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Abstract. In this paper, we introduce regularization methods for finding a point, being not only a solution
for a monotone variational inequality problem but also a common zero for an infinite family of inverse
strongly monotone non-self operators of a closed convex subset in a real Hilbert space. In these methods,
only a finite number of the operators is used at each iteration step. Applications to the problem of common
fixed point for an infinite family of strictly pseudo-contractive non-self operators and the split feasibility and
fixed point problems are considered. As a particular case, a regularization extragradient iterative method
without prior knowledge of operator norms for solving the split feasibility problem (SFP) is obtained.
Numerical examples are given for illustration.

1. Introduction and preliminaries

Let H be a real Hilbert space with an inner product and a norm denoted by the symbols ⟨., .⟩ and
∥.∥, respectively, and let K be a closed convex subset in H. We denote the metric projection of H onto
K by PK. An operator A of K into H is called monotone if ⟨Ax − Ay, x − y⟩ ≥ 0 for all x, y ∈ K. If
⟨Ax − Ay, x − y⟩ ≥ α∥x − y∥2 for some positive real number α, then it is called an α-strongly monotone
non-self operator. If ⟨Ax − Ay, x − y⟩ ≥ λ∥Ax − Ay∥2, then it is said to be a λ-inverse strongly monotone
non-self operator.

The variational inequality problem is to find p ∈ K such that

⟨Ap, p − x⟩ ≤ 0, ∀x ∈ K. (1)

The set of solutions of the variational inequality problem is denoted by VI(K,A).
Let {Ai}

∞

i=1 be an infinite family of λi-inverse strongly monotone non-self operators of K such that
infi≥1 λi > 0.

The problem considered in this paper is to find a point

p∗ ∈ Γ := VI(K,A0) ∩ S, (2)
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assumed to be non-empty, where A0 is a monotone, non-self and L0-Lipschitz continuous operator of K, i.e.,
∥A0x − A0y∥ ≤ L0∥x − y∥ for all x, y ∈ K and L0 is a positive constant, S = ∩∞i=1Si and Si = {x ∈ K : Ai(x) = 0}.
Problem (2) and its particular cases were investigated in [1],[2],[7],[8],[15]-[17],[19],[21]-[33],[35]-[40] and
references therein.

For solving (1) with VI(K,A) , ∅, when A is a strongly monotone and L-Lipschitz continuous operator,
Polyak [28] introduced a projection-gradient iterative method,

xk+1 = PK(xk
− βAxk), x1

∈ K

and k ≥ 1. He proved global convergence of the method under condition β ∈ (0, 1/L). When the operator
A of K is L-Lipschitz-continuous monotone in the finite-dimensional Euclidean space En, Korpelevich [23]
suggested the following so-called extragradient method,

x1 = x ∈ K,

xk
= PK(xk

− βAxk),

xk+1 = PK(xk
− βAxk).

She showed that the sequences {xk
} and {xk

}generated by this process converge to the same point p ∈ VI(K,A).
Next, Antipin and Vasiliev [1] proposed a regularization variant of the extragradient method by

x1 = x ∈ K,

yk = PK(xk
− βk(Axk + αkxk)),

xk+1 = PK(xk
− βk(Ayk + αkyk)),

(3)

where αk > 0, βk > 0, k ≥ 1. They proved the following theorem.

Theorem 1.1. Let K be a nonempty closed convex subset ofEn, let A be an L-Lipschitz continuous monotone operator
of K such that VI(K,A) , ∅ and let {αk}, {βk} be chosen such that

αk > 0, βk > 0, lim
k→∞
αk = 0, sup

k≥1
βk < 1/L,

∞∑
k=1

βkαk = +∞,

and
(b)′ limk→∞ α̃k/(βkαk) = 0, where α̃k = (αk−1/αk) − 1.
Then, the sequence {xk

}, generated by (3), converges to p solving (1), as k→∞.

Obviously, any λ-inverse strongly monotone operator A is L-Lipschitz continuous with L = 1/λ. Put
T := I − A. It is easy to see that A is λ-inverse strongly monotone if and only if T is λ-strictly pseudo-
contractive, i.e.,

⟨Tx − Ty, x − y⟩ ≤ ∥x − y∥2 − λ∥(I − T)x − (I − T)y∥2,

that is equivalent to
∥Tx − Ty∥2 ≤ ∥x − y∥2 + λ′∥(I − T)x − (I − T)y∥2,

where λ′ is some positive constant. Thus, the class of strictly pseudo-contractive operators contains the
class of nonexpansive ones, that is, ∥Tx − Ty∥ ≤ ∥x − y∥ for all x, y ∈ K, as a subclass. It is well known [30]
that if T is a nonexpansive operator of K, then A = I − T is (1/2)-inverse strongly monotone. Therefore, the
problem of finding a point of VI(K,A0) ∩ SA, where SA denotes the set of zeros for A, is equivalent to that
of VI(K,A0) ∩ Fix(T) where Fix(T) := {x ∈ K : Tx = x}.

Motivated by the idea of the extragradient method, Nadezhkina and Takahashi [25] introduced an
iterative process for finding a point p ∈ VI(K,A) ∩ Fix(T) when A is an L-Lipschitz continuous monotone
operator and T is a nonexpansive operator of K in H. They proved the following result.
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Theorem 1.2. Let K be a nonempty closed convex subset of a real Hilbert space H, let A be an L-Lipschitz continuous
monotone non-self operator of K and let T be a nonexpansive operator of K into itself such that VI(K,A)∩Fix(T) , ∅.
Let {xk

} and {yk
} be sequences generated by

x1 = x ∈ K,

yk = PK(xk
− βkAxk),

xk+1 = αkxk + (1 − αk)TPK(xk
− βkAyk),

(4)

for every k = 1, 2, ..., where {βk} ⊂ [a, b] for some a, b ∈ (0, 1/L) and {αk} ⊂ (c, d) for some c, d ∈ (0, 1). Then, the
sequences {xk

} and {yk
} converge weakly to the same point z ∈ VI(K,A)∩ Fix(T), where z = limk→∞ PVI(K,A)∩Fix(T)xk.

Further, Zeng and Yao [38] obtained strong convergence for method (4) by replacing the term αkxk in (4) by
αkx1 with some new condition on αk provided limk→∞ ∥xk

− xk+1
∥ = 0. The last condition was overcomed in

[27] and [36] by replacing the expression of xk+1 in (4), respectively, by

xk+1 = αku + θkxk + δkTPK(xk
− βkAyk)

and
xk+1 = αk f (xk) + (1 − αk)TPK(xk

− βkAyk),

where the parameters αk, θk, δk, βk have some properties, u is some point in H and f is a contraction, i.e.,
an α-Lipschitz continuous self operator of K with some fixed α ∈ [0, 1). See, also [26] and [39]. In the
case that A is λ-inverse strongly monotone, hence (1/λ)-Lipschitz continuous monotone, several improved
modifications of (4) were proposed in [15], [16] and [32]. If AN+i = AN for all i ≥ 1, we have a finite family
of strictly pseudo-contractive operators Ti := I − Ai with 1 ≤ i ≤ N. To solve (2) in this case, the author [2]
proposed the regularization methods of Browder-Tikhonov and extragradient types. Next, Ceng et al. [7]
introduced two weakly convergent methods of extragradient type.

In this paper, motivated by the results in [2], for solving (2), we first construct a Browder-Tikhonov
regularization solution uk, that is

uk
∈ K : ⟨Akuk + αk(uk

− x+),uk
− x⟩ ≤ 0 ∀x ∈ K, (5)

where

Ak = A0 + α
µ
k

k∑
i=1

(γi/γ
k)Ai,

αk is a regularization parameter, x+ is a guess point in H, µ ∈ (0, 1) is a fixed number and γk =
∑k

i=1 γi with
γi > 0 satisfying some condition formulated below. Next, we consider the regularization extragradient
method,

x1 = x ∈ K,

yk = PK(xk
− βk(Akxk + αk(xk

− x+))),

xk+1 = PK(xk
− βk(Akyk + αk(yk

− x+))),

(6)

and will prove strong convergence of {xk
}, defined by (6), under the following assumptions:

(a) αk ∈ (0, 1), αk−1 > αk, limk→∞ αk = 0, supk≥1 βk < 1/L0 and
∑
∞

k=1 βkαk = ∞;

(b) limk→∞ α̃k/(βkα
2−µ
k ) = 0;

(c) γi > 0 for all i ≥ 1 such that
∑
∞

i=1 γi = 1 and limk→∞ γk/(βkα
2−µ
k ) = 0.

The following lemmas will be used in the proof of our results.
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Lemma 1.3. [34] Let {ak}, {bk} and {ck} be the sequences of positive real numbers satisfying the conditions:

(i) ak+1 ≤ (1 − bk)ak + ck, bk < 1;

(ii)
∑
∞

k=1 bk = +∞, limk→+∞(ck/bk) = 0.

Then, limk→+∞ an = 0.

Lemma 1.4. [40] Assume that C is a closed convex subset of a real Hilbert space H and T is a non-self operator of C.
If T is a λ-strict pseudo-contractive, then I − T is demiclosed at zero. That is, if {uk

} is a sequence in C such that {uk
}

converges weakly to a point x̃ and {(I − T)uk
} converges strongly to 0, then (I − T)x̃ = 0.

Lemma 1.5. [2] Let K be a closed convex subset in a Hilbert space H, let A be γ-inverse strongly monotone of K and
let K1 be a closed convex subset of K such that K1 ∩ SA , ∅. Then, VI(K1,A) = SA ∩ K1.

The rest of the paper is organized as follows. In Section 2, we present the theoretical results and show
their particular cases. Applications to the problem of common fixed point for an infinite family of strictly
pseudo-contractive non-self operators and the split feasibility and fixed point problems with illustrated
numerical examples are given in Section 3.

2. Main results

We have the following results.

Theorem 2.1. Let Ai, for each i ≥ 0, be a non-self operator of a closed convex subset K in a real Hilbert space H such
that A0 be L0-Lipschitz continuous monotone and the rest Ai be λi-inverse strongly-monotone with λ = infi≥1 λi > 0.
Assume that γi > 0 for all i ≥ 1 such that

∑
∞

i=1 γi = 1. Then, we have:

(i) For each αk > 0, problem (5) has a unique solution uk;

(ii) If Γ , ∅, then limk→∞ uk = p∗ ∈ Γ, having the property:

∥p∗ − x+∥ ≤ ∥p − x+∥ ∀p ∈ Γ; (7)

(iii)

∥uk
− uk−1

∥ ≤ dk =
[(
α̃k +

2γk

γk

) 1

α
1−µ
k

+ α̃k

]
(M1 + ∥x+∥), (8)

where M1 is some positive constant.

Proof. (i) Since Ak+αk(I−x+) is an αk-strongly monotone operator from K into H, then, by [29], (5) possesses
a unique solution uk for each k ≥ 1.
(ii) First, we prove that {uk

} is bounded. Take a point p ∈ Γ. Then, we have immediately that p ∈ VI(K,A0)∩Sk,
where Sk = ∩k

i=1Si, and hence,

⟨Akp, p − x⟩ ≤ 0 ∀x ∈ K. (9)

Next, taking x = p in (5) with x = uk in (9), adding the results and using the monotonicity of Ak, we get the
inequality ⟨uk

− x+,uk
− p⟩ ≤ 0 ∀p ∈ Γ. Consequently,

∥uk
− x+∥ ≤ ∥p − x+∥ ∀p ∈ Γ. (10)

Therefore, {uk
} is bounded. Since ∥Aix − Aiy∥ ≤ (1/λi)∥x − y∥ ≤ (1/λ)∥x − y∥ for any x, y ∈ K and for all

i ≥ 1, the double sequence {Aiuk
} is bounded. It means that there exists a positive constant M1 such that

∥uk
∥, ∥Aiuk

∥ ≤M1 for all k, i ≥ 1.
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Now, we prove that {uk
} converges strongly to p∗, satisfying (7). For this purpose, we first prove that

lim
k→∞
∥Aiuk

∥ = 0 ∀i ≥ 1. (11)

It is easy to see that from (5) and the monotonicities of A0 and Ai it follows that, for any p ∈ Γ,

α
µ
k

k∑
i=1

(λiγi/γ
k)∥Aiuk

∥ ≤ α
µ
k

k∑
i=1

(γi/γ
k)⟨Aiuk

− Aip,uk
− p⟩

= α
µ
k

k∑
i=1

(γi/γ
k)⟨Aiuk,uk

− p⟩

≤ ⟨A0uk, p − uk
⟩ + αk⟨uk

− x+, p − uk
⟩

≤ ⟨A0uk
− A0p, p − uk

⟩ + αk⟨p − x+, p − uk
⟩

≤ αk⟨p − x+, p − uk
⟩,

because −⟨A0p, p − uk
⟩ ≥ 0, that is followed from p ∈ VI(K,A0). Thus, we have

∥Aiuk
∥ ≤ (γk/(λiγi))α

1−µ
k ∥p − x+∥(∥p∥ +M1).

Since 1 > µ, αk → 0 and γk
→ 1, tending k → ∞ in the last inequality we get (11). Further, put Ti = I − Ai.

It is clear that p ∈ Si if and only if p ∈ Fix(Ti). Since Ai is λi-inverse strongly monotone, the operator Ti is
λi-strictly pseudocontrative. Noting (11),

lim
k→∞
∥(I − Ti)uk

∥ = 0 ∀i ≥ 1. (12)

Now, from (5) and the monotonicity of A0 we can write that

⟨A0x,uk
− x⟩ ≤ ⟨A0uk,uk

− x⟩

≤ α
µ
k

k∑
i=1

(γi/γ
k)⟨Aiuk, x − uk

⟩ + αk⟨uk
− x+, x − uk

⟩

≤

[
α
µ
k M1 + αk(M1 + ∥x+∥)

]
(∥x∥ +M1) ∀x ∈ K.

(13)

Since {uk
} is bounded, there exists a subsequence {un

} of the sequence {uk
}, un = ukn , such that {un

} converges
weakly to some point p ∈ H as n→ ∞. As the sequence {un

} ⊂ K, p ∈ K. Next, replacing k in (13) by n and
tending n→∞, we get the inequality ⟨A0x, p−x⟩ ≤ 0 ∀x ∈ K that is equivalent to ⟨A0p, p−x⟩ ≤ 0 ∀x ∈ K, i.e.,
p ∈ VI(K,A0). Moreover, by virtue of Lemma 1.4 and (12) with k replaced by n, we obtain that p ∈ Fix(Ti) = Si
for each i ≥ 1. It means that p ∈ S. So, p ∈ Γ. Using the weak convergence of {un

} and inequality (10) with k
replaced by n, we get (7) where p∗ is changed by p. It is easy to see that any weak cluster point of {uk

} has
the property as p does. Moreover, we know that the point p∗ in (7) is uniquely defined. Thus, all sequence
{uk
} converges weakly to p∗ as k→∞. Next, from the weak convergence of {uk

} to p∗ and (10), we have that
∥uk
− x+∥ → ∥p∗ − x+∥. Using the property of H, we get the strong convergence of {uk

} to p∗ as k→∞.
(iii) Now, we estimate the value ∥uk

− uk−1
∥. Clearly, from (5), it follows that

⟨Akuk
− Ak−1uk−1 + αk(uk

− x+) − αk−1(uk−1
− x+),uk−1

− uk
⟩ ≥ 0,

which together the monotonicity of Ak implies that

αk∥uk
− uk−1

∥
2
≤ ⟨Ak−1uk−1

− Akuk−1,uk
− uk−1

⟩

+ (αk−1 − αk)⟨uk−1
− x+,uk

− xk−1
⟩

≤

[
∥Akuk−1

− Ak−1uk−1
∥

+ (αk−1 − αk)∥uk−1
− x+∥

]
∥uk
− uk−1

∥,

(14)
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where

∥Akuk−1
− Ak−1uk−1

∥ =

∥∥∥∥∥(A0 +
α
µ
k

γk

k∑
i=1

γiAi

)
uk−1
−

(
A0 +

α
µ
k−1

γk−1

k−1∑
i=1

γiAi

)
uk−1
∥∥∥∥∥

=

∥∥∥∥∥αµkγk

k−1∑
i=1

γiAiuk−1
−
α
µ
k−1

γk−1

k−1∑
i=1

γiAiuk−1 +
α
µ
k

γk
γkAkuk−1

∥∥∥∥∥
≤

∣∣∣∣∣αµkγk
−
α
µ
k−1

γk−1
γk−1
∣∣∣∣∣M1 +

α
µ
k

γk
γkM1

=

∣∣∣∣∣αµkγk
γk−1
−
α
µ
k−1

γk
γk
∣∣∣∣∣M1 +

α
µ
k

γk
γkM1

=

∣∣∣∣∣αµkγk
− α

µ
k−1γ

k
− α

µ
kγk

γk

∣∣∣∣∣+αµkγk
γkM1

≤ |α
µ
k − α

µ
k−1| + 2

α
µ
k

γk
γkM1.

(15)

Further, from assumption (a) it follows that

|α
µ
k − α

µ
k−1| = α

µ
k−1 − α

µ
k =
((
αk−1

αk

)µ
−1
)
α
µ
k ≤ α̃kα

µ
k ,

which together with (14) and (15) implies (8). This completes the proof.

Remark 1. Obviously, if {uk
} converges strongly to some point ũ, where uk is the solution of (5), and αk → 0

as k→ +∞, then VI(K,A0) ∩ S , ∅.

Theorem 2.2. Let Ai be as in Theorem 2.1 for each i ≥ 0. Assume that there hold assumptions (a)-(c). Then, the
sequence {xk

}, defined by (6), converges strongly to the point p∗ in (7) as k→ +∞.

Proof. Since ⟨PK(v) − v, x − PK(v)⟩ ≥ 0 for any x ∈ K and v ∈ H, from (6) we have the following inequalities:

⟨yk
− xk + βk[Akxk + αk(xk

− x+)], x − yk
⟩ ≥ 0 ∀x ∈ K,

⟨xk+1
− xk + βk[Akyk + αk(yk

− x+)], x − xk+1
⟩ ≥ 0 ∀x ∈ K.

By replacing x = xk+1 and x = uk, in the first and second inequalities above, respectively, and adding the
results, we obtain

⟨yk
− xk, xk+1

− yk
⟩ + ⟨xk+1

− xk,uk
− xk+1

⟩+

βk⟨Akxk + αk(xk
− x+), xk+1

− yk
⟩+

βk⟨Akyk + αk(yk
− x+),uk

− xk+1
⟩ ≥ 0.

(16)

Next, from

2
[
⟨yk
− xk,xk+1

− yk
⟩ + ⟨xk+1

− xk,uk
− xk+1

⟩

]
=

∥xk
− uk
∥

2
− ∥xk

− yk
∥

2
− ∥xk+1

− uk
∥

2
− ∥xk+1

− yk
∥

2
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and (16) it follows that

∥xk+1
− uk
∥

2
≤ ∥xk

− uk
∥

2
− ∥xk

− yk
∥

2
− ∥xk+1

− yk
∥

2

+ 2βk⟨Akxk
− Akyk, xk+1

− yk
⟩

+ 2βk⟨Akyk
− Akuk,uk

− yk
⟩

+ 2βk⟨Akuk + αk(uk
− x+),uk

− yk
⟩

+ 2αkβk

[
−⟨uk

− x+,uk
− yk
⟩ + ⟨xk

− x+, xk+1
− yk
⟩

+ ⟨yk
− x+,uk

− xk+1
⟩

]
.

(17)

By using (17), the properties of Ai with i ≥ 0 and the inequality 2|ab| ≤ εa2 + b2/ε with ε = 1/2 we have the
following estimates:

2⟨Akxk
− Akyk, xk+1

− yk
⟩ ≤ 2

[
L0 + α

µ
k

k∑
i=1

(γi/γ
kλi)
]
∥xk
− yk
∥∥xk+1

− yk
∥

≤

(
L0 + (αµk /λ)(∥xk

− yk
∥

2 + ∥xk+1
− yk
∥

2
)
,

⟨Akyk
− Akuk,uk

− yk
⟩ ≤ 0,

⟨Akuk + αk(uk
− x+),uk

− yk
⟩ ≤ 0,

2βkαk

[
−⟨uk

− x+,uk
− yk
⟩ + ⟨xk

− x+, xk+1
− yk
⟩ + ⟨yk

− x+,uk
− xk+1

⟩

]
=

2βkαk

[
−∥yk

− uk
∥

2 + ⟨xk
− yk, xk+1

− yk
⟩

]
=

βkαk

[
−∥(yk

− xk) + (xk
− uk)∥2 + ⟨xk

− yk, xk+1
− yk
⟩

]
=

−2⟨yk
− xk, xk

− uk
⟩ + ⟨xk

− yk, xk+1
− yk
⟩

]
≤ βkαk

[
−∥yk

− xk
∥

2
− ∥xk

− uk
∥

2

+
1
2
∥xk
− uk
∥

2 + 2∥xk
− yk
∥

2 +
1
2
∥xk
− yk
∥

2 +
1
2
∥xk+1

− yk
∥

2
]

≤ −βkαk∥xk
− uk
∥

2 + 3βkαk∥xk
− yk
∥

2 + βkαk∥xk+1
− yk
∥

2.

Therefore,

∥xk+1
− uk
∥

2
≤ (1 − βkαk)∥xk

− uk
∥

2

+
[
−1 + βk(L0 + (αµk /λ)) + 3βkαk

]
∥xk
− yk
∥

2

+
[
−1 + βk(L0 + (αµk /λ)) + βkαk

]
∥xk+1

− yk
∥

2.

Since αk → 0, µ > 0 and βkL0 < 1, there exists an integer k0 such that for k ≥ k0 two last terms in the above
inequality are negative. Hence,

∥xk+1
− uk
∥

2
≤ (1 − βkαk)∥xk

− uk
∥

2
∀k ≥ k0.

Set ak = ∥xk
− uk
∥. Then, ak ≤ ∥xk

− uk−1
∥ + ∥uk−1

− uk
∥, and hence, we have

∥xk+1
− uk
∥ ≤ (1 − βkαk)1/2

∥xk
− uk−1

∥ + ∥uk−1
− uk
∥ ∀k ≥ k0.
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Thus, applying the inequality (a + b)2
≤ (1 + ε)(a2 + b2/ε)(ε > 0), ε = βkαk/2, we obtain

∥xk+1
− uk
∥

2
≤ (1 + (βkαk/2))(1 − βkαk)∥xk

− uk
∥

2 + d2
k

2
βkαk

(1 + (βkαk/2))

≤

(
1 −

1
2
βkαk −

1
2

(βkαk)2
)
∥xk
− uk
∥

2

+
( dk

βkαk

)2
2βkαk(1 + βkαk/2).

Set

bk =
1
2
βkαk(1 + βkαk)

ck =
( dk

βkαk

)2
2βkαk(1 + βkαk/2).

Next, by virtue of (8) and assumptions (a), (b) with (c),

lim
k→∞

dk/(βkαk) = 0.

Hence by lemma (1.3), lim→+∞ ∥xk
− uk−1

∥
2 = 0. This fact together with

∥xk
− uk
∥ ≤ ∥xk

− uk−1
∥ + ∥uk−1

− uk
∥

and dk, ∥uk−1
− uk
∥ → 0 implies that limk→+∞ ∥xk

− uk
∥ = 0. The proof is completed.

Remark 2. In the case that operator A0 is also λ0-inverse strongly monotone, instead of Ak in (5) and (6),

we can use the operator A
k
, defined by

A
k
=

k∑
i=0

(γi/γ
k)Ai,

where γk = γ0 + γ1 + · · · + γk and γi has the property
(c)′ γi > 0 for all i ≥ 0 such that

∑
∞

i=0 γi = 1 and limk→∞ γk/(βkα2
k) = 0.

Then, repeating the proof processes for Theorems 2.1 and 2.2 and noting that

2⟨A
k
xk
− A

k
yk, xk+1

− yk
⟩ ≤ 2

k∑
i=1

(γi/γ
kλi)∥xk

− yk
∥∥xk+1

− yk
∥

≤ (1/λ)(∥xk
− yk
∥

2 + ∥xk+1
− yk
∥

2
)
,

and

∥xk+1
− uk
∥

2
≤ (1 − βkαk)∥xk

− uk
∥

2

+
[
−1 + (βk/λ) + 3βkαk

]
∥xk
− yk
∥

2

+
[
−1 + (βk/λ) + βkαk

]
∥xk+1

− yk
∥

2,

we can obtain the following results.

Theorem 2.3. Let Ai for each i ≥ 0 be a λi-inverse strongly-monotone non-self operator of a closed convex subset K
in a real Hilbert space H with λ = infi≥0 λi > 0. Then, we have:
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(i) For each αk > 0, the variational inequality problem

⟨A
k
uk + αk(uk

− x+),uk
− x⟩ ≤ 0 ∀x ∈ K,

has a unique solution uk;

(ii) If Γ , ∅, then limk→∞ uk = p∗ ∈ Γ satisfying (7);

(iii)

∥xk
− xk−1

∥ ≤ dk :=
2γk

αkγk
M3 + α̃k(M3 + ∥x+∥),

where M3 is some positive constant.

Theorem 2.4. Let Ai be as in Theorem 2.3 for each i ≥ 0. Assume that there hold assumptions (a) with supk≥0 βk < λ,
(b)′ and (c)′. Then, the sequence {xk

} defined by

x1 = x ∈ K,

yk = PK(xk
− βk(A

k
xk + αk(xk

− x+))),

xk+1 = PK(xk
− βk(A

k
yk + αk(yk

− x+))),

converges strongly to the element p∗ in (7) as k→ +∞.

We can formulate similar results as Theorems 2.1–(2.4, when AN+i = AN for all i ≥ 1, by replacing Ak and

A
k
, by the operators A0 + α

µ
k

∑N
i=1 γ

′

i Ai with γ′i > 0, for 1 ≤ i ≤ N and
∑N

i=0 γ
′

i Ai with the same properties for
γ′i , respectively. For example, we have the following result.

Theorem 2.5. Let Ai be as in Theorem 2.3 for each i = 0, 1, · · · ,N with some positive integer N and let γi > 0 for
all i = 0, 1, · · · ,N. Assume that there hold assumptions (a) with supk≥0 βk < λ and (b)′. Then, the sequence {xk

},
defined by

x1 = x ∈ K,

yk = PK

(
xk
− βk

(
Sxk + αk(xk

− x+)
))
,

xk+1 = PK

(
xk
− βk

(
Syk + αk(yk

− x+)
))
,

where S =
∑N

i=0 γiAi, converges strongly to the element p∗ in (7) as k→ +∞.

Remark 3. Examples of sequences, having all properties (a)-(c) and (b)′-(c)′, are: γi = 1/(i(i+1)), βk = 1/(k+1)a

and αk = 1/(k + 1)b, where 0 < b < a and a + (2 − µ)b < 1.
Remark 4. Note that problem (2), when A0 is pseudomonotone, L0-Lipschitz continuous and sequentially
weakly continuous on K and S = S1 ∩ S2, where Ai = I − Ti for i = 1, 2 and one of {T1,T2} is asymptotically
nonexpansive and the other is pseudocontractive, is considered very recently by Ceng et al. [9]. To solve
it, they introduced two new iterative algorithms with linear-search process, that are different from our
methods, presented in this paper.

3. Applications and numerical examples

3.1. The fixed point problem for infinite families of strictly pseudo-contractive operators
It ie well known in [40] that if T is a λ-strictly pseudo-contractive operator of a closed convex subset K

in H, then T′ := λ̃I + (1 − λ̃)T, where λ̃ ∈ [λ, 1) is a fixed number, is nonexpansive with Fix(T) = Fix(T′).
Therefore, in order to find a common fixed point for an infinite family of λi-strictly pseudo-contractive
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Table 1: Computational results by method (18)

k xk+1
1 xk+1

2 ek+1 = ∥zk+1
− p∗∥

05 -0.0129142584 0.9999166075 0.0129145277
10 -0.0006517104 0.9999997876 0.0006517104
15 -0.0000716226 0.9999999974 0.0000716226
20 -0.0000121665 0.9999999999 0.0000121665

operator Ti for all i ≥ 0, ones usually have introduced iterative methods for finding a common fixed point
for an infinite family of nonexpansive mappings {T′i }i≥0 where T′i = λ̃iI+ (1− λ̃i)Ti with λ̃i ∈ [λi, 1), by using
Wk, Vk or Sk-mappings, where

Sk =

k∑
i=0

(γi/γ
k)T′i or Sk =

k∑
i=0

(γi/γ
k)(α′i I + (1 − α′i )T

′

i ),

with some conditions on α′i . See, for example, [3]-[5],[18],[20] and references therein. Using the results in
the previous section, we show that the transformation process from Ti to T′i is not necessary. Indeed, put
Ai := I − Ti. By Lemma 1.5, p ∈ SA0 if and only if p ∈ VI(K,A0). Then, by Theorem 2.4, we have the result.

Theorem 3.1. Let K be a closed convex subset in a real Hilbert space H and let {Ti}i≥0 be an infinite family of
λi-strictly pseudo-contractive non-self operators of K such that the common fixed point set Γ := ∩i≥0Fix(Ti) , ∅.
Assume that there hold assumptions (a) with supk≥0 βk < λ, (b)′ and (c)′. Then, the sequence {xk

} defined by

x1 = x ∈ K,

yk = PK

(
xk
− βk

(
Ãkxk + αk(xk

− x+)
))
,

xk+1 = PK

(
xk
− βk

(
Ãkyk + αk(yk

− x+)
))
,

(18)

converges strongly to the element p∗ in (7) as k → +∞, where Ãk = I −
∑k

i=0(γi/γk)Ti, γk = γ0 + γ1 + · · · + γk and
x+ is a guess point in H.

For computations, we consider a concrete example, where K = {x = x ∈ E2 : x2
1 + x2

2 ≤ 1} and Ti = PCi ,
where Ci = {x ∈ E2 : (1/(i + 1))x1 − x2 ≤ 0} and E2 is the Euclidian space, whose inner product and norm
are defined by ⟨x, y⟩ = x1y1 + x2y2 and ∥x∥2 = x2

1 + x2
2, respectively. It is well known that Ti is nonexpansive

for all i ≥ 0, and hence, strictly pseudo-contractive in E2. Γ = {x ∈ E2 : x2 ≥ 0, 2x2 ≥ x1 ≥ 0} ∩ K is the
set of common fixed points for {Ti}i≥0. Taking x+ = (0; 3), we have p∗ = (0; 1). Using method (18) with
γi = 1/((i+ 1)(i+ 2)), βk = 1/(k + 1)1/2, αk = 1/(k + 1)1/4 and the starting point z1 = (−0.9;−0.3), we obtain the
following table of numerical results, Table 1.

3.2. The split feasibility and fixed point problems

We consider the problem of finding a common point of the solution set SSFP for the SFP and the set
Fix(T) of fixed points for a nonexpansive operator T in the setting of infinite-dimensional Hilbert spaces.
The SFP is to find a point

p ∈ C such that Ap ∈ Q, (19)

where C and Q are two closed convex subsets in two Hilbert spaces H1 and H2, respectively, and A is a
bounded linear operator from H1 to H2 with inner products and norms denoted also by the symbols ⟨., .⟩
and ∥.∥, respectively. Problem (19) was first introduced by Censor and Elfving [10] for modeling inverse
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problems that arise from phase retrievals and in image reconstruction [6]. Recently, it can also be used to
model the intensity-modulated radiation therapy [11]–[14].

Let T be a nonexpansive operator of C such that Γ := SSFP ∩ Fix(T) , ∅. The problem of finding a point
p ∈ Γ has been studied in [8],[16],[17],[22] and [37] and references therein. Ceng et al. [8] introduced the
iterative method,

x1 = x ∈ C,

yk = PC(xk
− βk(A1xk + αkxk)),

xk+1 = τkxk + (1 − τk)TPC(xk
− βk(A1yk + αkyk)),

(20)

that converges weakly to a point in Γwith some conditions on τk, βk and αk, one of which is that {βk} ⊂ [a, b]
for some a, b ∈ (0, 1/∥A∥2) where A1 := A∗(I − PQ)A and A∗ is the adjoint of A. Yao et al. [37] obtained the
strong convergence for method (20) with conditions:

(i) αk ∈ (0, 1), limk→∞ αk = 0 and
∑
∞

k=1 αk = ∞;

(ii) 0 < lim infk→∞ τk ≤ lim supk→∞ τk < 1;

(iii) 0 < βk < 2/(∥A∥2 + αk), 0 < lim infk→∞ βk ≤ lim supk→∞ βk < 2/∥A∥2 such that limk→∞(βk+1 − βk) = 0.

Deepho et al. [17], by combining (20) with the hybrid methods, proposed a strong convergent modification
of (20). It is not difficult to verify that A1 is an (1/∥A∥2)-inverse strongly monotone operator of H1. As
spoken in Introduction, A0 := I − T is also an λ0-inverse strongly monotone non-self operator of C with
λ0 = 1/2. Therefore, A0 is 2-Lipschitz continuous and p ∈ Fix(T) if and only if p ∈ SA0 = VI(C,A0), by
Lemma 1.5. Using Theorem 2.5 with N = 1, we obtain the following result.

Theorem 3.2. Let C and Q be two closed convex subsets in two real Hilbert spaces H1 and H2, respectively, let A be
a bounded linear operator from H1 to H2 with adjoint A∗ and let T be a nonexpansive non-self operator of C. Assume
that there hold assumptions (a) with supk≥0 βk < λ(= min{1/2; 1/∥A∥2} and (b)′. Then, the sequence {xk

} defined by

x1 = x ∈ C, B = γA0 + (1 − γ)A1,

yk = PC

(
xk
− βk

(
Bxk + αk(xk

− x+)
))
,

xk+1 = PC

(
xk
− βk

(
Byk + αk(yk

− x+)
))
,

(21)

converges strongly to the element p∗ in (7), as k → +∞, where x+ is a guess point in H1 and γ ∈ (0, 1) is a fixed
number.

Remark 5. From Theorem 2.2, it is easily to see that Theorem 3.2 has still value under conditions (a) with
λ = 1/2 and (b), if the operator B is replaced by Bk = A0 + α

µ
k A1. Next, by taking T = I, the identity operator

of H1, we obtain the regularization extragradient method for the SFP,

x1 = x ∈ C,

yk = PC

(
xk
− βk

(
α
µ
k A1xk + αk(xk

− x+)
))
,

xk+1 = PC

(
xk
− βk

(
α
µ
k A1yk + αk(yk

− x+)
))
,

(22)

strong convergence is guaranteed by assumptions (a) with supk≥0 βk < 1/2 and (b). Clearly, the parameter
βk in method (22) can be chosen without prior knowledge of ∥A∥2 as (20) and its modifications need.

For computations, we take

C = {(x1; x2) : (1/2)x1 − x2 ≤ 0} ⊂ E2, Q = {(x1, x3, x3) : x2
1 + x2

2 + x2
3 ≤ 1} ⊂ E3

and A is a matrix of order 3 × 2, whose elements a11 = a22 = a31 = a32 = 1 and the rest ones are zeros. It is
not difficult to verify that p∗ = (0; 0) is the unique solution of (19) with the given data. Using method (22)
with the same values for βk = 1/(k + 2)1/2, αk = β

1/2
k , µ = 1/2 and the starting point x1 = (−2.0;−1.0), we get

the following numerical table, Table 2.
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Table 2: Computational results by method (22).

k xk+1
1 xk+1

2 ek+1 = ∥zk+1
− p∗∥

05 -0.0085032236 0.0208253661 0.0224944590
10 -0.0011621321 0.0028461944 0.0030743086
15 -0.0002820483 0.0006907684 0.0007461315
20 -0.0000918736 0.0002250090 0.0002430428

The numerical results above show fast convergence of the proposed methods.
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