume now that ψ = − ln f then

f =
(

det 1
det 1̄

) 1
2 (n+1)

. (10)

In this case, (4) can be rewritten in the form

∇ d f =
1

n − 1

(
Ric − Ric

)
f . (11)

Therefore, the inequalities ∇ d f ≥ 0 and Ric ≥ Ric are equivalent. Taking into account Remark 3.1, we can
formulate the following statement.

Corollary 3.6. Let (M, 1) be a connected complete n-dimensional (n ≥ 3) Riemannian manifold. Suppose that 1̄ is
another metric on (M, 1) such that function (10) is a non-constant convex function, then the metrics 1 and 1̄ are not
pointwise projectively equivalent.

In turn, from (11) we obtain

∆ f =
1

n − 1

(
trace1Ric − s

)
f . (12)

If trace1Ric ≤ s then from (12) we obtain the inequality∆ f ≤ 0. Then f is a positive superharmonic function.
In this case, we can formulate the following theorem in accordance with Theorem 2.3.

Theorem 3.7. Let (M, 1) be a connected complete n-dimensional (n ≥ 3) parabolic Riemannian manifold (in particu-
lar, a complete manifold of finite volume). Suppose there is another metric 1̄ on (M, 1) which is pointwise projectively
equivalent to the metric 1. If trace1Ric ≤ s for the Ricci tensor Ric and the scalar curvature s of 1̄ and 1, respectively,
then the metrics 1̄ and 1 are affine equivalent. Moreover, if (M, 1) is irreducible, then 1̄ = const · 1.

Remark 3.2 Our Theorems 2.3, 3.1 and 3.2 generalize similar results from [12] and [8], which proved in the
case of compact Riemannian manifolds.
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4. Applications to the theory of pointwise holomophically projectively equivalent metrics

Let (M, J) be an almost complex manifold, where M is a connected smooth 2n-dimensional manifold
(without boundary) and J is a smooth section of the tensor bundle T∗M⊗TM such that J2 = ε idTM for ε = −1
in the classical (elliptic) and ε = +1 in the hyperbolic case. The Riemannian metric 1 on (M, J) is Kähler if
1(J, J) = ε 1 and ∇ J = 0 for the Levi-Civita connection ∇ of the metric 1. The triplet (M, 1, J) is called a Kähler
manifold (see [20, p. 160] and [11] for instance).

Remark 4.1 It is well known (see [34]) that a projective diffeomorphism of Kähler manifolds under
preserving the structure is an affine mapping. Therefore, for Kähler manifolds we consider not projective,
but more general holomorphically projective transformations.

A curve γ : I ⊂ R→ M is said to be analytically planar or holomorphically almost geodesic (see [30] and [20,
p. 485]) if any its tangent vector Xx after translation along this curve from a point x ∈ γ to a point y ∈ γ
belongs to the linear span of the vectors Xy and (JX)y.

Two Kähler metrics 1 and 1̄ are holomorphically projectively equivalent if the identity mapping id : (M, 1, J)→
(M, 1̄, J) is holomorphically projective (see [30] and [20, p. 654]) which is equivalent to the fact that any curveγ
on M is analytically planar of the metric 1̄ if and only if it is analytically planar of the metric 1 have general
analytically planar curves. By definition, two Kähler metrics 1 and 1̄ are holomorphically projectively
equivalent if their Levi-Civita connections ∇ and ∇̄ satisfy (see [13], [19], [20, p. 483] and etc.)

∇̄ = ∇ + idTM ⊗ ψ̄ + ψ̄ ⊗ idTM + dψ ⊗ J + J ⊗ dψ (13)

where ψ̄ (X) = dψ (JX) for an arbitrary vector field X and the scalar function

ψ =
1

2 (n + 2)
ln

(
det 1̄
det 1

)
.

From (13) we obtain the differential equations (see [19] and [20, p. 485])

Ric = Ric + (n + 2)
(
∇ dψ − dψ ⊗ dψ − ε

((
dψ

)
J
)
⊗

((
dψ

)
J
))

(14)

where dψ = (n + 2)−1 d ln
(
dvol1

/
dvol1̄

)
. Equations (14) can be rewritten in the form

Hess1ψ =
1

n + 2

(
Ric − Ric

)
+ dψ ⊗ dψ + ε

((
dψ

)
J
)
⊗

((
dψ

)
J
)
. (15)

In this case, we can formulate statement which is analog of our Theorem 3.1.

Theorem 4.1. Let (M, 1, J) be a connected 2n-dimensional (n ≥ 2) complete Kähler manifold of hyperbolic type of
finite volume and 1̄ be another Kähler metric on (M, J) such that it is pointwise holomorphically projectively equivalent
to 1. If Ric ≥ Ric for the Ricci curvatures of 1̄ and 1, respectively, then these metrics are affine equivalent.

Taking the convolutions of the left- and right-hand sides of (15) with components of the tensor 1−1 we
obtain the equation

∆ψ =
1

n + 2

(
trace1Ric − s

)
+ 2

∥∥∥ dψ
∥∥∥2
. (16)

Then, we can formulate a statement which is analog of our Theorem 3.4.

Theorem 4.2. Let (M, 1, J) be a connected 2n-dimensional (n ≥ 2) complete Kähler manifold of finite volume and
1̄be another Kähler metric on (M, 1, J) such that it is pointwise holomorphically projectively equivalent to 1 and
∥ dψ ∥ ∈ L2(M, 1) for dψ = (n + 2)−1d ln (dvol1/dvol1̄). If trace1Ric ≥ s for the Ricci tensor Ric of 1̄ and the scalar
curvature s of 1, then the metrics 1̄ and 1 are affine equivalent.
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In turn, from (16) we obtain

∆ f =
1

2 (n + 2)

(
s − trace1Ric

)
f

for ψ = −2 ln f . Therefore, if s ≤ trace1Ric then f is a positive superharmonic function. In this case, we can
formulate a statement which is analog of our Theorem 3.7.

Theorem 4.3. Let (M, 1, J) be a connected 2n-dimensional (n ≥ 2) complete parabolic Kähler manifold (in particular,
a complete Kähler manifold of finite volume) and 1̄ be another Kähler metric on (M, 1, J) such that it is pointwise
holomorphically projectively equivalent to 1. If trace1Ric ≥ s for the Ricci tensor Ric and the scalar curvature s of 1̄
and 1, respectively, then the metrics 1̄ and 1 are affine equivalent.

On the other hand, if (M, 1, J) has quasi-positive (resp. quasi-negative) Ricci curvature Ric and integrable
scalar curvature s, then (M, 1, J) is a parabolic manifold (see [22]). Therefore, we can formulate the following
statement.

Theorem 4.4. Let (M, 1, J) be a connected 2n-dimensional (n ≥ 2) complete Kähler manifold of quasi-positive (resp.
quasi-negative) Ricci curvature Ric and integrable scalar curvature s. Let 1̄ be another Kähler metric on (M, 1, J) such
that it is pointwise holomorphically projectively equivalent to 1 and its Ricci curvature Ric satisfies the inequality
trace1Ric ≥ s, then the metrics 1̄ and 1 are affine equivalent.

Remark 4.2 We recall that
(
M, 1, J

)
has quasi-positive Ricci curvature if the Ricci curvature nonnegative and

positive at one point of (M, 1, J). In turn, (M, 1, J) has quasi-negative Ricci curvature if the Ricci curvature
nonpositive and negative at one point of (M, 1, J).
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[5] N. Bokan, T. Šukilović, S. Vukmirović, Geodesically equivalent metrics on homogenous spaces, Czechosl. Math. J. 69:4 (2019)

945–954.
[6] A.V. Bolsinov, V.S. Matveev, Local normal forms for geodesically equivalent pseudo-Riemannian metrics, Trans. AMS 367:9 (2015)

6719–6749.
[7] R.L. Bishop, B. O’Neil, Manifolds of negative curvature, Trans. AMS, 145 (1969) 1–49.
[8] X. Chen, Z. Shen, A comparison theorem on the Ricci curvature in projective geometry, Ann. Global Anal. Geom. 23:2 (2003),

141–155.
[9] L.P. Eisenhart, Riemannian Geometry, Princeton Univ. Press, Princeton, N.J., 1949, 2d printing.

[10] A. Grigor’yan, Heat Kernel and Analysis on Manifolds, AMS/IP, Boston, 2009.
[11] J.L. Kazdan, Parabolicity and the Liouville property on complete Riemannian manifolds, Aspects Math. E10 (1987) 153–166.
[12] S. Kim, Volume and projective change of metrics, Trends in Mathematics Information Center for Math, Sci. 5:2 (2002) 81–85.
[13] K. Kiyohara, P. Topalov, On Liouville integrability of h-projectively equivalent Kähler metrics, Proc. AMS 139:1 (2011) 231–242.
[14] T. Levi-Civita, Sulle trasformazioni dello equazioni dinamiche, Ann. di Mat. (2) 24 (1896) 255–300.
[15] P. Li, Geometric Analysis, Cambridge Univ. Press, Cambridge, 2012.
[16] J. Mikeš, Equidistant Kähler spaces, Math. Notes 38 (1985) 855–858.
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