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Abstract. The goal of this paper is to derive new Abelian theorems for the index 2F1-transform over
distributions of compact support and over certain spaces of generalized functions. From these results one
also obtains Abelian theorems for the conventional index 2F1-transform.

1. Introduction and preliminaries

The index 2F1-transform of a suitable complex-valued function f is given by

F(τ) =
∫
∞

0
f (t) 2F1

(
µ +

1
2
+ iτ, µ +

1
2
− iτ;µ + 1;−t

)
tαdt, τ > 0, (1.1)

where 2F1(µ+ 1
2+iτ, µ+ 1

2−iτ;µ+1;−t) is the Gauss hypergeometric function, µ andα are complex parameters
withℜ(µ) > −1/2.

The Gauss hypergeometric function [3, p. 57] is defined for |z| < 1 as

2F1(a, b; c; z) :=
∞∑

n=0

(a)n(b)n

(c)n

zn

n!
,

(λ)n := λ(λ + 1) · · · (λ + n − 1), n = 1, 2 . . . (λ)0 := 1.

For |z| ≥ 1 is defined as its analytic continuation [16, p. 431] as

2F1(a, b; c; z) :=
Γ(c)

Γ(b)Γ(c − b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − tz)−adt,
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ℜ(c) >ℜ(b) > 0; | arg(1 − z)| < π.

The Gauss hypergeometric function satisfies the following differential equation [3, p. 56]

z(1 − z)
d2w
dz2 + [c − (a + b + 1)z]

dw
dz
− abw = 0,

where

w = w(z) = 2F1(a, b; c; z).

The integral transform (1.1) was first mentioned in [25] as a particular case of a more general integral
transform with the Meijer G-function as the kernel.

In a series of papers Hayek, González and Negrı́n have considered several properties of the index
2F1-transform both from a classical point of view and spaces of generalized functions (cf. [5], [6], [7], [9],
[10], [11]). Moreover this transform has been cited in [2], [26] and [27].

Abelian theorems have been studied in several works (see [4], [6], [13] and [20]), for certain index
transforms. For more details of index transforms see [18], [19] and [26], amongst others.

Abelian theorems for distributional transforms were first established by Zemanian in [28], (see also [1],
[4], [6], [15], [21], [22], [23], and [24]).

Now, we consider the differential operator

At = tα−µ(t + 1)µDttµ+1(t + 1)µ+1Dtt−α. (1.2)

From [8, (2.3), p. 658] one has that

At 2F1

(
µ +

1
2
+ iτ, µ +

1
2
− iτ;µ + 1;−t

)
tα

= −

[(
µ +

1
2

)2
+ τ2

]
2F1

(
µ +

1
2
+ iτ, µ +

1
2
− iτ;µ + 1;−t

)
tα. (1.3)

Next, from [3, (7), p. 122 and (6), p. 155], we obtain

2F1

(
µ +

1
2
+ iτ, µ +

1
2
− iτ;µ + 1;−t

)
tα =

=
Γ(µ + 1)tα
√
πΓ(µ + 1

2 )

∫ π

0

(
1 + 2t + 2

√
t(t + 1) cos ξ

)−µ−1/2−iτ
(sin ξ)2µdξ, (1.4)

which is valid for

t > 0, τ > 0, ℜ(µ) > −1/2, α ∈ C.

Observe that one has

sin ξ ≥ 0, ξ ∈ [0, π],

1 + 2
√

t + 2t(t + 1) cos ξ ≥ 0, t > 0, ξ ∈ [0, π],

and hence, forℜ(µ) > −1/2, it follows from (1.4) that∣∣∣∣∣2F1

(
µ +

1
2
+ iτ, µ +

1
2
− iτ;µ + 1;−t

)
tα
∣∣∣∣∣

≤

∣∣∣Γ(µ + 1)
∣∣∣ tℜ(α)

√
π
∣∣∣∣Γ (µ + 1

2

)∣∣∣∣
∫ π

0

(
1 + 2t + 2

√
t(t + 1) cos ξ

)−ℜ(µ)− 1
2 (sin ξ)2ℜ(µ) dξ
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=

∣∣∣Γ(µ + 1)
∣∣∣ tℜ(α)

√
π
∣∣∣∣Γ (µ + 1

2

)∣∣∣∣
∫ π

0

(
1 + 2t + 2

√
t(t + 1) cos ξ

)−ℜ(µ)− 1
2 (sin ξ)2ℜ(µ) dξ

=

∣∣∣Γ(µ + 1)
∣∣∣Γ(ℜ(µ) + 1

2 )
√
π
∣∣∣∣Γ (µ + 1

2

)∣∣∣∣Γ(ℜ(µ) + 1)
2F1

(
ℜ(µ) +

1
2
,ℜ(µ) +

1
2

;ℜ(µ) + 1;−t
)

tℜ(α). (1.5)

Also, from [3, (7), p. 122] and [14, p.171, Entry (12.08) and p. 172, Entry (12.20)], for ℜ(µ) > −1/2 we
have

2F1

(
ℜ(µ) +

1
2
,ℜ(µ) +

1
2

;ℜ(µ) + 1;−t
)

tℜ(α) = O
(
tℜ(α)
)
, t→ 0+, (1.6)

2F1

(
ℜ(µ) +

1
2
,ℜ(µ) +

1
2

;ℜ(µ) + 1;−t
)

tℜ(α) = O
(
tℜ(α)−ℜ(µ)− 1

2 ln t
)
, t→ +∞. (1.7)

2. Abelian theorems for the distributional index 2F1-transform

The spaceE((0,∞)) is defined as the vector space of all infinitely differentiable complex-valued functions
ϕ defined on (0,∞). This space equipped with the locally convex topology arising from the family of
seminorms

ρk,K(ϕ) = sup
t∈K

∣∣∣Dk
tϕ(t)

∣∣∣
for all k ∈N∪ {0}, all compact sets K ⊂ (0,∞), and with Dk

t denoting the k−th derivative with respect to the
variable t, becomes a Fréchet space. As usual, we denote by E′((0,∞)) the dual of the space E((0,∞)).

The generalized index 2F1-transform of f ∈ E′((0,∞)) was defined by the kernel method in [8] by means
of

F(τ) =
〈

f (t), 2F1

(
µ +

1
2
+ iτ, µ +

1
2
− iτ;µ + 1;−t

)
tα
〉
, τ > 0, (2.1)

where µ and α are complex parameters withℜ(µ) > −1/2.
In this section we establish Abelian theorems for the index 2F1-transform (2.1). Previously we prove

some results.
The following Lemma was showed in [8, Lemma 2.1, p. 659]

Lemma 2.1. For each compact K ⊂ (0,∞) and k ∈N ∪ {0} let γk,K be the seminorm defined by

γk,K(ϕ) = sup
t∈K

∣∣∣Ak
tϕ(t)

∣∣∣ , ϕ ∈ E′((0,∞)),

where At is the operator given by (1.2). Then, {γk,K} gives rise to a topology on E′((0,∞)) which coincides with is
usual topology.

Now, by using the above Lemma 2.1 we obtain the following result

Lemma 2.2. Setℜ(µ) > −1/2 and α ∈ C. Let f be in E′((0,∞)), and let F be defined by (2.1). Then there exist a
constant M > 0 and a nonnegative integer p, all depending on f , such that

|F (τ)| ≤M max
0≤k≤p

[(
|µ| +

1
2

)2
+ τ2

]k
, ∀τ > 0. (2.2)
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Proof. Observe that 2F1

(
µ + 1

2 + iτ, µ + 1
2 − iτ;µ + 1;−t

)
tα is an eigenfunction of At, i.e.,

At 2F1

(
µ +

1
2
+ iτ, µ +

1
2
− iτ;µ + 1;−t

)
tα

= −

[(
µ +

1
2

)2
+ τ2

]
2F1

(
µ +

1
2
+ iτ, µ +

1
2
− iτ;µ + 1;−t

)
tα. (2.3)

According to Lemma 2.1, we may consider the space E((0,∞)) equipped with the topology arising from
the family of seminorms γk,K. From [12, Proposition 2, p. 97], there exist C > 0, a compact set K ⊂ (0,∞),
and a nonnegative integer p, all depending on f , such that∣∣∣∣〈 f , ϕ

〉∣∣∣∣ ≤ C max
0≤k≤p

max
t∈K

∣∣∣Ak
tϕ(t)

∣∣∣ (2.4)

for all ϕ ∈ E((0,∞)). In particular,

|F (τ)| =
∣∣∣∣∣〈 f (t), 2F1

(
µ +

1
2
+ iτ, µ +

1
2
− iτ;µ + 1;−t

)
tα
〉∣∣∣∣∣

≤ C max
0≤k≤p

max
t∈K

∣∣∣∣∣Ak
t 2F1

(
µ +

1
2
+ iτ, µ +

1
2
− iτ;µ + 1;−t

)
tα
∣∣∣∣∣

= C max
0≤k≤p

max
t∈K

∣∣∣∣∣∣
[(
µ +

1
2

)2
+ τ2

]k
2F1

(
µ +

1
2
+ iτ, µ +

1
2
− iτ;µ + 1;−t

)
tα
∣∣∣∣∣∣. (2.5)

From (1.5) it follows that, forℜ(µ) > −1/2, (2.5) is bounded above by

C max
0≤k≤p

max
t∈K

{ ∣∣∣Γ(µ + 1)
∣∣∣Γ(ℜ(µ) + 1

2 )
√
π
∣∣∣∣Γ (µ + 1

2

)∣∣∣∣Γ(ℜ(µ) + 1)

[(
|µ| +

1
2

)2
+ τ2

]k
2F1

(
ℜ(µ) +

1
2
,ℜ(µ) +

1
2

;ℜ(µ) + 1;−t
)

tℜ(α)

}

≤M max
0≤k≤p

[(
|µ| +

1
2

)2
+ τ2

]k
. (2.6)

for all τ > 0 and certain M > 0, since t ranges on the compact set K ⊂ (0,∞).

The smallest integer p which verifies the inequality (2.4) is defined as the order of the distribution f (cf.
[17, Théorème XXIV, p. 88]).

In the following statement we establish Abelian theorems for the distributional index 2F1-transform
(2.1).

Theorem 2.3. (Abelian theorem) Setℜ(µ) > −1/2 and α ∈ C. Let f be a member of E′((0,∞)) of order r ∈N∪ {0},
and let F be given by (2.1). Then

(i) for any γ > 0 one has

lim
τ→0+
{τγF(τ)} = 0,

(ii) for any γ > 0 one has

lim
τ→+∞

{τ−2r−γF(τ)} = 0.

Proof. From Lemma 2.2 one obtains

|F (τ)| ≤M max
0≤k≤r

[(
|µ| +

1
2

)2
+ τ2

]k
, ∀τ > 0,

for some M > 0, from which the conclusion follows.
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Next, let f be a locally integrable function on (0,∞) and f has compact support on (0,∞), then f gives
rise to a regular member T f of E′((0,∞)) of order r = 0 by means of〈

T f , ϕ
〉
=

∫
∞

0
f (t)ϕ(t)dt, ∀ϕ ∈ E((0,∞)).

Observe that∣∣∣< T f , ϕ >
∣∣∣ = ∣∣∣∣∣∫ ∞

1
f (t)ϕ(t)dt

∣∣∣∣∣ ≤ sup
t∈supp( f )

∣∣∣ϕ(t)
∣∣∣ ∫

supp( f )

∣∣∣ f (t)
∣∣∣ dt

= γ0,supp( f )(ϕ)
∫

supp( f )

∣∣∣ f (t)
∣∣∣ dt,

where supp( f ) represents the support of the function f , it follows that T f has order r = 0.
Consequently, we have

F(τ) =
〈
T f (t), 2F1

(
µ +

1
2
+ iτ, µ +

1
2
− iτ;µ + 1;−t

)
tα
〉

=

∫
∞

0
f (t) 2F1

(
µ +

1
2
+ iτ, µ +

1
2
− iτ;µ + 1;−t

)
tαdt, τ > 0, (2.7)

forℜ(µ) > −1/2.
From this fact one concludes that the index 2F1-transform of the regular distribution generated by the

function f is the classical index 2F1-transform of the function f .
Furthermore, by using Theorem 2.3 for the index 2F1-transform of these regular members of E′((0,∞)),

one obtains the following

Corollary 2.4. Set ℜ(µ) > −1/2 and α ∈ C. Let f be a locally integrable function in (0,∞) and such that f has
compact support on (0,∞). Then the function F given by (2.7), satisfies the following:

(i) for any γ > 0 one has

lim
τ→0+
{τγF(τ)} = 0,

(ii) for any γ > 0 one has

lim
τ→+∞

{τ−γF(τ)} = 0.

3. Abelian theorems for the index 2F1-transform of generalized functions

In [8], Hayek and González studied the index 2F1-transform over certain spaces of generalized functions.
In that paper it was considered the linear space Ua,µ,α of all smooth complex-valued functions ϕ defined on
(0,∞), such that

γk,a,µ,α(ϕ) = sup
0<t<∞

∣∣∣∣(2t + 1)at
µ
2 −α(t + 1)

µ
2 At

kϕ(t)
∣∣∣∣ < ∞, k ∈N ∪ {0}, (3.1)

where At is the differential operator given by (1.2).
The space Ua,µ,α equipped with the topology arising from the family of seminorms {γk,a,µ} is a Fréchet

space.
As usual, by U′a,µ,α is denoted the dual space of Ua,µ,α.
By using (1.5), (1.6) and (1.7) it follows that

2F1

(
µ +

1
2
+ iτ, µ +

1
2
− iτ;µ + 1;−t

)
tα ∈ Ua,µ,α,
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forℜ(µ) ≥ 0, a < 1/2 and α ∈ C, and thus, as it is usual, the generalized index 2F1-transform is defined for
f ∈ U′a,µ,α by

F(τ) =
〈

f (t), 2F1

(
µ +

1
2
+ iτ, µ +

1
2
− iτ;µ + 1;−t

)
tα
〉
τ > 0. (3.2)

From [12, Proposition 2, p. 97], one has that for all f ∈ U′a,µ,α, there exist a C > 0 and a nonnegative integer
p, all depending on f , such that∣∣∣∣〈 f , ϕ

〉∣∣∣∣ ≤ C max
0≤k≤p

γk,a,µ(ϕ) = C max
0≤k≤p

sup
t∈(1,∞)

∣∣∣∣(2t + 1)at
µ
2 −α(t + 1)

µ
2 Ak

tϕ(t)
∣∣∣∣ , (3.3)

for all ϕ ∈ Ua,µ,α.
Now we prove Abelian theorems for the transform (3.2). First we prove a previous result

Lemma 3.1. Set ℜ(µ) ≥ 0, a < 1/2 and α ∈ C. Let f be in U′a,µ,α, and let F be defined by (3.2). Then there exist
M > 0 and a nonnegative integer p, all depending on f , such that

|F (τ)| ≤M max
0≤k≤p

[(
|µ| +

1
2

)2
+ τ2

]k
,∀τ > 0. (3.4)

Proof. From (1.5) and (3.3) one has

|F (τ)| =
∣∣∣∣∣〈 f (t), 2F1

(
µ +

1
2
+ iτ, µ +

1
2
− iτ;µ + 1;−t

)
tα
〉∣∣∣∣∣

≤ C max
0≤k≤p

sup
t∈(0,∞)

∣∣∣∣∣∣(2t + 1)at
µ
2 −α(t + 1)

µ
2 Ak

t 2F1

(
µ +

1
2
+ iτ, µ +

1
2
− iτ;µ + 1;−t

)
tα
∣∣∣∣∣∣

≤ C max
0≤k≤p

sup
t∈(0,∞)

∣∣∣∣∣∣
[(
µ +

1
2

)2
+ τ2

]k ∣∣∣Γ(µ + 1)
∣∣∣Γ(ℜ(µ) + 1

2 )
√
π
∣∣∣∣Γ (µ + 1

2

)∣∣∣∣Γ(ℜ(µ) + 1)
2F1

(
ℜ(µ) +

1
2
,ℜ(µ) +

1
2

;ℜ(µ) + 1;−t
)

tℜ(α)

∣∣∣∣∣∣.
Now, from (1.6) and (1.7), and taking into account the fact thatℜ(µ) ≥ 0 and a < 1/2, it follows that

|F (τ)| ≤M max
0≤k≤p

[(
|µ| +

1
2

)2
+ τ2
]k
, ∀τ > 0,

for certain M > 0.

As it is usual, the smallest integer p which verifies the inequality (3.3) is called the order of the generalized
function f .

The next statement gives an Abelian theorem for the index 2F1-transform of generalized functions in
U′a,µ,α.

Theorem 3.2. (Abelian theorem) Setℜ(µ) ≥ 0, a < 1/2 and α ∈ C. If f is a generalized function on U′a,µ,α, of order
r ∈N ∪ {0}, and F is given by (3.2), then

(i) for any γ > 0 one has

lim
τ→0+
{τγF(τ)} = 0,

(ii) for any γ > 0 one has

lim
τ→+∞

{τ−2r−γF(τ)} = 0.
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Proof. From Lemma 3.1 one has

|F (τ)| ≤M max
0≤k≤r

[(
|µ| +

1
2

)2
+ τ2

]k
, ∀τ > 0,

for some M > 0, and hence the conclusion follows.

Otherwise, from Proposition 2.1 (v) in [8], a function f defined on (0,∞) such that (2t+1)−atα−
µ
2 (t+1)−

µ
2 f (t),

ℜ(µ) ≥ 0, a < 1/2, is Lebesgue integrable on (0,∞), gives rise to a regular generalized function T f on U′a,µ,α
or order r = 0 through

< T f , ϕ >=

∫
∞

0
f (t)ϕ(t)dt, ∀ϕ ∈ Ua,µ,α.

In fact, taking into account that∣∣∣∣〈T f , ϕ
〉∣∣∣∣ = ∣∣∣∣∣∫ ∞

0
f (t)ϕ(t)dt

∣∣∣∣∣
=

∣∣∣∣∣∫ ∞

0
(2t + 1)−atα−

µ
2 (t + 1)−

µ
2 f (t)(2t + 1)at

µ
2 −α(t + 1)

µ
2ϕ(t)dt

∣∣∣∣∣
≤ sup

t∈(0,∞)

∣∣∣∣(2t + 1)at
µ
2 −α(t + 1)

µ
2ϕ(t)

∣∣∣∣ ∫ ∞

0

∣∣∣∣(2t + 1)−atα−
µ
2 (t + 1)−

µ
2 f (t)

∣∣∣∣ dt

= γ0,a,µ,α(ϕ) ·
∫
∞

0
(2t + 1)−atℜ(α)−ℜ(µ)

2 (t + 1)−
ℜ(µ)

2

∣∣∣ f (t)
∣∣∣ dt,

it follows that T f is a distribution of order r = 0.
In this case,

F(τ) =
〈
T f (t), 2F1

(
µ +

1
2
+ iτ, µ +

1
2
− iτ;µ + 1;−t

)
tα
〉

=

∫
∞

0
f (t) 2F1

(
µ +

1
2
+ iτ, µ +

1
2
− iτ;µ + 1;−t

)
tαdt, τ > 0, (3.5)

forℜ(µ) ≥ 0.
Again, as in the case of the regular distributions of compact support, it follows that the index 2F1-

transform of the regular generalized function generated by the function f is the classical index 2F1-transform
of the function f .

Consequently, by Theorem 3.2, one obtains the following

Corollary 3.3. Setℜ(µ) ≥ 0, a < 1/2 and α ∈ C. Let f be a function defined on (0,∞) such that (2t + 1)−atα−
µ
2 (t +

1)−
µ
2 f (t) is Lebesgue integrable on (0,∞), and F is given by (3.5). Then

(i) for any γ > 0 one has

lim
τ→0+
{τγF(τ)} = 0,

(ii) for any γ > 0 one has

lim
τ→+∞

{τ−γF(τ)} = 0.
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4. Conclusions

The behaviour of the Gauss hypergeometric function, used as the kernel of the index 2F1-transform,
allows us to establish Abelian theorems for this transform over distributions of compact support on (0,∞)
and over the space of generalized functions U′a,µ,α introduced in [8] under the conditionsℜ(µ) ≥ 0, a < 1/2
and α ∈ C.

Note: The manuscript has no associated data.
Disclosure statement: No potential conflict of interest was reported by the authors.
Acknowledgements: Authors are very thankful to the reviewer for his/her valuable and constructive
comments and suggestions.
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[5] N. Hayek, B.J. González and E.R. Negrı́n, Abelian theorems for the index 2F1-transform, Rev. Técn. Fac. Ingr. Univ. Zulia 15(3),
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