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Available at: http://www.pmf.ni.ac.rs/filomat

On Simpson’s and Newton’s type inequalities in multiplicative
fractional calculus
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Abstract. In this paper, we prove two multiplicative fractional integral identities involving multiplicative
differentiable functions. Then, with the help of newly established identities, we establish multiplicative
fractional versions of Simpson’s and Newton’s formulas type inequalities for differentiable multiplicative
convex functions. It is also shown that the newly proved inequalities are extensions of some existing
inequalities within the literature.

1. Introduction

Between1967 and 1970, Grossman and Katz, created the 1st non-Newtonian calculation system, called
geometric calculation. Over the next few years they had created an infinite family of non-Newtonian calculi,
thus modifying the classical calculus introduced by Newton and Leibniz in the 17th century each of which
differed markedly from the classical calculus of Newton and Leibniz known today as the non-Newtonian
calculus or the multiplicative calculus, where the ordinary product and ratio are used respectively as the
sum and exponential difference over the domain of positive real numbers see [17]. This calculation is
useful for dealing with exponentially varying functions. It is worth noting that the complete mathematical
description of multiplicative calculus was given by Bashirov et al. [9].

Since the applications of multiplicative calculus are relatively limited than the calculus of Newton and
Leibnitz. Therefore a well-developed tool with a wider scope has already been made, and the question
of whether it is fair to design a new tool with a limited scope arises. The solution is comparable to why
mathematicians use a polar coordinate system when a rectangular coordinate system better describes points
on a plane exists. We believe that the mathematical instrument of multiplicative calculus can be particularly
helpful for the study of economics and finance.

Assume for motivation’s sake that by depositing $a, one will receive $b after a year. The original number
then fluctuates b/a times. How frequently does it change each month? Assume that the change over a
month is p times for this. The total then becomes b = ap12 for a year. The formula for computing p is now
p = (b/a)

1
12 . Assuming that deposits fluctuate daily, hourly, minutely, secondarily, etc. and that the function
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Υ indicating its value at various time points are the formula

lim
h→0

(
Υ (σ + h)

h

) 1
h

. (1)

The above formula shows how the value of Υ (σ) varies at moment σ. For the comparison of definition (1),
the definition of derivative is

Υ′ (σ) = lim
h→0

Υ (σ + h) − Υ (σ)
h

. (2)

We observe that the difference in (2) is replaced by division and the division by h is replaced by the raising
to the reciprocal power 1/h. The limit (1) is called multiplicative derivative.

One of the main motivations behind multiplicative calculus is its ability to model non-linear systems that
involve growth or decay. Traditional calculus uses linear approximations to solve complex problems, but
multiplicative calculus uses nonlinear approximations which enables it to capture the complex interactions
that occur in nonlinear systems. Another motivation for multiplicative calculus is its ability to model
problems that involve positive and negative numbers, such as those in finance or economics. Traditional
calculus does not account for negative numbers, which can lead to errors in calculations. Furthermore,
multiplicative calculus provides a more natural way to model exponential growth and decay, which is
a common phenomenon in various fields such as physics, biology, and economics. In summary, the
motivation behind the development of multiplicative calculus is its ability to model nonlinear systems,
account for positive and negative numbers, and provide a more natural way to model exponential growth
and decay.

The Hermite-Hadamard inequality, named after Charles Hermite and Jacques Hadamard and commonly
known as Hadamard’s inequality, says that if a function Υ :

[
ω, ϱ

]
→ R is convex, the following double

inequality holds:

Υ
(ω + ϱ

2

)
≤

1
ϱ − ω

∫ ϱ

ω
Υ (σ) dσ ≤

Υ (ω) + Υ
(
ϱ
)

2
. (3)

If Υ is a concave mapping, the above inequality holds in the opposite direction. The inequality (3) can
be proved using the Jensen inequality. There has been much research done in the direction of Hermite-
Hadamard for different kinds of convexities. For example, in [8, 10, 14, 19], the authors established some
inequalities linked with the midpoint and trapezoid formulas of numerical integration for convex functions.
A study conducted in reference [13] established Simpson’s inequalities for general convex functions through
the use of fractional integrals. In [4], Ali et al. used Riemann-Liouville fractional integrals and established
different variants of Newton’s inequalities for differentiable convex functions.

In [7], Alomari et al. proved a new inequality to find the error bounds for Simpson’s 1/3 formula which
is stated as:

Theorem 1.1. Let Υ :
[
ω, ϱ

]
→ R be a differentiable functions over

(
ω, ϱ

)
. If |Υ′| is a convex function, then the

following inequality holds:∣∣∣∣∣16 [
Υ (ω) + 4Υ

(ω + ϱ
2

)
+ Υ

(
ϱ
)]
−

1
ϱ − ω

∫ ϱ

ω
Υ (σ) dσ

∣∣∣∣∣ (4)

≤
5
(
ϱ − ω

)
72

[
|Υ′ (ω)| +

∣∣∣Υ′ (ϱ)∣∣∣] .
Very recently, Ali et al. [3] proved the Hermite–Hadamard type inequality in the framework of multi-

plicative calculus and stated as:

Theorem 1.2. Let Υ :
[
ω, ϱ

]
→ R+ be a multiplicatively convex function, then the following inequality holds:

Υ
(ω + ϱ

2

)
≤

(∫ ϱ

ω
(Υ (σ))dσ

) 1
ϱ−ω

≤

√
Υ (ω)Υ

(
ϱ
)
. (5)
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In [12], Chasreechai et al. gave the multiplicative version of the inequality (4) and stated as:

Theorem 1.3. Let Υ :
[
ω, ϱ

]
→ R+ be a multiplicative differentiable functions over

(
ω, ϱ

)
. If Υ∗ is a multiplicative

convex function, then the following inequality holds:∣∣∣∣∣∣∣∣∣∣∣
[
Υ (ω)

(
Υ

(
ω+ϱ

2

))4
Υ

(
ϱ
)] 1

6

(∫ ϱ
ω

(Υ (σ))dσ
) 1
ϱ−ω

∣∣∣∣∣∣∣∣∣∣∣ ≤
[
Υ∗ (ω)Υ∗

(
ϱ
)] 5(ϱ−ω)

72 . (6)

After the work of Ali et al. [3], many researchers started work in this direction and proved different vari-
ants of integral inequalities in the setting of multiplicative calculus. For example, the Hermite–Hadamard
type inequalities for general multiplicatively convex functions were proved in [2] and Özcan used the mul-
tiplicatively preinvexity and established Hermite–Hadamard type inequalities in [21]. For multiplicatively
s-convex and multiplicatively s-preinvex functions, the Hermite–Hadamard type inequalities were found
in [22, 23] and for h-preinvex functions proved in [24]. Ali et al. [5] established some Ostrowski’s and
Simpson’s type inequalities for multiplicatively convex functions and give their applications. Budak and
Özcelik [11] used multiplicative fractional integrals and established Hermite–Hadamard-type inequalities.
In [15], Fu et al. introduced multiplicative tempered fractional integrals and established some new frac-
tional Hermite–Hadamard type inequalities for multiplicatively convex functions. Ali et al. [6] introduced
the notions of multiplicative interval-valued integral and established some new Hermite–Hadamard type
inequalities for interval-valued multiplicatively convex functions.

Inspired by the ongoing studies, we derived some new inequalities of Simpson’s and Newton’s type for
multiplicative convex functions and these inequalities can help to find the error bounds of multiplicative
numerical integration formulas. Since multiplicative calculus is modern calculus with a lot of applications
in banking and finance, therefore the study about multiplicative calculus is valuable.

2. Multiplicative Calculus and related inequalities

In this section, we recall some concepts of multiplicative calculus and some inequalities. It is understood
that multiplicative calculus only deal with the positive functions.

Definition 2.1. [16, 18] Let Υ ∈ L1
[
ω, ϱ

]
. The Riemann-Liouville fractional integrals Jαω+Υ and Jαϱ−Υ of order

α ∈ C, Re (α) > 0 with ω ≥ 0 are defined as follows:

Jαω+Υ (σ) =
1
Γ (ω)

∫ σ

ω

(
σ − η

)α−1Υ
(
η
)

dη, σ > ω,

and

Jαϱ−Υ (σ) =
1
Γ (α)

∫ ϱ

σ

(
η − σ

)α−1Υ
(
η
)

dη, σ < ϱ,

respectively, where Γ is the well-known Gamma function.

Definition 2.2. [16, 18] The Riemann-Liouville fractional derivatives Dαω+Υ (left) and Dαϱ−Υ (right) of order α ∈ C,
Re (α) > 0 with ω ≥ 0 are defined as follows:

Dαω+Υ (σ) =
1

Γ (n − α)
dn

dσn

∫ σ

ω

(
σ − η

)n−α−1Υ
(
η
)

dη, σ > ω

Dαϱ−Υ (σ) =
(−1)n

Γ (n − α)
dn

dσn

∫ ϱ

σ

(
η − σ

)n−α−1Υ
(
η
)

dη, σ < ϱ.

Here n = [Re (σ) + 1] , where [σ] means the greatest integer less than or equal to σ.
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In 2013, Sarikaya et al. proved the following fractional Hermite-Hamdard type inequality for the first
time:

Theorem 2.3. [25] For a positive convex function Υ : I ⊂ R→ R with Υ ∈ L1
[
ω, ϱ

]
and 0 ≤ ω < ϱ, the following

inequality holds:

Υ
(ω + ϱ

2

)
≤
Γ (α + 1)

2
(
ϱ − ω

)α [
Jαω+Υ

(
ϱ
)
+ Jαϱ−Υ (ω)

]
≤
Υ (ω) + Υ

(
ϱ
)

2
. (7)

Definition 2.4. [9] Let Υ : R→ R+ be a positive function. The multiplicative derivative of the function Υ is given
by

d∗Υ
dη

(η) = Υ∗(η) = lim
h→0

(
Υ(η + h)
Υ(η)

)1/h

.

If Υ has positive values and is differentiable at η, then Υ∗ exists and the relation between Υ∗ and ordinary derivative
Υ′ is as follows:

Υ∗(η) = e[logΥ(η)]′ = e
Υ′ (η)
Υ(η) .

If, additionally, the second derivative of Υ at η exists, then by an easy substitution, we obtain

Υ∗∗(η) = e[log ◦Υ∗(η)]′ = e[logΥ(η)]′′ .

Here (lnΥ)′′ (η) exists because Υ′′(η) exist. Repeating this procedure n times, we conclude that if Υ is a
positive function and its nth derivative at η exists, then Υ∗(n)(η) exists and

Υ∗(n)(η) = e(logΥ)(n)
(η), n = 1, 2, · · · .

We also recall that the concept of the ∗ integral called multiplicative integral is denoted by
ϱ∫
ω

(Υ(σ))dσ which

introduced by Bashirov et al. in [9]. While the sum of the terms of product is used in the definition of a
classical Riemann integral of Υ on

[
ω, ϱ

]
, the product of terms raised to a power is used in the definition

multiplicative integral of Υ on
[
ω, ϱ

]
.

There is the following relation between Riemann integral and multiplicative integral [9]:

Proposition 2.5. [9] If Υ is Riemann integrable on
[
ω, ϱ

]
, then Υ is multiplicative integrable on

[
ω, ϱ

]
and

ϱ∫
ω

(Υ(σ))dσ = e

ϱ∫
ω

log(Υ(σ))dσ
.

For more details and properties of multiplicative calculus, one can consult [9].

Theorem 2.6. [9] Let Υ :
[
ω, ϱ

]
→ R be multiplicative differentiable, let 1 :

[
ω, ϱ

]
→ R be differentiable so the

function Υ1 is multiplicative integrable. Then

ϱ∫
ω

(Υ∗(σ)1(σ))dσ =
Υ(ϱ)1(ϱ)

Υ(ω)1(ω)
.

1
ϱ∫
ω

(Υ(σ)1′(σ))dσ

.



M. A. Ali / Filomat 37:30 (2023), 10133–10144 10137

Definition 2.7. [1] The multiplicative Riemann-Liouville fractional integrals ω+ Jα∗Υ (left) and ∗ Jαϱ−Υ (right) of order
α ∈ C, Re (α) > 0 with ω ≥ 0 are defined as follows:

ω+ Jα∗Υ (σ) = e(Jαω+(ln ◦Υ))(σ),

∗ Jαϱ−Υ (σ) = e(Jαϱ−(ln ◦Υ))(σ).

Definition 2.8. [1] The Riemann-Liouville fractional derivatives ω+Dα∗Υ (left) and ∗Dαϱ−Υ (right) of order α ∈ C,
Re (α) > 0 with ω ≥ 0 are defined as follows:

ω+Dα∗Υ (σ) = e(Dαω+(ln ◦Υ))(σ),

∗Dαϱ−Υ (σ) = e(Dαϱ−(ln ◦Υ))(σ).

For more details about the multiplicative fractional calculus, one can consulty [1].

Theorem 2.9. [11] For a positive multiplicative convex function Υ :
[
ω, ϱ

]
→ R, the following inequality holds for

multiplicative Riemann-Liouville fractional integrals:

Υ
(ω + ϱ

2

)
≤

[
ω+ Jα∗Υ

(
ϱ
)
.∗ Jαϱ−Υ (ω)

] Γ(α+1)
2(ϱ−ω)α ≤ G

(
Υ (ω) ,Υ

(
ϱ
))
.

For our main results we need to follow the definitions.

Definition 2.10. [20] A non-empty set K is said to be convex, if for every ω, ϱ ∈ K we have

ω + η(ϱ − ω) ∈ K, ∀η ∈ [0, 1].

Definition 2.11. [20] A function Υ is said to be convex function on set K, if

Υ(ησ + (1 − η)y) ≤ ηΥ(σ) + (1 − η)Υ(y), ∀η ∈ [0, 1].

Definition 2.12. [20] A function Υ is said to be lo1 or multiplicatively convex function on set K, if

Υ(ησ + (1 − η)y) ≤ [Υ(σ)]η .
[
Υ(y)

]1−η ,∀η ∈ [0, 1].

3. Multiplicative Integral Identities

In this section, two multiplicative fractional integral equalities are derived which plays an important
role in the main results.

Lemma 3.1. Let Υ :
[
ω, ϱ

]
→ R be multiplicative differentiable function over

(
ω, ϱ

)
. If Υ∗ is integrable functions,

then following equality holds:[
Υ (ω)

(
Υ

(
ω+ϱ

2

))4
Υ

(
ϱ
)] 1

6

[
∗ Jαω+Υ (σ) .ϱ− Jα∗Υ (σ)

] Γ(α+1)
2(ϱ−ω)α

(8)

=

∫ 1
2

0

([
Υ∗

(
ηϱ +

(
1 − η

)
ω
)]ηα− 1

6

)dη

ϱ−ω

2

×

∫ 1
2

0

([
Υ∗

(
ηω +

(
1 − η

)
ϱ
)] 1

6−η
α
)dη


ϱ−ω

2

×

∫ 1

1
2

([
Υ∗

(
ηϱ +

(
1 − η

)
ω
)]ηα− 5

6

)dη

ϱ−ω

2

×

∫ 1

1
2

([
Υ∗

(
ηω +

(
1 − η

)
ϱ
)] 5

6−η
α
)dη


ϱ−ω

2

.
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Proof. From the basic rules of multiplicative integration by parts and multiplicative fractional integrals, we
have

I1 =

∫ 1
2

0

([
Υ∗

(
ηϱ +

(
1 − η

)
ω
)]ηα− 1

6

)dη

ϱ−ω

2

(9)

= e
ϱ−ω

2

∫ 1
2

0 (ηα− 1
6 )(ln ◦Υ)′(ηϱ+(1−η)ω)dη

= e
1
2 ( 1

2α −
1
6 ) lnΥ( ω+ϱ2 )+ 1

12 lnΥ(ω)− α2
∫ 1

2
0 η

α−1 lnΥ(ηϱ+(1−η)ω),

and

I2 =

∫ 1

1
2

([
Υ∗

(
ηϱ +

(
1 − η

)
ω
)]ηα− 5

6

)dη

ϱ−ω

2

(10)

= e
1

12 lnΥ(ϱ)+ 1
2 ( 5

6−
1

2α ) lnΥ( ω+ϱ2 )− α2
∫ 1

1
2
ηα−1 lnΥ(ηϱ+(1−η)ω)

.

From (9) and (10), we have

I1 × I2 = e
1
12 lnΥ(ω)+ 1

12 lnΥ(ϱ)+ 1
3 lnΥ( ω+ϱ2 )− Γ(α+1)

2(ϱ−ω)α Jαω+ lnΥ(σ)
. (11)

Similarly, we have

I3 × I4 =

∫ 1
2

0

([
Υ∗

(
ηω +

(
1 − η

)
ϱ
)] 1

6−η
α
)dη


ϱ−ω

2

×

∫ 1

1
2

([
Υ∗

(
ηω +

(
1 − η

)
ϱ
)] 5

6−η
α
)dη


ϱ−ω

2

(12)

= e
1
12 lnΥ(ω)+ 1

12 lnΥ(ϱ)+ 1
3 lnΥ( ω+ϱ2 )− Γ(α+1)

2(ϱ−ω)α Jαϱ− lnΥ(σ)
.

Thus, from (11) and (12), we have∫ 1
2

0

([
Υ∗

(
ηϱ +

(
1 − η

)
ω
)]ηα− 1

6

)dη

ϱ−ω

2

×

∫ 1

1
2

([
Υ∗

(
ηϱ +

(
1 − η

)
ω
)]ηα− 5

6

)dη

ϱ−ω

2

×

∫ 1
2

0

([
Υ∗

(
ηω +

(
1 − η

)
ϱ
)] 1

6−η
α
)dη


ϱ−ω

2

×

∫ 1

1
2

([
Υ∗

(
ηω +

(
1 − η

)
ϱ
)] 5

6−η
α
)dη


ϱ−ω

2

=

[
Υ (ω)

(
Υ

(
ω+ϱ

2

))4
Υ

(
ϱ
)] 1

6

[
∗ Jαω+Υ (σ) .ϱ− Jα∗Υ (σ)

] Γ(α+1)
2(ϱ−ω)α

and the proof is completed.

Lemma 3.2. Let Υ :
[
ω, ϱ

]
→ R be a multiplicative differentiable functions over

(
ω, ϱ

)
. If Υ∗ is integrable functions,

then following equality holds:[
Υ (ω)

[
Υ

(
ω+2ϱ

3

)]3 [
Υ

(
2ω+ϱ

3

)]3
Υ

(
ϱ
)] 1

8

[
∗ Jαω+Υ (σ) .ϱ− Jα∗Υ (σ)

] Γ(α+1)
2(ϱ−ω)α

=

∫ 1
3

0

[(
Υ∗

(
ηϱ +

(
1 − η

)
ω
))ηα− 1

8

]dη

ϱ−ω

2

×

∫ 1
3

0

[(
Υ∗

(
ηω +

(
1 − η

)
ϱ
)) 1

8−η
α
]dη


ϱ−ω

2
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×

∫ 2
3

1
3

[(
Υ∗

(
ηϱ +

(
1 − η

)
ω
))ηα− 1

2

]dη

ϱ−ω

2

×

∫ 2
3

1
3

[(
Υ∗

(
ηω +

(
1 − η

)
ϱ
)) 1

2−η
α
]dη


ϱ−ω

2

×

∫ 1

2
3

[(
Υ∗

(
ηϱ +

(
1 − η

)
ω
))ηα− 7

8

]dη

ϱ−ω

2

×

∫ 1

2
3

[(
Υ∗

(
ηω +

(
1 − η

)
ϱ
)) 7

8−η
α
]dη


ϱ−ω

2

.

Proof. This lemma can be proved like the previous lemma.

4. Multiplicative Fractional Simpson’s Inequalities

In this section, the multiplicative fractional version of Simpson’s inequalities for multiplicative convex
functions are established.

Theorem 4.1. If Lemma 3.1 holds and Υ∗ is multiplicative convex function, then we have the following inequality

for λ =
(

1
6

) 1
α and µ =

(
5
6

) 1
α :∣∣∣∣∣∣∣∣∣∣∣

[
Υ (ω)

(
Υ

(
ω+ϱ

2

))4
Υ

(
ϱ
)] 1

6

[
∗ Jαω+Υ (σ) .ϱ− Jα∗Υ (σ)

] Γ(α+1)
2(ϱ−ω)α

∣∣∣∣∣∣∣∣∣∣∣
≤

[
Υ∗ (ω)Υ∗

(
ϱ
)] (A1(λ)+A3(λ)+B1(µ)+B3(µ))(ϱ−ω)

2 ,

where

A1 (λ) =

∫ 1
2

0
η

∣∣∣∣∣ηα − 1
6

∣∣∣∣∣ dη = λ2

6
−

2λα+2

α + 2
+

1
2α+2 (α + 2)

−
1
48
,

A2 (λ) =

∫ 1
2

0

∣∣∣∣∣ηα − 1
6

∣∣∣∣∣ dη = λ3 − 2λα+1

α + 1
+

1
2α+1 (α + 1)

−
1
2
,

A3 (λ) =

∫ 1
2

0

(
1 − η

) ∣∣∣∣∣ηα − 1
6

∣∣∣∣∣ dη = A2 (λ) − A1 (λ) ,

B1
(
µ
)
=

∫ 1

1
2

η

∣∣∣∣∣ηα − 5
6

∣∣∣∣∣ dη = 5µ2

6
−

2µα+2

α + 2
−

25
48
+

1
2α+2 (α + 2)

+
1
α + 2

,

B2
(
µ
)
=

∫ 1

1
2

∣∣∣∣∣ηα − 5
6

∣∣∣∣∣ dη = 5
3
µ −

2µα+1

α + 1
−

15
12
+

1
2α+1 (α + 1)

+
1
α + 1

,

B3
(
µ
)
=

∫ 1

1
2

(
1 − η

) ∣∣∣∣∣ηα − 5
6

∣∣∣∣∣ dη = B2
(
µ
)
− B1

(
µ
)
.

Proof. Taking modulus of (8) and multiplicative convexity of Υ∗, we have∣∣∣∣∣∣∣∣∣∣∣
[
Υ (ω)

(
Υ

(
ω+ϱ

2

))4
Υ

(
ϱ
)] 1

6

[
∗ Jαω+Υ (σ) .ϱ− Jα∗Υ (σ)

] Γ(α+1)
2(ϱ−ω)α

∣∣∣∣∣∣∣∣∣∣∣
≤ exp

ϱ − ω2

∫ 1
2

0

∣∣∣∣∣ηα − 1
6

∣∣∣∣∣ lnΥ∗ (ηϱ + (
1 − η

)
ω
)

dη


+
ϱ − ω

2

∫ 1
2

0

∣∣∣∣∣ηα − 1
6

∣∣∣∣∣ lnΥ∗ (ηω + (
1 − η

)
ϱ
)

dη
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+
ϱ − ω

2

∫ 1

1
2

∣∣∣∣∣ηα − 5
6

∣∣∣∣∣ lnΥ∗ (ηϱ + (
1 − η

)
ω
)

dη


+
ϱ − ω

2

∫ 1

1
2

∣∣∣∣∣ηα − 5
6

∣∣∣∣∣ lnΥ∗ (ηω + (
1 − η

)
ϱ
)

dη


≤ exp

ϱ − ω2

∫ 1
2

0

∣∣∣∣∣ηα − 1
6

∣∣∣∣∣ (η lnΥ∗
(
ϱ
)
+

(
1 − η

)
lnΥ∗ (ω)

)
dη


+
ϱ − ω

2

∫ 1
2

0

∣∣∣∣∣ηα − 1
6

∣∣∣∣∣ (η lnΥ∗ (ω) +
(
1 − η

)
lnΥ∗

(
ϱ
))

dη


+
ϱ − ω

2

∫ 1

1
2

∣∣∣∣∣ηα − 5
6

∣∣∣∣∣ (η lnΥ∗
(
ϱ
)
+

(
1 − η

)
lnΥ∗ (ω)

)
dη


+
ϱ − ω

2

∫ 1

1
2

∣∣∣∣∣ηα − 5
6

∣∣∣∣∣ (η lnΥ∗ (ω) +
(
1 − η

)
lnΥ∗

(
ϱ
))

dη


= exp

[ϱ − ω
2

(
A1 (λ) lnΥ∗

(
ϱ
)
+ (A3 (λ)) lnΥ∗ (ω)

)
+
ϱ − ω

2
(
A1 (λ) lnΥ∗ (ω) + (A3 (λ)) lnΥ∗

(
ϱ
))

+
ϱ − ω

2
(
B1

(
µ
)

lnΥ∗
(
ϱ
)
+

(
B3

(
µ
))

lnΥ∗ (ω)
)

+
ϱ − ω

2
(
B1

(
µ
)

lnΥ∗ (ω) +
(
B3

(
µ
))

lnΥ∗
(
ϱ
))]

=
[
Υ∗ (ω)Υ∗

(
ϱ
)] (A1(λ)+A3(λ)+B1(µ)+B3(µ))(ϱ−ω)

2 .

Thus, the proof is completed.

Remark 4.2. For α = 1 in Theorem 4.1, the following inequality holds:∣∣∣∣∣∣∣∣∣∣∣
[
Υ (ω)

(
Υ

(
ω+ϱ

2

))4
Υ

(
ϱ
)] 1

6

(∫ ϱ
ω

(Υ (σ))dσ
) 1
ϱ−ω

∣∣∣∣∣∣∣∣∣∣∣
≤

[
Υ∗ (ω)Υ∗

(
ϱ
)] 5(ϱ−ω)

72 .

This inequality is proved by Chasreechai et al. in [12].

Theorem 4.3. If Lemma 3.1 holds and (ln (Υ∗))q, q > 1 is convex function, then we have the following inequality:∣∣∣∣∣∣∣∣∣∣∣
[
Υ (ω)

(
Υ

(
ω+ϱ

2

))4
Υ

(
ϱ
)] 1

6

[
∗ Jαω+Υ (σ) .ϱ− Jα∗Υ (σ)

] Γ(α+1)
2(ϱ−ω)α

∣∣∣∣∣∣∣∣∣∣∣
≤

[√
Υ∗ (ω)Υ∗

(
ϱ
)] ϱ−ω2 [Ψ1+Ψ2]

,

whereΨ1 =
(∫ 1

2

0

∣∣∣ηα − 1
6

∣∣∣p dη
) 1

p

,Ψ2 =
(∫ 1

1
2

∣∣∣ηα − 5
6

∣∣∣p dη
) 1

p

and 1
p +

1
q = 1.
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Proof. From (8) and Hölder inequality, we have∣∣∣∣∣∣∣∣∣∣∣
[
Υ (ω)

(
Υ

(
ω+ϱ

2

))4
Υ

(
ϱ
)] 1

6

[
∗ Jαω+Υ (σ) .ϱ− Jα∗Υ (σ)

] Γ(α+1)
2(ϱ−ω)α

∣∣∣∣∣∣∣∣∣∣∣
≤ exp

ϱ − ω2

∫ 1
2

0

∣∣∣∣∣ηα − 1
6

∣∣∣∣∣ lnΥ∗ (ηϱ + (
1 − η

)
ω
)

dη


+
ϱ − ω

2

∫ 1
2

0

∣∣∣∣∣ηα − 1
6

∣∣∣∣∣ lnΥ∗ (ηω + (
1 − η

)
ϱ
)

dη


+
ϱ − ω

2

∫ 1

1
2

∣∣∣∣∣ηα − 5
6

∣∣∣∣∣ lnΥ∗ (ηϱ + (
1 − η

)
ω
)

dη


+
ϱ − ω

2

∫ 1

1
2

∣∣∣∣∣ηα − 5
6

∣∣∣∣∣ lnΥ∗ (ηω + (
1 − η

)
ϱ
)

dη


≤ exp

ϱ − ω2

∫ 1
2

0

∣∣∣∣∣ηα − 1
6

∣∣∣∣∣p dη


1
p

∫ 1

2

0

∣∣∣lnΥ∗ (ηϱ + (
1 − η

)
ω
)∣∣∣q dη


1
q

+

∫ 1
2

0

∣∣∣lnΥ∗ (ηω + (
1 − η

)
ϱ
)∣∣∣q dη


1
q


+
ϱ − ω

2

∫ 1

1
2

∣∣∣∣∣ηα − 5
6

∣∣∣∣∣p dη


1
p


∫ 1

1
2

∣∣∣lnΥ∗ (ηϱ + (
1 − η

)
ω
)∣∣∣q dη


1
q

+

∫ 1

1
2

∣∣∣lnΥ∗ (ηω + (
1 − η

)
ϱ
)∣∣∣q dη


1
q


 .

Applying convexity of (ln (Υ∗))q, we have∣∣∣∣∣∣∣∣∣∣∣
[
Υ (ω)

(
Υ

(
ω+ϱ

2

))4
Υ

(
ϱ
)] 1

6

[
∗ Jαω+Υ (σ) .ϱ− Jα∗Υ (σ)

] Γ(α+1)
2(ϱ−ω)α

∣∣∣∣∣∣∣∣∣∣∣
≤ exp

ϱ − ω2

∫ 1
2

0

∣∣∣∣∣ηα − 1
6

∣∣∣∣∣p dη


1
p

∫ 1

2

0

(
η
(
lnΥ∗

(
ϱ
))q +

(
1 − η

)
(lnΥ∗ (ω))q

)
dη


1
q

+

∫ 1
2

0

(
η (lnΥ∗ (ω))q +

(
1 − η

) (
lnΥ∗

(
ϱ
))q

)
dη


1
q


+
ϱ − ω

2

∫ 1

1
2

∣∣∣∣∣ηα − 5
6

∣∣∣∣∣p dη


1
p


∫ 1

1
2

(
η
(
lnΥ∗

(
ϱ
))q +

(
1 − η

)
(lnΥ∗ (ω))q

)
dη


1
q

+

∫ 1

1
2

(
η lnΥ∗ (ω) +

(
1 − η

)
lnΥ∗

(
ϱ
))

dη


1
q
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= exp

ϱ − ω2

∫ 1
2

0

∣∣∣∣∣ηα − 1
6

∣∣∣∣∣p dη


1
p

((

lnΥ∗
(
ϱ
))q

8
+

3 (lnΥ∗ (ω))q

8

) 1
q

+

(
(lnΥ∗ (ω))q

8
+

3
(
lnΥ∗

(
ϱ
))q

8

) 1
q


+
ϱ − ω

2

∫ 1

1
2

∣∣∣∣∣ηα − 5
6

∣∣∣∣∣p dη


1
p

(

3
(
lnΥ∗

(
ϱ
))q

8
+

(lnΥ∗ (ω))q

8

) 1
q

+

(
3 (lnΥ∗ (ω))q

8
+

(
lnΥ∗

(
ϱ
))q

8

) 1
q


=
[√
Υ∗ (ω)Υ∗

(
ϱ
)] ϱ−ω2 [Ψ1+Ψ2]

.

Thus, the proof is completed.

Remark 4.4. For α = 1 in Theorem 4.3, the following inequality holds:∣∣∣∣∣∣∣∣∣∣∣
[
Υ (ω)

(
Υ

(
ω+ϱ

2

))4
Υ

(
ϱ
)] 1

6

(∫ ϱ
ω

(Υ (σ))dσ
) 1
ϱ−ω

∣∣∣∣∣∣∣∣∣∣∣
≤

[√
Υ∗ (ω)Υ∗

(
ϱ
)](ϱ−ω)

(
1+2p+1

6p+1(p+1)

)
.

This inequality is proved by Chasreechai et al. in [12].

5. Multiplicative Fractional Newton’s Inequalities

In this section, the multiplicative fractional version of Newton’s inequalities for multiplicative convex
functions are established with the help of Lemma 3.2.

Theorem 5.1. If Lemma 3.2 holds and Υ∗ is multiplicative convex function, then we have the following inequality

for ν =
(

1
8

) 1
α , ξ =

(
1
2

) 1
α and κ =

(
7
8

) 1
α :∣∣∣∣∣∣∣∣∣∣∣

[
Υ (ω)

[
Υ

(
ω+2ϱ

3

)]3 [
Υ

(
2ω+ϱ

3

)]3
Υ

(
ϱ
)] 1

8

[
∗ Jαω+Υ (σ) .ϱ− Jα∗Υ (σ)

] Γ(α+1)
2(ϱ−ω)α

∣∣∣∣∣∣∣∣∣∣∣
≤

[
Υ∗ (ω)Υ∗

(
ϱ
)] (C1(ν)+C3(ν)+D1(ξ)+D3(ξ)+E1(κ)+E3(κ))(ϱ−ω)

2 ,

where

C1 (ν) =

∫ 1
3

0
η

∣∣∣∣∣ηα − 1
8

∣∣∣∣∣ dη = ν2

8
−

2να+2

α + 2
+

1
3α+2 (α + 2)

−
1

144
,

C2 (ν) =

∫ 1
3

0

∣∣∣∣∣ηα − 1
8

∣∣∣∣∣ dη = ν4 − 2να+1

α + 1
+

1
3α+1 (α + 1)

−
1
24
,

C3 (ν) =

∫ 1
3

0

(
1 − η

) ∣∣∣∣∣ηα − 1
8

∣∣∣∣∣ dη = C2 (ν) − C1 (ν) ,
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D1 (ξ) =

∫ 2
3

1
3

η

∣∣∣∣∣ηα − 1
2

∣∣∣∣∣ dη = ξ2

2
−

2ξα+2
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+

1
3α+2 (α + 2)

+
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3α+2 (α + 2)
−

5
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,

D2 (ξ) =

∫ 2
3

1
3

∣∣∣∣∣ηα − 1
2

∣∣∣∣∣ dη = ξ − 2ξα+1

α + 1
+

1
3α+1 (α + 1)

+
2α+1

3α+1 (α + 1)
−

1
2
,

D3 (ξ) =
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3

1
3

(
1 − η

) ∣∣∣∣∣ηα − 1
2

∣∣∣∣∣ dη = D2 (ξ) −D1 (ξ) ,

E1 (κ) =

∫ 1

2
3

η

∣∣∣∣∣ηα − 7
8

∣∣∣∣∣ dη = 7κ2

8
−

2κα+2

α + 2
+
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3α+2 (α + 2)
+

1
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−
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,

E2 (κ) =

∫ 1
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3

∣∣∣∣∣ηα − 7
8
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2
3

(
1 − η

) ∣∣∣∣∣ηα − 7
8

∣∣∣∣∣ dη = E2 (κ) − E1 (κ) .

Proof. One can obtain the required inequality by using the steps used in the proof of Theorem 4.1.

Remark 5.2. For α = 1 in Theorem 5.1, we have the following inequality:∣∣∣∣∣∣∣∣∣∣∣
[
Υ (ω)

[
Υ

(
ω+2ϱ

3

)]3 [
Υ

(
2ω+ϱ

3

)]3
Υ

(
ϱ
)] 1

8

(∫ ϱ
ω

(Υ (σ))dσ
) 1
ϱ−ω

∣∣∣∣∣∣∣∣∣∣∣
≤

[
Υ∗ (ω)Υ∗

(
ϱ
)] 25(ϱ−ω)

576 .

This inequality is proved by Chasreechai et al. in [12].

Theorem 5.3. If Lemma 3.2 holds and (ln (Υ∗))q, q > 1 is a convex function, then we have the following inequality:∣∣∣∣∣∣∣∣∣∣∣
[
Υ (ω)

[
Υ

(
ω+2ϱ

3

)]3 [
Υ

(
2ω+ϱ

3

)]3
Υ

(
ϱ
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8

[
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,

whereΨ3 =
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3

0
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8

∣∣∣p dη
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p

,Ψ4 =
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3
1
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,Ψ5 =
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2
3

∣∣∣ηα − 7
8

∣∣∣p dη
) 1

p

and 1
p +

1
q = 1.

Proof. One can obtain the required inequality by using the steps used in the proof of Theorem 4.3.

Remark 5.4. For α = 1 in Theorem 5.3, we have the following inequality:∣∣∣∣∣∣∣∣∣∣∣
[
Υ (ω)

[
Υ

(
ω+2ϱ

3

)]3 [
Υ

(
2ω+ϱ

3

)]3
Υ

(
ϱ
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8

(∫ ϱ
ω

(Υ (σ))dσ
) 1
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3

(
1
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+ 5p+1

24p+1(p+1)

) 1
p
+

(ϱ−ω)
6

(
2

6p+1(p+1)

) 1
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.

This inequality is proved by Chasreechai et al. in [12].
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6. Conclusion

In this work, we have established multiplicative fractional variants of Simpson’s and Newton’s inequal-
ities for multiplicative convex functions. Moreover, we have proved that the newly established inequalities
are extensions of inequalities proved in [12]. After understanding the results of this paper, the upcoming
researchers can obtain similar inequalities on coordinates and can use these results in finding the error
bounds for multiplicative fractional numerical integration formulas.
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