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Abstract. We construct multiplicative Green’s (or ∗Green’s) function for ∗Sturm-Liouville (∗SL) equation.
The basic properties of ∗Green’s function are given. Then, ∗SL equation is evaluated by using ∗Green’s
function. Effectiveness of Green’s function in ∗case will thus be seen by some examples.

1. Introduction

In mathematical physics, Green’s function creates a highly effective method to solve initial or boundary
value problems (IVB’s-BVP’s). Green’s functions are devices to solve crucial ordinary and partial differential
equations which may be unsolvable by other techniques. To obtain a solution for IVP or BVP, we need
a mapping whose kernel is Green’s function. This function is an impulse reaction to a nonhomogeneous
linear differential operator described on a domain with customized initial, boundary conditions. It is also
used in quantum field theory, aerodynamics, electrodynamics, aeroacoustics, seismology. There are many
studies in literature on Green’s function in classical case [1, 2, 4, 10, 12, 21, 23, 24, 27]. It is important to
generate Green’s function for such problems. However, it was seen that Green’s function was not defined
and its properties were not given in ∗calculus. Before examining the Green’s function and SL problem in
∗case, let’s express some basic concepts and theorems for ∗calculus. First, let’s express development process
of ∗calculus.

∗calculus was introduced by Grossman and Katz [16], [17] in 1967 as an alternative to Newtonian calculus.
This type of calculus is also known as non-Newtonian because of its difference from classical calculus
of Newton and Leibniz. ∗calculus is a beneficial supplement to classical calculus in that it is adapted
to situations including exponential functions in same case that usual calculus is adapted to situations
including linear functions. ∗calculus moves roles of substraction, addition to division, multiplication.
There are actually many reasons to study ∗calculus. It improves the work of additive calculations indirectly.
Problems that are difficult to solve in classical case can be solved with incredible ease in here. Every
property in Newtonian case can be defined in ∗calculus within certain rules. The importance of this theory
should be emphasized in terms of applications in physics and engineering.
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Many events in nature change exponentially. For example: populations of countries, magnitude of
an earthquake [8] are events that behave in this manner. For this reason, using ∗case instead of classical
calculus allows a better physical evaluation of these type events. It also gives better results than usual case
in many fields such as finance, economics, biology and demography. A very limited number of studies
have been conducted on this calculus until the beginning of the 2000s. Recently, various studies have been
carried out on it and quality and effective results have been obtained (see [6, 7, 9, 11, 13, 18, 25, 26, 28]).

Definition 1.1. [5] Let f : A ⊂ R → R be differentiable in usual case where f (t) > 0 for all t. If the below limit
exists and positive

f ∗(t) = lim
h→0

[
f (t + h)

f (t)

]1
h
, (1.1)

f ∗(t) is denominated as ∗derivative of f at t.

Lemma 1.2. [5] Let f : A → R be positive and usual differentiable at t. Then, there is a relation between classical
and ∗derivatives as follows:

f ∗(t) = e(ln o f)′(t).

Repeating this procedure n times, it can be obtained the relation between the n−th order classical derivative and n−th
∗derivative as

f ∗(n)(t) = e(ln o f)(n)
(t).

Theorem 1.3. [5] Let f , h be ∗differentiable and p be usual differentiable at t. The below expressions are provided for
∗derivative.

i.
(
c f

)∗ (t) = f ∗(t), c ∈ R+,
ii.

(
f h

)∗ (t) = f ∗(t)h∗(t),
iii.

(
f/h

)∗ (t) = f ∗(t)/h∗(t)
iv.

(
f p)∗ (t) = f ∗(t)p(t) f (t)p′(t),

v.
(

f op
)∗ (t) = f ∗

(
p(t)

)p′(t) ,

vi.
(

f + h
)∗ (t) = f ∗(t)

f (t)
f (t)+h(t) h∗(t)

h(t)
f (t)+h(t) .

Definition 1.4. [5] Let f be positive, bounded on [a, b] for −∞ < a < b < ∞. Then,
b∫

a
f (x)dx is ∗integral of f on

[a, b]. If f is positive, Riemann integrable on [a, b], it is ∗integrable on [a, b] where

b∫
a

f (x)dx = e

b∫
a
(ln o f)(x)dx

.

On the contrary, one can prove that

b∫
a

f (x)dx = ln

b∫
a

(
e f (x)

)dx
,

if f is Riemann integrable on [a, b].
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Theorem 1.5. [5] Let f , h be positive, bounded functions on [a, b] where −∞ < a < b < ∞. If f , h are ∗integrable on
[a, b], the below expressions hold:

i.
b∫

a

[
f (x)p]dx =

 b∫
a

f (x)dx

p

, p ∈ R

ii.
b∫

a

[
f (x)h(x)

]dx =
b∫

a
f (x)dx

b∫
a

h(x)dx,

iii.
b∫

a

[ f (x)
h(x)

]dx
=

b∫
a

f (x)dx

b∫
a

h(x)dx

iv.
b∫

a
f (x)dx =

c∫
a

f (x)dx
b∫

c
f (x)dx, a ≤ c ≤ b.

Now let’s explain how classical integration by parts method is expressed in ∗calculus.

Theorem 1.6. [5] Let f : [a, b] ⊂ R→ R+ be ∗integrable, h : [a, b] ⊂ R→ R+ be usual integrable. Then,

b∫
a

[
f ∗(x)h(x)

]dx
=

f (b)h(b)

f (a)h(a)

1
b∫

a

[
f (x)h′(x)]dx

.

This equality is known as ∗integration by parts method. We will use this formula frequently throughout our study.

The main focus of this study is to construct usual Green’s function in ∗case for given problem. After we
have firmly established this function in ∗case and examined its properties, we will apply it to SL problem
in ∗case to test its effectiveness. Solving a ∗problem includes SL equation, which has a very important place
in mathematical physics, with ∗Green’s function will bring a new perspective to spectral theory. As it is
known, SL equation is very important for mathematical physics in the classical case and many studies have
been done on this subject from many angles [3], [14], [19], [20], [22], [29].

This study is arranged as follows: we consider a ∗SL problem in Section 2. Then, we prove again some
important theorems related to its spectral properties in ∗calculus since we will look at the proofs from a
different perspective. Using constructed problem, we generate ∗Green’s function in Section 3. Eventually,
we give fundamental features of this valuble function. In Section 4, we give a conclusion to sum up our
study.

2. Some Spectral Properties of ∗Sturm-Liouville Problem

In this section, SL problem will be introduced in ∗calculus and some its spectral properties will be
examined. This is necessary so that Green’s function can be set up in ∗calculus for this problem. Let us
consider below ∗homogeneous SL problem

L(y) =
(
e−1
⊙ y∗∗

)
⊕

(
eq(x)
⊙ y

)
= eλ ⊙ y, t ∈ [a, b], (2.1)

with conditions

L1(y) =
(
ecosα

⊙ y(a)
)
⊕

(
esinα

⊙ y∗(a)
)
= 1, (2.2)

L2(y) =
(
ecos β

⊙ y(b)
)
⊕

(
esin β

⊙ y∗(b)
)
= 1, (2.3)

where q is real valued function on [a, b]; α, β are arbitrary real constants [15]. In classical case, equation
(2.1) is transformed into the following nonlinear equation. Actually, all results we will get are valid for this
nonlinear equation. This shows influence of ∗calculus.

y′′y −
(
y′

)2 +
[(
λ − q(t)

)
ln y

]
y2 = 0. (2.4)
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The eigenfunctions of this equation coincide with the solutions of equation (2.1). Some spectral properties
of the above problem will be made using the inner product on L∗2[a, b]. For L(y) = eλ ⊙ y, y , 1 is called
∗eigenfunction ofL and λ is ∗eigenvalue of given problem. The non-homogeneous version of Eq. (2.1) is as
follows.(

e−1
⊙ y∗∗

)
⊕

(
eq(x)
⊖ eλ

)
⊙ y = e f (x). (2.5)

For a better understanding of ∗theory, let’s express ∗algebraic structures that we will encounter while
constructing Green’s function for ∗SL equation. Arithmetic operations created with exponential functions
are called ∗algebraic operations. Let’s show some properties of these operations with ∗arithmetic table for
f , h ∈ R+.

f ⊖ h = f
h , f ⊕ h = f h, f ⊙ h = f ln h = hln f .

These operations create some algebraic structures. If ⊕ : A × A → A is an operation where A , ϕ and
A ⊂ R+, the algebraic structure (A,⊕) is called ∗group. Similarly, (A,⊕,⊙) is a ∗ring. This situation gives us
the opportunity to use these processes easily and define different structures.

Lemma 2.1. [15] ∗L2[a, b] =

 f :
b∫

a

[
f (x) ⊙ f (x)

]dx < ∞

 is ∗inner product space with

<,>∗: ∗L2[a, b] × ∗L2[a, b]→ R+, < f , h >∗=

b∫
a

[
f (x) ⊙ h(x)

]dx ,

where f , h ∈ ∗L2[a, b] are positive. The proof can be easily demonstrated using the notion of ∗inner product.

Here, the theory will be built on this space.

Theorem 2.2. ∗SL operator L is formally self-adjoint on ∗L2[a, b].

Proof. By ∗inner product on ∗L2[a, b] , we get

< L
(
y
)
, z >∗=

b∫
a

[
L
(
y
)
⊙ z

]dx =

b∫
a

[(
y∗∗

)− ln z
]dx

b∫
a

[(
yq(x)

)ln z
]dx
. (2.6)

Using ∗integration by parts method to first ∗integral on right side yields

b∫
a

[(
y∗∗

)− ln z
]dx
=

y∗ (b)− ln z(b)

y∗ (a)− ln z(a)

1
b∫

a

[
y∗(x)

−z′ (x)
z(x)

]dx
.

If ∗integration by parts method is used once again,

b∫
a

[(
y∗∗

)− ln z
]dx
=

y∗ (b)− ln z(b)

y∗ (a)− ln z(a)

y (a)− ln z∗(a)

y (b)− ln z∗(b)

b∫
a

[
y(x)− ln z∗∗(x)

]dx
. (2.7)

If the expression (2.7) is substituted in (2.6), we get

< L
(
y
)
, z >∗=

y (b)ln z∗(b)

y∗ (b)ln z(b)

y∗ (a)ln z(a)

y (a)ln z∗(a)

b∫
a

[
(z∗∗)− ln y

(
zq(x)

)ln y
]dx
. (2.8)
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By the conditions (2.2),(2.3),

< L
(
y
)
, z >∗=< y,L (z) >∗ .

Theorem 2.3. Eigenfunctions y(x, λ1), z(x, λ2) of (2.1)-(2.3) related to distinct eigenvaluesλ1 and λ2 are orthogonal.

Proof. Let
[
y, z

]
x =

[
y(x) ⊙ z∗(x)

]
⊖

[
y∗(x) ⊙ z(x)

]
. Thus, by definition of ∗derivative, we get

([
y, z

]
x

)∗
=

(
y∗∗

)− ln z
(
yq(x)

)ln z

(z∗∗)− ln y (
zq(x))ln y

. (2.9)

After some calculations([
y, z

]
x

)∗
=

(
y ⊙ z

)λ1−λ2 .

If ∗integral is taken for both sides of the last equation and the conditions are taken into account, we get

1 =

b∫
a

[(
y ⊙ z

)λ1−λ2
]dx
=


b∫

a

(
y ⊙ z

)dx


λ1−λ2

.

Since λ1 , λ2, it yields

b∫
a

(
y ⊙ z

)dx = 1.

Theorem 2.4. Multiplicative Wronskian of any two solutions to the problem (2.1)-(2.3) is independent of x.

Proof. Let y(x) and z(x) be two solutions of (2.1)-(2.3). Since[
y, z

]
x (x)[

y, z
]

x (a)
=
< L

(
y
)
, z >∗

< y,L (z) >∗
,

we get[
y, z

]
x (x)[

y, z
]

x (a)
=
< yλ, z >∗
< y, zλ >∗

= 1⇒
[
y, z

]
x (x) =

[
y, z

]
x (a). (2.10)

Moreover, multiplicative Wronskian (∗Wronskian) yields

Wm(y, z)(x) =
∣∣∣∣∣ ln y ln z

ln y∗ ln z∗

∣∣∣∣∣ = ln
[
y, z

]
x .

If this result is taken together with (2.10),

Wm(y, z)(x) = eWm(y,z)(a),

ensures that result is independent of x.

Theorem 2.5. Any two solutions of equation (2.1) are linearly dependent iffWm = 0.
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Proof. Let y(x), z(x) be two linearly dependent solutions of (2.1). There is at least a constant c , 1 such
y(x) = ec

⊙ z(x). Based on this information, ∗Wronskian is

Wm(y, z)(x) = 0.

Conversely, let’s admit Wm(y, z)(x) = 0. In this case, y(x) = ec
⊙ z(x) can be seen with an easy calculation. It

completes the proof.

Lemma 2.6. All eigenvalues of (2.1)-(2.2) are geometrically simple.

Proof. Let y(x), z(x) be eigenfunctions of (2.1)-(2.2) related to λ. By the condition (2.2), we get

Wm(y, z)(a) = ln y(a) ln z∗(a) − ln y∗(a) ln z(a) = 0.

It shows the linearly dependence of y(x) and z(x). It completes the proof.

Remark 2.7. Now, we need to give some explanation about obtaining eigenvalues and eigenfunctions of given
problem. Let ϕ1 (·, λ) and ϕ2 (·, λ) be linearly independent solutions of (2.1) which satisfy the condition

ϕ∗( j−1)
i (a, λ) = eδi j , i, j = 1, 2.,

where δi j is Kronecker delta in classical case. Thus, each solution of Eq. (2.1) will take the form below.

y(x, λ) = ϕ1 (x, λ)A1 ϕ2 (x, λ)A2 ,

where A1, A2 are constants independent of x. Here, if the solution of Eq. (2.1) satisfies conditions (2.2) and (2.3), it
will be eigenfunction of the related problem. In other words, if one can find a non-trivial solution of

A1 ln L1

(
ϕ1

)
+ A2 ln L1

(
ϕ2

)
= 0,

A1 ln L2

(
ϕ1

)
+ A2 ln L2

(
ϕ2

)
= 0,

then, it will be eigenfunction. Thus, λ is an eigenvalue of given problem iff

∆m(λ) =

∣∣∣∣∣∣∣ ln L1

(
ϕ1

)
ln L1

(
ϕ2

)
ln L2

(
ϕ1

)
ln L2

(
ϕ2

) ∣∣∣∣∣∣∣ = 0.

Here, ∆m(λ) is characteristic equation related to (2.1)-(2.2) and zeros of ∆m(λ) are eigenvalues of (2.1)-(2.2).

Theorem 2.8. All eigenvalues of (2.1)-(2.2) are simple zeros of ∆m(λ).

Proof. Assume that θ1 (·, λ), θ2 (·, λ) are given by following equalities

θ1 (x, λ) =
[
L1

(
ϕ2

)
⊙ ϕ1 (x, λ)

]
⊖

[
L1

(
ϕ1

)
⊙ ϕ2 (x, λ)

]
, (2.11)

θ2 (x, λ) =
[
L2

(
ϕ2

)
⊙ ϕ1 (x, λ)

]
⊖

[
L2

(
ϕ1

)
⊙ ϕ2 (x, λ)

]
. (2.12)

According to this definition, it can be written as

θ1 (x, λ) =

[
ϕ2 (a)cosα ϕ∗2 (a)sinα

]lnϕ1(x,λ)

[
ϕ1 (a)cosα ϕ∗1 (a)sinα

]lnϕ2(x,λ)
, and θ2 (x, λ) =

[
ϕ2 (b)cos β ϕ∗2 (b)sin β

]lnϕ1(x,λ)

[
ϕ1 (b)cos β ϕ∗1 (b)sin β

]lnϕ2(x,λ)
.

Consequently, below conditions are satisfied.

θ1 (a, λ) = esinα, θ∗1 (a, λ) = e− cosα,

θ2 (b, λ) = esin β, θ∗2 (b, λ) = e− cos β.
(2.13)
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On the other hand, if ∗Wronskian definition is used, we get

Wm(θ1 (x, λ) , θ2 (x, λ)) =Wm(ϕ1 (x, λ) , ϕ2 (x, λ))∆m (λ) = ∆m (λ) . (2.14)

Now, let λ0 be an eigenvalue of the problem (2.1)-(2.3). By (2.11) and (2.13), we get

θ1 (x, λ0) = θ2 (x, λ0)c1 , (2.15)

and

θ1 (b, λ0) = θ2 (b, λ)c1 , θ∗1 (b, λ0) = θ∗2 (b, λ)c1 .

By setting y(x) = θ1 (x, λ), z(x) = θ1 (x, λ0) , we get

(λ − λ0)

b∫
a

lnθ1 (x, λ)lnθ1(x,λ0) dx = c1∆m (λ) .

Since ∆m (λ) is ∗entire function of λ,

∆∗m (λ0) =
(
e

lim
λ→λ0

∆m(λ)
λ−λ0

) 1
∆m(λ0)

=

e
1

c1

b∫
a

ln2 θ1(x,λ0)dx


1
∆m(λ0)

, 1. (2.16)

Hence, λ0 is simple zero of ∆m(λ).

3. Reconstruction of Green’s Function for ∗SL Problem

In this section, ∗Green’s function will be constructed for ∗SL problem which is not homogeneous and
some of its properties will be given.

Theorem 3.1. Let’s admit that λ is not an eigenvalue of (2.1)- (2.3) and ϕ (·, λ) satisfies the equation (2.5) and the
conditions (2.2), (2.3). Then,

ϕ (x, λ) =

b∫
a

(
Gm(x, t, λ) ⊙ e f (t)

)dt
, t ∈ [a, b] (3.1)

where e f (t)
∈
∗L2[a, b] and Gm(x, t, λ) is ∗Green function for (2.1)-(2.3) defined by

Gm(x, t, λ) = e
−1
∆m(λ) ⊙

{
θ2(x) ⊙ θ1(t), a ≤ t ≤ x
θ1(x) ⊙ θ2(t), x < t ≤ b . (3.2)

Conversely, ϕ (·, λ) defined by (3.1) satisfies equation (2.5) and conditions (2.2), (2.3). Furthermore, Gm(x, t, λ) is
unique. Here, θ1 and θ2 are linearly independent solutions of (2.1) which satisfy (2.2) and (2.3).

Proof. By (3.1),

ϕ (x, λ) =

b∫
a

(
Gm(x, t, λ) ⊙ e f (t)

)dt
= e

x∫
a

f (t) ln Gm(x,t,λ)dt
e

b∫
x

f (t) ln Gm(x,t,λ)dt
. (3.3)
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By definition of ∗Green’s function,

Gm(x, t, λ) =


(
θ2(x)lnθ1(t)

) −1
∆m(λ) , a ≤ t ≤ x(

θ1(x)lnθ2(t)
) −1
∆m(λ) , x < t ≤ b

. (3.4)

Considering (3.3) and (3.4) together, we get

ϕ (x, λ) = θ2(x)
−

x∫
a

lnθ1(t) f (t)
∆m (λ) dt

θ1(x)
−

b∫
x

lnθ2(t) f (t)
∆m (λ) dt

. (3.5)

Indeed, the particular solution of Eq. (2.5) by change of variables method in ∗case is as follows

ϕ (x, λ) = θ1(x, λ)c1(x)θ2(x, λ)c2(x), (3.6)

where c1(x) and c2(x) are functions of x. If method is applied in ∗case, we get

θ1(x, λ)c′1(x)θ2(x, λ)c′2(x) = 1, (3.7)

θ∗1(x, λ)c′1(x)θ∗2(x, λ)c′2(x) = e− f (x).

If c′1(x) and c′2(x) are left alone here, it yields,

c′1(x) = f (x) lnθ2

∆m(λ) , c′2(x) = − f (x) lnθ1

∆m(λ) . (3.8)

By some calculations

c1(x) = c1(b) −

b∫
x

f (t) lnθ2(t)
∆m (λ)

dt, (3.9)

and

c2(x) = c2(a) −

x∫
a

f (t) lnθ1(t)
∆m (λ)

dt. (3.10)

Thus, general solution of Eq. (2.5) is

ϕ (x, λ) = θ1(x, λ)c1θ2(x, λ)c2θ1(x, λ)
−

b∫
x

f (t) lnθ2(t)
∆m(λ) dt

θ2(x, λ)
−

x∫
a

f (t) lnθ1(t)
∆m(λ) dt

, (3.11)

by (3.6) where c1, c2 are arbitrary constants. Now, let’s determine these constants so that ϕ (x, λ) satisfies
conditions (2.2), (2.3). By (2.2) and (3.11), we get

ϕ (a, λ) = e− sinα, ϕ∗ (a, λ) = ecosα. (3.12)

If conditions are handled carefully here, we get

c1 =
−1
∆m (λ)

b∫
a

f (t) lnθ2(t)dt, and c2 =
1

∆m (λ)

b∫
a

f (t) lnθ1(t)dt.

Thus, (3.4) and (3.5) are provided. Now, on the contrary, let’s show that when ϕ (x, λ) is given by (3.1), it
satisfies conditions (2.5) and (2.2), (2.3). By (3.5), we get

ϕ∗ (x, λ) = θ∗2(x)
−

x∫
a

lnθ1(t) f (t)
∆m (λ) dt

θ2(x)−
lnθ1(x) f (x)
∆m(λ) θ∗1(x)

−

b∫
x

lnθ2(t) f (t)
∆m (λ) dt

θ1(x)
lnθ2(x) f (x)
∆m(λ)
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If we take ∗derivative of above equation once again

ϕ∗∗ (x, λ) =θ∗∗2 (x)
−

x∫
a

lnθ1(t) f (t)
∆m(λ) dt (

θ∗2(x)−
lnθ1(x) f (x)
∆m(λ)

)2
θ2(x)

(
−

lnθ1(x) f (x)
∆m (λ)

)′

θ∗∗1 (x)
−

b∫
x

lnθ2(t) f (t)
∆m(λ) dt (

θ∗1(x)
lnθ2(x) f (x)
∆m (λ)

)2
θ1(x)

(
lnθ2(x) f (x)
∆m(λ)

)′
.

(3.13)

Since θ1 and θ2 are solutions of (2.1), we have

θ∗∗1 (x) = θ1(x)q(x)−λ, (3.14)

θ∗∗2 (x) = θ2(x)q(x)−λ. (3.15)

Furthermore,(
θ∗2(x)−

lnθ1(x) f (x)
∆m(λ)

)2 (
θ∗1(x)

lnθ2(x) f (x)
∆m(λ)

)2
= e−2 f , (3.16)

and

θ2(x)
(
−

lnθ1(x) f (x)
∆m (λ)

)′
θ1(x)

(
lnθ2(x) f (x)
∆m(λ)

)′
= e f . (3.17)

If the expressions (3.14), (3.15), (3.16) and (3.17) are also taken into account in (3.13), we get

ϕ∗∗ (x, λ) = ϕ (x, λ)q(x)−λ e− f (x).

This shows that Eq. (2.5) is satisfied. Finally, let’s show that conditions are met.

ϕ (a, λ)cosα ϕ∗ (a, λ)sinα =
(
θ1 (a)cosα θ∗1 (a)sinα

)− b∫
a

lnθ2 f
∆m (λ) dt

= 1,

and

ϕ (b, λ)cos β ϕ∗ (b, λ)sin β =
(
θ2 (b)cos β θ∗2 (b)sin β

)− b∫
a

lnθ1 f
∆m(λ) dt

= 1.

Now, let us prove uniqueness of ∗Green’s function for given problem. Let’s face it, there is another ∗Green’s
function G̃m(x, t, λ) for same problem. Then, we get

ϕ (x, λ) =

b∫
a

(
Gm(x, t, λ) ⊙ e f (t)

)dt
,

and

ϕ (x, λ) =

b∫
a

(
G̃m(x, t, λ) ⊙ e f (t)

)dt
.

Thence, we get

b∫
a

f (t)
[
ln Gm(x, t, λ) − ln G̃m(x, t, λ)

]
dt = 0. (3.18)
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By setting f (t) = ln Gm(x, t, λ) − ln G̃m(x, t, λ), we get

b∫
a

∣∣∣ ln Gm(x, t, λ) − ln G̃m(x, t, λ)
∣∣∣2dt = 0⇒ Gm(x, t, λ) = G̃m(x, t, λ).

It completes the proof.

Theorem 3.2. Let Gm(x, t, λ) be ∗Green’s function of (2.1)-(2.3) which has below properties.

i. Gm(x, t, λ) is continuous at (a, a) .
ii. Gm(x, t, λ) = Gm(t, x, λ).
iii. Gm(x, t, λ) satisfies Eq. (2.1) and conditions (2.2)-(2.3) for all t ∈ R as a function of x.
iv. Let λ0 be an eigenvalue of ∆m (λ). Then, λ0 is simple pole point of Gm(x, t, λ) and

Gm(x, t, λ) =
[
ψ0(x)−ψ0(t)

] 1
λ−λ0 G̃m(x, t, λ).

Here, G̃m(x, t, λ) is ∗type holomorfic function of λ in the neighbourhood of λ0. ψ is normalized eigenfunction
related to λ0.

Proof. i. Proof is obtained by continuity of θ1 (., λ) and θ2 (., λ) for all λ ∈ R.
ii. It will be proved by using notion of ∗−Green’s function. Indeed, the definition yields

Gm(x, t, λ) = e
−1
∆m(λ) ⊙

{
θ2(x) ⊙ θ1(t), a ≤ t ≤ x,
θ1(x) ⊙ θ2(t), x < t ≤ b,

and

Gm(t, x, λ) = e
−1
∆m(λ) ⊙

{
θ2(t) ⊙ θ1(x), a ≤ x ≤ t,
θ1(t) ⊙ θ2(x), t < x ≤ b .

If some basic features of multiplicative calculus are used, we conclude that

ln Gm(x, t, λ) =

 − lnθ2(x)
∆m(λ) lnθ1(t), ln a ≤ ln t ≤ ln x
− lnθ2(t)
∆m(λ) lnθ1(x), ln x < ln t ≤ ln b

and

ln Gm(t, x, λ) =

 − lnθ1(x)
∆m(λ) lnθ2(t), ln a ≤ ln x ≤ ln t
− lnθ2(x)
∆m(λ) lnθ1(t), ln t < ln x ≤ ln b

.

This implies

Gm(x, t, λ) = Gm(t, x, λ).

iii. Let x ∈ [a, t] . Then,

Gm(x, t, λ) = θ2(x)
− lnθ1(t)
∆m (λ) ⇒ LGm(x, t, λ) = eλ ⊙ Gm(x, t, λ).

Similarly, proof can be made for x ∈ [t, b] .

[ecosα
⊙ Gm(a, t, λ)] ⊕

[
esinα

⊙ G∗m(a, t, λ)
]
=

[
θ1(a)cosαθ∗1(a)sinα

] − lnθ2(t)
∆m(λ) =

= 1
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and [
ecos β

⊙ Gm(b, t, λ)
]
⊕

[
esin β

⊙ G∗m(b, t, λ)
]
=

[
θ2(b)cos βθ∗2(b)sin β

] − lnθ1(t)
∆m (λ) =

= 1

iv. Let λ0 be pole point of Gm(x, t, λ) and Rm(x, t) be ∗residue of Gm(x, t, λ) at λ = λ0. By (2.15), (2.16), we
get

Rm(x, t) = lim
λ→λ0

[Gm(x, t, λ)]λ−λ0 = θ1(x)

− lnθ1(t)
c1

1

1
c1

b∫
a

ln2 θ1(x,λ0)dx
= ψ0(x, λ0)−ψ0(t,λ0).

It completes the proof.

Example 3.3. Consider ∗SL-BVP

e−1
⊙ y∗∗(x) = eλ ⊙ y, (3.19)

with Dirichlet conditions

L1(y) = y(0) = 0,
L2(y) = y(1) = 0.

A fundamental set of solutions for (3.19) is

ϕ1(x, λ) = ecos
√
λx, ϕ2(x, λ) = esin

√
λx.

As known, eigenvalues of (3.19) are zeros of

∆m (λ) =

∣∣∣∣∣∣∣ ln L1

(
ϕ1

)
ln L1

(
ϕ2

)
ln L2

(
ϕ1

)
ln L2

(
ϕ2

) ∣∣∣∣∣∣∣ = sin
√

λ = 0.

Therefore, eigenvalues are zeros of sin
√
λ as λn = n2π2, n ∈N. Then, we have

θ1(x, λ) = e− sin
√
λx,

θ2(x, λ) = ecos
√
λx sin

√
λ−sin

√
λx cos

√
λ.

So, ∗Green’s function is

Gm(x, t, λ) = e
−1

sinλ ⊙

 ecos
√
λx sin

√
λ−sin

√
λx cos

√
λ
⊙ sin

√
λt 0 ≤ t ≤ x

sin
√
λx ⊙ ecos

√
λt sin

√
λ−sin

√
λt cos

√
λ x < t ≤ 1

.

Example 3.4. Now let’s examine Eq. (3.19) with ∗Neumann conditions

L1(y) = y∗(0) = 0,
L2(y) = y∗(1) = 0.

A fundamental set of solutions for (3.19) are

ϕ1(x, λ) = ecos
√
λx, ϕ2(x, λ) = esin

√
λx.

Eigenvalues of (3.19) are zeros of

∆m (λ) =

∣∣∣∣∣∣∣ ln (1) ln
(
e
√
λ
)

ln
(
e−
√
λ sin

√
λ
)

ln
(
e
√
λ cos

√
λ
) ∣∣∣∣∣∣∣ = √λ sin

√

λ,
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as λn = n2π2, n ∈N. Then, ∗Green’s function is

Gm(x, t, λ) =

 θ2(x)−
lnθ1(t)
∆m (λ) , 0 ≤ t ≤ x

θ1(x)−
lnθ2(t)
∆m (λ) , x < t ≤ 1

where

θ1(x, λ) = e
√
λ cos

√
λx−sin

√
λx,

θ2(x, λ) = e
√
λ(cos

√
λ cos

√
λx+sin

√
λx sin

√
λ).

Example 3.5. Let’s examine Eq. (3.19) with ∗Robin conditions

L1(y) = y(0) = 0,
L2(y) = y(1)y∗(1) = 0.

For this problem, basic set of solutions are

ϕ1(x, λ) = ecos
√
λx, ϕ2(x, λ) = esin

√
λx.

Then, eigenvalues of (3.19) are the zeros of

∆m (λ) =

∣∣∣∣∣∣ 1 0
cos
√
λ −
√
λ sin

√
λ cos

√
λ +
√
λ sin

√
λ

∣∣∣∣∣∣ = sin
√

λ +
√

λ cos
√

λ.

Then, ∗Green’s function is

Gm(x, t, λ) =

 θ2(x)
sin
√
λt

sin
√
λ+
√
λ cos

√
λ , 0 ≤ t ≤ x

e
sin
√
λx lnθ2(t)

sin
√
λ+
√
λ cos

√
λ , x < t ≤ 1

where

θ1(x, λ) = e− sin
√
λx,

θ2(x, λ) = e(sin
√
λ cos

√
λx−cos

√
λ sin

√
λx)+

√
λ(cos

√
λx cos

√
λx+sin

√
λx sin

√
λ).

4. Conclusion

In this study, nonhomogeneous SL problem is defined in ∗case. Then, important spectral properties
of homogeneous ∗problem were examined. In last part, ∗Green’s function is created for nonhomogeneous
problem. Some indispensable properties of this function have been given and proven. The relevant nonho-
mogeneous problem was examined in ∗case with help of this function. Green’s function in ∗spectral theory
is defined for the first time with this study. It will provide an important convenience to mathematicians who
will work in this field and will accelerate the work in spectral theory in ∗case. In classical case, provision
of many properties of this function in ∗calculus shows that many concepts and theorems in spectral theory
can be defined in ∗calculus and very important results can be obtained. This shows that ∗calculus will be
effective in many areas of mathematical calculus as in many fields and will lead to important results from
different angles.
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