Abelian theorems for the index ${ }_{2} F_{1}$-transform over distributions of compact support and generalized functions

Jeetendrasingh Maan ${ }^{\text {a,b }}$, B. J. González ${ }^{\text {c,d }}$, E. R. Negrín ${ }^{\text {c,d }}$
${ }^{a}$ Department of Mathematics and Computing, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
${ }^{b}$ Department of Mathematics and Scientific Computing, National Institute of Technology, Hamirpur, Hamirpur-177005, India
${ }^{c}$ Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna (ULL).
Campus de Anchieta. ES-38271 La Laguna (Tenerife), Spain
${ }^{d}$ Instituto de Matemáticas y Aplicaciones (IMAULL), Universidad de La Laguna (ULL), ULL Campus de Anchieta, ES-38271 La Laguna (Tenerife), Spain

Abstract

The goal of this paper is to derive new Abelian theorems for the index ${ }_{2} F_{1}$-transform over distributions of compact support and over certain spaces of generalized functions. From these results one also obtains Abelian theorems for the conventional index ${ }_{2} F_{1}$-transform.

1. Introduction and preliminaries

The index ${ }_{2} F_{1}$-transform of a suitable complex-valued function f is given by

$$
\begin{equation*}
F(\tau)=\int_{0}^{\infty} f(t)_{2} F_{1}\left(\mu+\frac{1}{2}+i \tau, \mu+\frac{1}{2}-i \tau ; \mu+1 ;-t\right) t^{\alpha} d t, \quad \tau>0 \tag{1.1}
\end{equation*}
$$

where ${ }_{2} F_{1}\left(\mu+\frac{1}{2}+i \tau, \mu+\frac{1}{2}-i \tau ; \mu+1 ;-t\right)$ is the Gauss hypergeometric function, μ and α are complex parameters with $\mathfrak{R}(\mu)>-1 / 2$.

The Gauss hypergeometric function [3, p. 57] is defined for $|z|<1$ as

$$
\begin{aligned}
& { }_{2} F_{1}(a, b ; c ; z):=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{z^{n}}{n!}, \\
& (\lambda)_{n}:=\lambda(\lambda+1) \cdots(\lambda+n-1), n=1,2 \ldots(\lambda)_{0}:=1 .
\end{aligned}
$$

For $|z| \geq 1$ is defined as its analytic continuation [16, p. 431] as

$$
{ }_{2} F_{1}(a, b ; c ; z):=\frac{\Gamma(c)}{\Gamma(b) \Gamma(c-b)} \int_{0}^{1} t^{b-1}(1-t)^{c-b-1}(1-t z)^{-a} d t
$$

[^0]$$
\mathfrak{R}(c)>\mathfrak{R}(b)>0 ;|\arg (1-z)|<\pi .
$$

The Gauss hypergeometric function satisfies the following differential equation [3, p. 56]

$$
z(1-z) \frac{d^{2} w}{d z^{2}}+[c-(a+b+1) z] \frac{d w}{d z}-a b w=0
$$

where

$$
w=w(z)={ }_{2} F_{1}(a, b ; c ; z)
$$

The integral transform (1.1) was first mentioned in [25] as a particular case of a more general integral transform with the Meijer G-function as the kernel.

In a series of papers Hayek, González and Negrín have considered several properties of the index ${ }_{2} F_{1}$-transform both from a classical point of view and spaces of generalized functions (cf. [5], [6], [7], [9], [10], [11]). Moreover this transform has been cited in [2], [26] and [27].

Abelian theorems have been studied in several works (see [4], [6], [13] and [20]), for certain index transforms. For more details of index transforms see [18], [19] and [26], amongst others.

Abelian theorems for distributional transforms were first established by Zemanian in [28], (see also [1], [4], [6], [15], [21], [22], [23], and [24]).

Now, we consider the differential operator

$$
\begin{equation*}
A_{t}=t^{\alpha-\mu}(t+1)^{\mu} D_{t} t^{\mu+1}(t+1)^{\mu+1} D_{t} t^{-\alpha} \tag{1.2}
\end{equation*}
$$

From [8, (2.3), p. 658] one has that

$$
\begin{align*}
& A_{t 2} F_{1}\left(\mu+\frac{1}{2}+i \tau, \mu+\frac{1}{2}-i \tau ; \mu+1 ;-t\right) t^{\alpha} \\
& =-\left[\left(\mu+\frac{1}{2}\right)^{2}+\tau^{2}\right]{ }_{2} F_{1}\left(\mu+\frac{1}{2}+i \tau, \mu+\frac{1}{2}-i \tau ; \mu+1 ;-t\right) t^{\alpha} \tag{1.3}
\end{align*}
$$

Next, from [3, (7), p. 122 and (6), p. 155], we obtain

$$
\begin{align*}
& { }_{2} F_{1}\left(\mu+\frac{1}{2}+i \tau, \mu+\frac{1}{2}-i \tau ; \mu+1 ;-t\right) t^{\alpha}= \\
& =\frac{\Gamma(\mu+1) t^{\alpha}}{\sqrt{\pi} \Gamma\left(\mu+\frac{1}{2}\right)} \int_{0}^{\pi}(1+2 t+2 \sqrt{t(t+1)} \cos \xi)^{-\mu-1 / 2-i \tau}(\sin \xi)^{2 \mu} d \xi \tag{1.4}
\end{align*}
$$

which is valid for

$$
t>0, \tau>0, \mathfrak{R}(\mu)>-1 / 2, \alpha \in \mathbb{C} .
$$

Observe that one has

$$
\begin{aligned}
\sin \xi \geq 0, & \xi \in[0, \pi] \\
1+2 \sqrt{t+2 t(t+1)} \cos \xi \geq 0, & t>0, \quad \xi \in[0, \pi]
\end{aligned}
$$

and hence, for $\mathfrak{R}(\mu)>-1 / 2$, it follows from (1.4) that

$$
\begin{aligned}
& \left|{ }_{2} F_{1}\left(\mu+\frac{1}{2}+i \tau, \mu+\frac{1}{2}-i \tau ; \mu+1 ;-t\right) t^{\alpha}\right| \\
& \leq \frac{|\Gamma(\mu+1)| t^{\mathfrak{R}(\alpha)}}{\sqrt{\pi}\left|\Gamma\left(\mu+\frac{1}{2}\right)\right|} \int_{0}^{\pi}(1+2 t+2 \sqrt{t(t+1)} \cos \xi)^{-\mathfrak{R}(\mu)-\frac{1}{2}}(\sin \xi)^{2 \mathfrak{R}(\mu)} d \xi
\end{aligned}
$$

$$
\begin{align*}
& =\frac{|\Gamma(\mu+1)| t^{\mathfrak{R}}(\alpha)}{\sqrt{\pi}\left|\Gamma\left(\mu+\frac{1}{2}\right)\right|} \int_{0}^{\pi}(1+2 t+2 \sqrt{t(t+1)} \cos \xi)^{-\mathfrak{R}(\mu)-\frac{1}{2}}(\sin \xi)^{2 \mathfrak{R}(\mu)} d \xi \\
& =\frac{|\Gamma(\mu+1)| \Gamma\left(\mathfrak{R}(\mu)+\frac{1}{2}\right)}{\sqrt{\pi}\left|\Gamma\left(\mu+\frac{1}{2}\right)\right| \Gamma(\mathfrak{R}(\mu)+1)}{ }_{2} F_{1}\left(\mathfrak{R}(\mu)+\frac{1}{2}, \mathfrak{R}(\mu)+\frac{1}{2} ; \mathfrak{R}(\mu)+1 ;-t\right) t^{\mathfrak{R}(\alpha)} . \tag{1.5}
\end{align*}
$$

Also, from [3, (7), p. 122] and [14, p.171, Entry (12.08) and p. 172, Entry (12.20)], for $\mathfrak{R}(\mu)>-1 / 2$ we have

$$
\begin{align*}
& { }_{2} F_{1}\left(\mathfrak{R}(\mu)+\frac{1}{2}, \mathfrak{R}(\mu)+\frac{1}{2} ; \mathfrak{R}(\mu)+1 ;-t\right) t^{\mathfrak{R}(\alpha)}=O\left(t^{\mathfrak{R}(\alpha)}\right), \quad t \rightarrow 0^{+}, \tag{1.6}\\
& { }_{2} F_{1}\left(\mathfrak{R}(\mu)+\frac{1}{2}, \mathfrak{R}(\mu)+\frac{1}{2} ; \mathfrak{R}(\mu)+1 ;-t\right) t^{\mathfrak{R}(\alpha)}=O\left(t^{\mathfrak{R}(\alpha)-\mathfrak{R}(\mu)-\frac{1}{2}} \ln t\right), \quad t \rightarrow+\infty . \tag{1.7}
\end{align*}
$$

2. Abelian theorems for the distributional index ${ }_{2} F_{1}$-transform

The space $\mathcal{E}((0, \infty))$ is defined as the vector space of all infinitely differentiable complex-valued functions ϕ defined on $(0, \infty)$. This space equipped with the locally convex topology arising from the family of seminorms

$$
\rho_{k, K}(\phi)=\sup _{t \in K}\left|D_{t}^{k} \phi(t)\right|
$$

for all $k \in \mathbb{N} \cup\{0\}$, all compact sets $K \subset(0, \infty)$, and with D_{t}^{k} denoting the k-th derivative with respect to the variable t, becomes a Fréchet space. As usual, we denote by $\mathcal{E}^{\prime}((0, \infty))$ the dual of the space $\mathcal{E}((0, \infty))$.

The generalized index ${ }_{2} F_{1}$-transform of $f \in \mathcal{E}^{\prime}((0, \infty))$ was defined by the kernel method in [8] by means of

$$
\begin{equation*}
F(\tau)=\left\langle f(t),{ }_{2} F_{1}\left(\mu+\frac{1}{2}+i \tau, \mu+\frac{1}{2}-i \tau ; \mu+1 ;-t\right) t^{\alpha}\right\rangle, \quad \tau>0 \tag{2.1}
\end{equation*}
$$

where μ and α are complex parameters with $\mathfrak{R}(\mu)>-1 / 2$.
In this section we establish Abelian theorems for the index ${ }_{2} F_{1}$-transform (2.1). Previously we prove some results.

The following Lemma was showed in [8, Lemma 2.1, p. 659]
Lemma 2.1. For each compact $K \subset(0, \infty)$ and $k \in \mathbb{N} \cup\{0\}$ let $\gamma_{k, K}$ be the seminorm defined by

$$
\gamma_{k, K}(\phi)=\sup _{t \in K}\left|A_{t}^{k} \phi(t)\right|, \quad \phi \in \mathcal{E}^{\prime}((0, \infty)),
$$

where A_{t} is the operator given by (1.2). Then, $\left\{\gamma_{k, K}\right\}$ gives rise to a topology on $\mathcal{E}^{\prime}((0, \infty))$ which coincides with is usual topology.

Now, by using the above Lemma 2.1 we obtain the following result
Lemma 2.2. Set $\mathfrak{R}(\mu)>-1 / 2$ and $\alpha \in \mathbb{C}$. Let f be in $\mathcal{E}^{\prime}((0, \infty))$, and let F be defined by (2.1). Then there exist a constant $M>0$ and a nonnegative integer p, all depending on f, such that

$$
\begin{equation*}
|F(\tau)| \leq M \max _{0 \leq k \leq p}\left[\left(|\mu|+\frac{1}{2}\right)^{2}+\tau^{2}\right]^{k}, \quad \forall \tau>0 . \tag{2.2}
\end{equation*}
$$

Proof. Observe that ${ }_{2} F_{1}\left(\mu+\frac{1}{2}+i \tau, \mu+\frac{1}{2}-i \tau ; \mu+1 ;-t\right) t^{\alpha}$ is an eigenfunction of A_{t}, i.e.,

$$
\begin{align*}
& A_{t 2} F_{1}\left(\mu+\frac{1}{2}+i \tau, \mu+\frac{1}{2}-i \tau ; \mu+1 ;-t\right) t^{\alpha} \\
& =-\left[\left(\mu+\frac{1}{2}\right)^{2}+\tau^{2}\right]{ }_{2} F_{1}\left(\mu+\frac{1}{2}+i \tau, \mu+\frac{1}{2}-i \tau ; \mu+1 ;-t\right) t^{\alpha} \tag{2.3}
\end{align*}
$$

According to Lemma 2.1, we may consider the space $\mathcal{E}((0, \infty))$ equipped with the topology arising from the family of seminorms $\gamma_{k, K}$. From [12, Proposition 2, p. 97], there exist $C>0$, a compact set $K \subset(0, \infty)$, and a nonnegative integer p, all depending on f, such that

$$
\begin{equation*}
|\langle f, \phi\rangle| \leq C \max _{0 \leq k \leq p} \max _{t \in K}\left|A_{t}^{k} \phi(t)\right| \tag{2.4}
\end{equation*}
$$

for all $\phi \in \mathcal{E}((0, \infty))$. In particular,

$$
\begin{align*}
& |F(\tau)|=\left|\left\langle f(t),{ }_{2} F_{1}\left(\mu+\frac{1}{2}+i \tau, \mu+\frac{1}{2}-i \tau ; \mu+1 ;-t\right) t^{\alpha}\right\rangle\right| \\
& \leq C \max _{0 \leq k \leq p} \max _{t \in K}\left|A_{t 2}^{k} F_{1}\left(\mu+\frac{1}{2}+i \tau, \mu+\frac{1}{2}-i \tau ; \mu+1 ;-t\right) t^{\alpha}\right| \\
& =C \max _{0 \leq k \leq p} \max _{t \in K}\left|\left[\left(\mu+\frac{1}{2}\right)^{2}+\tau^{2}\right]^{k}{ }_{2}^{k} F_{1}\left(\mu+\frac{1}{2}+i \tau, \mu+\frac{1}{2}-i \tau ; \mu+1 ;-t\right) t^{\alpha}\right| \tag{2.5}
\end{align*}
$$

From (1.5) it follows that, for $\mathfrak{R}(\mu)>-1 / 2,(2.5)$ is bounded above by

$$
\begin{align*}
& C \max _{0 \leq k \leq p} \max _{t \in K}\left\{\frac{|\Gamma(\mu+1)| \Gamma\left(\Re(\mu)+\frac{1}{2}\right)}{\sqrt{\pi}\left|\Gamma\left(\mu+\frac{1}{2}\right)\right| \Gamma(\Re(\mu)+1)}\left[\left(|\mu|+\frac{1}{2}\right)^{2}+\tau^{2}\right]_{2}^{k} F_{1}\left(\mathfrak{R}(\mu)+\frac{1}{2}, \mathfrak{R}(\mu)+\frac{1}{2} ; \mathfrak{R}(\mu)+1 ;-t\right) t^{\mathfrak{R}(\alpha)}\right\} \\
& \leq M \max _{0 \leq k \leq p}\left[\left(|\mu|+\frac{1}{2}\right)^{2}+\tau^{2}\right]^{k} \tag{2.6}
\end{align*}
$$

for all $\tau>0$ and certain $M>0$, since t ranges on the compact set $K \subset(0, \infty)$.
The smallest integer p which verifies the inequality (2.4) is defined as the order of the distribution f (cf. [17, Théorème XXIV, p. 88]).

In the following statement we establish Abelian theorems for the distributional index ${ }_{2} F_{1}$-transform (2.1).

Theorem 2.3. (Abelian theorem) Set $\mathfrak{R}(\mu)>-1 / 2$ and $\alpha \in \mathbb{C}$. Let f be a member of $\mathcal{E}^{\prime}((0, \infty))$ of order $r \in \mathbb{N} \cup\{0\}$, and let F be given by (2.1). Then
(i) for any $\gamma>0$ one has

$$
\lim _{\tau \rightarrow 0^{+}}\left\{\tau^{\gamma} F(\tau)\right\}=0
$$

(ii) for any $\gamma>0$ one has

$$
\lim _{\tau \rightarrow+\infty}\left\{\tau^{-2 r-\gamma} F(\tau)\right\}=0 .
$$

Proof. From Lemma 2.2 one obtains

$$
|F(\tau)| \leq M \max _{0 \leq k \leq r}\left[\left(|\mu|+\frac{1}{2}\right)^{2}+\tau^{2}\right]^{k}, \quad \forall \tau>0
$$

for some $M>0$, from which the conclusion follows.

Next, let f be a locally integrable function on $(0, \infty)$ and f has compact support on $(0, \infty)$, then f gives rise to a regular member T_{f} of $\mathcal{E}^{\prime}((0, \infty))$ of order $r=0$ by means of

$$
\left\langle T_{f}, \phi\right\rangle=\int_{0}^{\infty} f(t) \phi(t) d t, \quad \forall \phi \in \mathcal{E}((0, \infty))
$$

Observe that

$$
\begin{aligned}
& \left|<T_{f}, \phi>\left|=\left|\int_{1}^{\infty} f(t) \phi(t) d t\right| \leq \sup _{t \in \operatorname{supp}(f)}\right| \phi(t)\right| \int_{\operatorname{supp}(f)}|f(t)| d t \\
& =\gamma_{0, \operatorname{supp}(f)}(\phi) \int_{\operatorname{supp}(f)}|f(t)| d t
\end{aligned}
$$

where $\operatorname{supp}(f)$ represents the support of the function f, it follows that T_{f} has order $r=0$.
Consequently, we have

$$
\begin{align*}
& F(\tau)=\left\langle T_{f}(t),{ }_{2} F_{1}\left(\mu+\frac{1}{2}+i \tau, \mu+\frac{1}{2}-i \tau ; \mu+1 ;-t\right) t^{\alpha}\right\rangle \\
& =\int_{0}^{\infty} f(t){ }_{2} F_{1}\left(\mu+\frac{1}{2}+i \tau, \mu+\frac{1}{2}-i \tau ; \mu+1 ;-t\right) t^{\alpha} d t, \tau>0 \tag{2.7}
\end{align*}
$$

for $\mathfrak{R}(\mu)>-1 / 2$.
From this fact one concludes that the index ${ }_{2} F_{1}$-transform of the regular distribution generated by the function f is the classical index ${ }_{2} F_{1}$-transform of the function f.

Furthermore, by using Theorem 2.3 for the index ${ }_{2} F_{1}$-transform of these regular members of $\mathcal{E}^{\prime}((0, \infty))$, one obtains the following
Corollary 2.4. Set $\mathfrak{R}(\mu)>-1 / 2$ and $\alpha \in \mathbb{C}$. Let f be a locally integrable function in $(0, \infty)$ and such that f has compact support on $(0, \infty)$. Then the function F given by (2.7), satisfies the following:
(i) for any $\gamma>0$ one has

$$
\lim _{\tau \rightarrow 0^{+}}\left\{\tau^{\gamma} F(\tau)\right\}=0
$$

(ii) for any $\gamma>0$ one has

$$
\lim _{\tau \rightarrow+\infty}\left\{\tau^{-\gamma} F(\tau)\right\}=0
$$

3. Abelian theorems for the index ${ }_{2} F_{1}$-transform of generalized functions

In [8], Hayek and González studied the index ${ }_{2} F_{1}$-transform over certain spaces of generalized functions. In that paper it was considered the linear space $U_{a, \mu, \alpha}$ of all smooth complex-valued functions ϕ defined on $(0, \infty)$, such that

$$
\begin{equation*}
\gamma_{k, a, \mu, \alpha}(\phi)=\sup _{0<t<\infty}\left|(2 t+1)^{a} t^{\frac{\mu}{2}-\alpha}(t+1)^{\frac{\mu}{2}} A_{k}^{t} \phi(t)\right|<\infty, \quad k \in \mathbb{N} \cup\{0\}, \tag{3.1}
\end{equation*}
$$

where A_{t} is the differential operator given by (1.2).
The space $U_{a, \mu, \alpha}$ equipped with the topology arising from the family of seminorms $\left\{\gamma_{k, a, \mu}\right\}$ is a Fréchet space.

As usual, by $U_{a, \mu, \alpha}^{\prime}$ is denoted the dual space of $U_{a, \mu, \alpha}$.
By using (1.5), (1.6) and (1.7) it follows that

$$
{ }_{2} F_{1}\left(\mu+\frac{1}{2}+i \tau, \mu+\frac{1}{2}-i \tau ; \mu+1 ;-t\right) t^{\alpha} \in U_{a, \mu, \alpha}
$$

for $\mathfrak{R}(\mu) \geq 0, a<1 / 2$ and $\alpha \in \mathbb{C}$, and thus, as it is usual, the generalized index ${ }_{2} F_{1}$-transform is defined for $f \in U_{a, \mu, \alpha}^{\prime}$ by

$$
\begin{equation*}
F(\tau)=\left\langle f(t),{ }_{2} F_{1}\left(\mu+\frac{1}{2}+i \tau, \mu+\frac{1}{2}-i \tau ; \mu+1 ;-t\right) t^{\alpha}\right\rangle \tau>0 \tag{3.2}
\end{equation*}
$$

From [12, Proposition 2, p. 97], one has that for all $f \in U_{a, \mu, \alpha}^{\prime}$, there exist a $C>0$ and a nonnegative integer p, all depending on f, such that

$$
\begin{equation*}
|\langle f, \phi\rangle| \leq C \max _{0 \leq k \leq p} \gamma_{k, a, \mu}(\phi)=C \max _{0 \leq k \leq p} \sup _{t \in(1, \infty)}\left|(2 t+1)^{a} t^{\frac{\mu}{2}-\alpha}(t+1)^{\frac{\mu}{2}} A_{t}^{k} \phi(t)\right|, \tag{3.3}
\end{equation*}
$$

for all $\phi \in U_{a, \mu, \alpha}$.
Now we prove Abelian theorems for the transform (3.2). First we prove a previous result
Lemma 3.1. Set $\mathfrak{R}(\mu) \geq 0, a<1 / 2$ and $\alpha \in \mathbb{C}$. Let f be in $U_{a, \mu, \alpha}^{\prime}$, and let F be defined by (3.2). Then there exist $M>0$ and a nonnegative integer p, all depending on f, such that

$$
\begin{equation*}
|F(\tau)| \leq M \max _{0 \leq k \leq p}\left[\left(|\mu|+\frac{1}{2}\right)^{2}+\tau^{2}\right]^{k}, \forall \tau>0 . \tag{3.4}
\end{equation*}
$$

Proof. From (1.5) and (3.3) one has

$$
\begin{aligned}
& |F(\tau)|=\left|\left\langle f(t),{ }_{2} F_{1}\left(\mu+\frac{1}{2}+i \tau, \mu+\frac{1}{2}-i \tau ; \mu+1 ;-t\right) t^{\alpha}\right\rangle\right| \\
& \leq C \max _{0 \leq k \leq p} \sup _{t \in(0, \infty)}\left|(2 t+1)^{a} t^{\frac{\mu}{2}-\alpha}(t+1)^{\frac{\mu}{2}} A_{t 2}^{k} F_{1}\left(\mu+\frac{1}{2}+i \tau, \mu+\frac{1}{2}-i \tau ; \mu+1 ;-t\right) t^{\alpha}\right| \\
& \leq C \max _{0 \leq k \leq p} \sup _{t \in(0, \infty)}\left|\left[\left(\mu+\frac{1}{2}\right)^{2}+\tau^{2}\right]^{k} \frac{|\Gamma(\mu+1)| \Gamma\left(\Re(\mu)+\frac{1}{2}\right)}{\sqrt{\pi}\left|\Gamma\left(\mu+\frac{1}{2}\right)\right| \Gamma(\Re(\mu)+1)}{ }_{2} F_{1}\left(\Re(\mu)+\frac{1}{2}, \Re(\mu)+\frac{1}{2} ; \mathfrak{R}(\mu)+1 ;-t\right) t^{\Re(\alpha)}\right| .
\end{aligned}
$$

Now, from (1.6) and (1.7), and taking into account the fact that $\mathfrak{R}(\mu) \geq 0$ and $a<1 / 2$, it follows that

$$
|F(\tau)| \leq M \max _{0 \leq k \leq p}\left[\left(|\mu|+\frac{1}{2}\right)^{2}+\tau^{2}\right]^{k}, \quad \forall \tau>0
$$

for certain $M>0$.
As it is usual, the smallest integer p which verifies the inequality (3.3) is called the order of the generalized function f.

The next statement gives an Abelian theorem for the index ${ }_{2} F_{1}$-transform of generalized functions in $U_{a, \mu, \alpha}^{\prime}$.

Theorem 3.2. (Abelian theorem) Set $\mathfrak{R}(\mu) \geq 0, a<1 / 2$ and $\alpha \in \mathbb{C}$. If f is a generalized function on $U_{a, \mu, \alpha^{\prime}}^{\prime}$ of order $r \in \mathbb{N} \cup\{0\}$, and F is given by (3.2), then
(i) for any $\gamma>0$ one has

$$
\lim _{\tau \rightarrow 0^{+}}\left\{\tau^{\gamma} F(\tau)\right\}=0
$$

(ii) for any $\gamma>0$ one has

$$
\lim _{\tau \rightarrow+\infty}\left\{\tau^{-2 r-\gamma} F(\tau)\right\}=0
$$

Proof. From Lemma 3.1 one has

$$
|F(\tau)| \leq M \max _{0 \leq k \leq r}\left[\left(|\mu|+\frac{1}{2}\right)^{2}+\tau^{2}\right]^{k}, \quad \forall \tau>0
$$

for some $M>0$, and hence the conclusion follows.
Otherwise, from Proposition 2.1 (v) in [8], a function f defined on $(0, \infty)$ such that $(2 t+1)^{-a} t^{\alpha-\frac{\mu}{2}}(t+1)^{-\frac{\mu}{2}} f(t)$, $\mathfrak{R}(\mu) \geq 0, a<1 / 2$, is Lebesgue integrable on $(0, \infty)$, gives rise to a regular generalized function T_{f} on $U_{a, \mu, \alpha}^{\prime}$ or order $r=0$ through

$$
<T_{f}, \phi>=\int_{0}^{\infty} f(t) \phi(t) d t, \quad \forall \phi \in U_{a, \mu, \alpha} .
$$

In fact, taking into account that

$$
\begin{aligned}
& \left|\left\langle T_{f}, \phi\right\rangle\right|=\left|\int_{0}^{\infty} f(t) \phi(t) d t\right| \\
& =\left|\int_{0}^{\infty}(2 t+1)^{-a} t^{\alpha-\frac{\mu}{2}}(t+1)^{-\frac{\mu}{2}} f(t)(2 t+1)^{a} t^{\frac{\mu}{2}-\alpha}(t+1)^{\frac{\mu}{2}} \phi(t) d t\right| \\
& \leq \sup _{t \in(0, \infty)}\left|(2 t+1)^{a} t^{\frac{\mu}{2}-\alpha}(t+1)^{\frac{\mu}{2}} \phi(t)\right| \int_{0}^{\infty}\left|(2 t+1)^{-a} t^{\alpha-\frac{\mu}{2}}(t+1)^{-\frac{\mu}{2}} f(t)\right| d t \\
& =\gamma_{0, a, \mu, \alpha}(\phi) \cdot \int_{0}^{\infty}(2 t+1)^{-a} t^{\mathfrak{R}(\alpha)-\frac{\Re(\mu)}{2}}(t+1)^{-\frac{\mathfrak{K}(\mu)}{2}}|f(t)| d t
\end{aligned}
$$

it follows that T_{f} is a distribution of order $r=0$.
In this case,

$$
\begin{align*}
& F(\tau)=\left\langle T_{f}(t){ }_{, 2} F_{1}\left(\mu+\frac{1}{2}+i \tau, \mu+\frac{1}{2}-i \tau ; \mu+1 ;-t\right) t^{\alpha}\right\rangle \\
& =\int_{0}^{\infty} f(t)_{2} F_{1}\left(\mu+\frac{1}{2}+i \tau, \mu+\frac{1}{2}-i \tau ; \mu+1 ;-t\right) t^{\alpha} d t, \tau>0 \tag{3.5}
\end{align*}
$$

for $\mathfrak{R}(\mu) \geq 0$.
Again, as in the case of the regular distributions of compact support, it follows that the index ${ }_{2} F_{1}-$ transform of the regular generalized function generated by the function f is the classical index ${ }_{2} F_{1}$-transform of the function f.

Consequently, by Theorem 3.2, one obtains the following
Corollary 3.3. Set $\mathfrak{R}(\mu) \geq 0, a<1 / 2$ and $\alpha \in \mathbb{C}$. Let f be a function defined on $(0, \infty)$ such that $(2 t+1)^{-a} t^{\alpha-\frac{\mu}{2}}(t+$ $1)^{-\frac{\mu}{2}} f(t)$ is Lebesgue integrable on $(0, \infty)$, and F is given by (3.5). Then
(i) for any $\gamma>0$ one has

$$
\lim _{\tau \rightarrow 0^{+}}\left\{\tau^{\gamma} F(\tau)\right\}=0
$$

(ii) for any $\gamma>0$ one has

$$
\lim _{\tau \rightarrow+\infty}\left\{\tau^{-\gamma} F(\tau)\right\}=0
$$

4. Conclusions

The behaviour of the Gauss hypergeometric function, used as the kernel of the index ${ }_{2} F_{1}$-transform, allows us to establish Abelian theorems for this transform over distributions of compact support on ($0, \infty$) and over the space of generalized functions $U_{a, \mu, \alpha}^{\prime}$ introduced in [8] under the conditions $\mathfrak{R}(\mu) \geq 0, a<1 / 2$ and $\alpha \in \mathbb{C}$.

Note: The manuscript has no associated data.
Disclosure statement: No potential conflict of interest was reported by the authors.
Acknowledgements: Authors are very thankful to the reviewer for his/her valuable and constructive comments and suggestions.

References

[1] Z.A. Ansari, A. Prasad, Abelian theorems and Calderón's reproducing formula for linear canonical wavelet transform, J. PseudoDiffer. Oper. Appl. 12(1), Paper No. 4, 26 pp (2021).
[2] J. Denzler, A hypergeometric function approach to the persistence problem of single sine-Gordon breathers, Trans. Amer. Math. Soc. 349(10), 4053-4083 (1997).
[3] A. Erdelyi, W. Magnus, F. Oberhettinger and F. Tricomi, Higher transcendental functions, Vol. I. McGraw-Hill Book Company, Inc., New York-Toronto-London (1953).
[4] B.J. González and E.R. Negrín, Abelian Theorems for Distributional Kontorovich-Lebedev and Mehler-Fock Transforms of General Order, Banach J. Math. Anal. 13(3), 524-537 (2019).
[5] N. Hayek, B.J. González and E.R. Negrín, Abelian theorems for the index ${ }_{2} F_{1}$-transform, Rev. Técn. Fac. Ingr. Univ. Zulia 15(3), 167-171 (1992).
[6] N. Hayek and B.J. González, Abelian theorems for the generalized index ${ }_{2} F_{1}$-transform, Rev. Acad. Canaria Cienc., 4(1-2), 23-29 (1992).
[7] N. Hayek and B.J. González, A convolution theorem for the index ${ }_{2} F_{1}$-transform, J. Inst. Math. Comput. Sci. Math. Ser. 6(1), 21-24 (1993).
[8] N. Hayek and B.J. González, The index ${ }_{2} F_{1}$-transform of generalized functions, Comment. Math. Univ. Carolin. 34(4), 657-671 (1993).
[9] N. Hayek and B.J. González, On the distributional index ${ }_{2} F_{1}$-transform, Math. Nachr. 165, 15-24 (1994).
[10] N. Hayek and B.J. González, An operational calculus for the index ${ }_{2} F_{1}$-transform, Jñānābha 24, 13-18 (1994).
[11] N. Hayek and B.J. González, A convolution theorem for the distributional index ${ }_{2} F_{1}$-transform, Rev. Roumaine Math. Pures Appl. 42(7-8), 567-578 (1997).
[12] J. Horváth, Topological Vector Spaces and Distributions, Vol. I, Addison-Wesley, Reading, MA (1966).
[13] J. Maan and A. Prasad, Abelian theorems in the framework of the distributional index Whittaker transform, Math. Commun. 27, 1-9 (2022).
[14] F.W.J. Olver, Asymptotics and Special Functions, Academic Press, New York (1974).
[15] A. Prasad and P. Kumar, Abelian theorems for fractional wavelet transform, Asian-Eur. J. Math. 10(1), 1750019, 15 pp (2017).
[16] A.P. Prudnikov, Y.A. Brychkov and O.I. Marichev, Integrals and Series, vol. 3, Gordon and Breach Science Publishers, New York (1990).
[17] L. Schwartz, Théorie des Distributions, Publ. Inst. Math. Univ. Strasbourg 9-10 Hermann, Paris (1966).
[18] H.M. Srivastava, Some general families of integral transformations and related results, Appl. Math. Comput. Sci. 6, 27-41 (2022).
[19] H.M. Srivastava, Yu.V. Vasilév and S.B. Yakubovich, A class of index transforms with Whittaker's function as the kernel, Quart. J. Math. Oxford Ser. (2) 49(195), 375-394 (1998).
[20] H.M. Srivastava, B.J. González and E.R. Negrín, A new class of Abelian theorems for the Mehler-Fock transforms, Russ. J. Math. Phys. 24, 124-126 (2017) (see also Errata Russ. J. Math. Phys. 24, 278-278 (2017)).
[21] H.M. Srivastava, B.J. González and E.R. Negrín, An operational calculus for a Mehler-Fock type index transform on distributions of compact support, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. (RACSAM) 117, Article ID 3, 1-11 (2023).
[22] H.M. Srivastava, S. Yadav and S.K. Upadhyay, The Weinstein transform associated with a family of generalized distributions, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. (RACSAM) 117, Article ID 132, 1-32 (2023).
[23] H.M. Srivastava, R. Singh and S.K. Upadhyay, The Bessel wavelet convolution involving the Hankel transformations, J. Nonlinear Convex Anal. 23, 2649-2661 (2022).
[24] H.M. Srivastava, P. Shukla and S.K. Upadhyay, The localization operator and wavelet multipliers involving the Watson transform, J. Pseudo-Differ. Oper. Appl. 13, Article ID 46, 1-21 (2022).
[25] J. Wimp, A Class of Integral Transforms, Proc. Edinburgh Math. Soc. 14(2), 33-40 (1964).
[26] S.B. Yakubovich, Index transforms (with Foreword by H. M. Srivastava), World Scientific Publishing Co., Inc., River Edge, NJ 1996.
[27] S.B. Yakubovich, On the Plancherel theorem for the Olevskiĭ transform, Acta Math. Vietnam. 31(3), 249-260 (2006).
[28] A.H. Zemanian, Some Abelian theorems for the distributional Hankel and K transformations, SIAM J. Appl. Math. 14(6), 12551265 (1966).

[^0]: 2020 Mathematics Subject Classification. Primary 44A15; Secondary 46F12.
 Keywords. Index ${ }_{2} F_{1}$-transform; Distributions of compact support; Generalized functions; Regular distributions; Regular generalized functions; Abelian theorems.

 Received: 24 January 2023; Accepted: 02 July 2023
 Communicated by Hari M. Srivastava
 Email addresses: jsmaan111@rediffmail.com (Jeetendrasingh Maan), bjglez@ull.es (B. J. González), enegrin@ull.es (E. R. Negrín)

