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Abstract. In this paper, we introduce Ψ-conformal curvature tensor, a new tensor that generalizes the
conformal curvature tensor. At first, we deduce a few fundamental geometrical properties ofΨ-conformal
curvature tensor and pseudoΨ-conharmonically symmetric manifolds and produce some interesting out-
comes. Moreover, we study Ψ-conformally flat perfect fluid spacetimes. As a consequence, we establish
a number of significant theorems about Minkowski spacetime, GRW-spacetime, projective collineation.
Moreover, we show that if aΨ-conformally flat spacetime admits a Ricci bi-conformal vector field, then it is
either conformally flat or of Petrov type N. At last, we consider pseudoΨ conformally symmetric spacetime
admitting harmonicΨ-conformal curvature tensor and prove that the semi-symmetric energy momentum
tensor and Ricci semi-symmetry are equivalent and also, the Ricci collineation and matter collineation are
equivalent.

1. Introduction

In general relativity (briefly, GR) and differential geometry, the Weyl conformal curvature tensor W
performs a crucial role. In a Riemannian or a semi-Riemannian manifold, W is defined by[26]

W(U,V)G = K(U,V)G −
1

n − 2
[1(V,G)QU − 1(U,G)QV

+S(V,G)U − S(U,G)V]

+
R

(n − 1)(n − 2)
[1(V,G)U − 1(U,G)V], (1)

in which S, R and K are (0,2) type Ricci tensor, scalar curvature and the (1,3) type Riemannian curvature
tensor, respectively.

The primary issue in differential geometry, among others, is the exploration of curvature properties. In
this regard, S.S. Chern had stated in [8] “ A fundamental notion is curvature, in its different forms ”. As
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ORCID iD: 0000-0001-6520-4520 (Krishnendu De), 0000-0002-8990-4609 (Uday Chand De)
Email addresses: fyalmofarrah@pnu.edu.sa (Fatemah Mofarreh), krishnendu.de@outlook.in (Krishnendu De),

uc_de@yahoo.com (Uday Chand De)



F. Mofarreh et al. / Filomat 37:30 (2023), 10265–10274 10266

a result, the Riemann curvature tensor’s discovery opens up a wide range of fascinating topics. Due to
the aforementioned idea, we have developed a new curvature tensor in this study that we have named the
Ψ-conformal curvature tensor.

In a semi-Riemannian manifold Mn, we define, a tensor C of type (0,4) by

C(U,V,G,H) = K(U,V,G,H) −
Ψ

n − 2
[S(V,G)1(U,H) − S(U,G)1(V,H)

+S(U,H)1(V,G) − S(V,H)1(U,G)]

+
ΨR

(n − 2)(n − 1)
[1(V,G)1(U,H) − 1(U,G)1(V,H)], (2)

in which Ψ is the arbitrary scalar function and K stands for the (0,4)type Riemannian curvature tensor
described by

K(U,V,G,H) = 1(K(U,V)G,H). (3)

The preceding curvature tensor is named as a Ψ-conformal curvature tensor. The aforesaid curvature
tensor, in particular, simplifies to a conformal curvature tensor for Ψ = 1. The curvature tensor and the
Ψ-conformal curvature tensor are identical ifΨ = 0.

We are concentrating on symmetric spaces in this article due to their crucial relevance in differential
geometry. In the late twenties E. Cartan [3], created these spaces.

Let ∇ stands for the Levi-Civita connection of (Mn, 1), then the Riemannian manifold Mn is known as
locally symmetric if ∇K = 0 [3]. The aforementioned local symmetry criterion holds true for each point
U ∈ Mn where F(U), the local geodesic symmetry is an isometry [20]. The class of manifolds of constant
curvature is a very fundamental generalization of the class of Riemannian locally symmetric manifolds.
Throughout the past few decades, numerous mathematicians have undermined the intriguing concept of
locally symmetric manifolds in a variety of ways; for further information, see ([1], [4], [5], [22], [25]).

According to Chaki [5], for a non-zero 1-form D the (M, 1), (n > 2), a non-flat Riemannian or a semi-
Riemannian manifold is named pseudo symmetric if its curvature tensor K satisfies

(∇XK)(U,V,G,H) = 2D(X)K(U,V,G,H) +D(U)K(X,V,G,H)
+D(V)K(U,X,G,H) +D(G)K(U,V,X,H)
+D(H)K(U,V,G,X), (4)

in which ρ stands for the vector field described by

1(U, ρ) = D(U), (5)

for all U. If D = 0, then M reduces to a symmetric manifold in the Cartan sense. A pseudo symmetric
manifold of dimension n is usually denoted by (PS)n.

In [28], Zengin and Tasci initiated the investigation of pseudo-conharmonically symmetric manifolds.
Recently, they investigated pseudo-conharmonically symmetric spacetimes [29].

Getting motivation from the foregoing investigations, we have studied a semi-Riemannian manifold
(Mn, 1), (n > 2) whoseΨ-conformal curvature tensor C obeys

(∇XC)(U,V,G,H) = 2D(X)C(U,V,G,H) +D(U)C(X,V,G,H)
+D(V)C(U,X,G,H) +D(G)C(U,V,X,H)
+D(H)C(U,V,G,X). (6)

The above mentioned manifold shall be named a pseudoΨ-conformally symmetric manifold and shall be
denoted by (PCS)n.

Lorentzian manifold is a special category of semi-Riemannian manifold equipped with a Lorentzian
metric 1. The Spacetime of general relativity is nothing but a time-oriented connected Lorentzian manifold



F. Mofarreh et al. / Filomat 37:30 (2023), 10265–10274 10267

M4 with the signature (−,+,+,+). The study of the casual character of vectors of the Lorentzian manifold
is started with the geometry of the Lorentz metric. The investigation of general relativity becomes a
convenient choice for this casualty of the Lorentz manifold.

A perfect fluid (briefly, PF) which performs a significant role in general relativity does not have heat
conduction terms and the stress term corresponding to viscosity [16]. Hence, for a PF the energy momentum
tensor (briefly, EMT) T is written by

T(U,V) = (σ + p)B(U)B(V) + p1(U,V) (7)

in which σ and p stand for the energy density and the isotropic pressure, respectively [20] and ρ is a unit
timelike vector field (1(ρ, ρ) = −1) metrically equivalent to the 1-form B.

The Einstein’s field equations without cosmological constant is written by

S(U,V) −
R
2
1(U,V) = kT(U,V) (8)

where R and k are the scalar curvature and the gravitational constant, respectively.
A non-flat semi-Riemannian manifold satisfying the condition

(∇W1 S)(U,V) = B1(W1)S(U,V), (9)

is named a Ricci recurrent manifold [21] in which B1 is a 1-form.
Mantica and Suh [17] have investigated Pseudo Z-symmetric spacetimes and Ozen[27] have studied

m-Projectively flat spacetimes. A condition for which a pseudosymmetric spacetime would be a PF space-
time was recently discovered by Zhao et al.[30]). Moreover, in [10], we have studied ψ-conharmonically
symmetric spacetime. As well, many authors have looked at the spacetime of general relativity in various
methods; for additional information, see ( [9], [15], [19]).

Motivated by the above investigations here we characterize the (PCS)n manifold andΨ-conformally flat
spacetimes.

The article is organized as:
The properties of Ψ-conformal curvature tensor are discussed in section 2. In section 3, we investigate

the curvature properties of (PCS)n (n > 2) manifold. Ψ-conharmonically flat spacetimes are investigated in
section 4. Section 5 is devoted to investigate (PCS)4 spacetimes.

2. Ψ-conformal curvature tensor

Let at every point of the manifold {e j} (1 ≤ j ≤ n), be an orthonormal basis of the tangent space at each
point of the manifold. Now from (2) we have

n∑
1

C(V,G, e j, e j) = 0 =
n∑
1

C(e j, e j,V,G) (10)

and
n∑
1

C(e j, e j,G,H, ei) =
n∑
1

C(G, e j, e j,H)

= (1 −Ψ)S(G,H), (11)

where R = ϵ j
∑n

j=1 S(e j, e j) (Here, we put ϵ j = 1(e j, e j), that is, ϵ1 = −1,ϵ2 = · · · = ϵn = 1).
From the equation(2) it can be deduced that

C(U, V, G, H) = −C(V, U, G, H), (12)

C(U,V,G,H) = −C(U,V,H,G), (13)



F. Mofarreh et al. / Filomat 37:30 (2023), 10265–10274 10268

C(U,V,G,H) = C(G,H,U,V) (14)

and

C(U,V,G,H) + C(V,G,U,H) + C(G,U,V,H) = 0. (15)

Remark 2.1. The conformal curvature tensor is a traceless tensor, butΨ-conformal curvature tensor is not a traceless
tensor.

Proposition 2.2. If a semi-Riemannian manifold Mn isΨ-conformally flat, then the manifold becomes Ricci flat.

Proof. IfΨ-conformal curvature tensor vanishes, then we acquire from (2) that

K(U,V,G,H) =
Ψ

n − 2
[S(V,G)1(U,H) − S(U,G)1(V,H)

+S(U,H)1(V,G) − S(V,H)1(U,G)]

−
ΨR

(n − 2)(n − 1)
[1(V,G)1(U,H) − 1(U,G)1(V,H)]. (16)

Contracting V and G in the foregoing equation yields

(1 −Ψ)S(U,H) = 0. (17)

Hence, we obtain

S(U,H) = 0, (18)

Since,Ψ is an arbitrary scalar function,Ψ , 1.
This finishes the proof.

Proposition 2.3. Let theΨ-conformal curvature tensor C be symmetric in the Cartan sense. Then the manifold Mn

turns into a Ricci recurrent manifold.

Proof. TheΨ-conformal curvature tensor C is written by

C(U,V)G = K(U,V)G −
Ψ

n − 2
[1(V,G)QU − 1(U,G)QV

+S(V,G)U − S(U,G)V]

+
ΨR

(n − 2)(n − 1)
[1(V,G)U − 1(U,G)V], (19)

where Q is the Ricci operator defined by 1(QU,V) = S(U,V).
Covariant differentiation of (19) yields

(∇W1 C)(U,V)G = (∇W1 K)(U,V)G

−
Ψ

n − 2
[(∇W1 S)(V,G)U − (∇W1 S)(U,G)V

+1(V,G)(∇W1 Q)U − 1(U,G)(∇W1 Q)V]

−
(W1Ψ)
n − 2

[1(V,G)QU − 1(U,G)V + S(V,G)U − S(U,G)V]

+
(W1Ψ)R +Ψ(W1R)

(n − 2)(n − 1)
[1(V,G)U − 1(U,G)V]. (20)
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By the assumption, the tensor C is symmetric in the Cartan sense, that is, ∇C = 0. Therefore, the foregoing
equation gives

(∇W1 K)(U,V)G =
Ψ

n − 2
[(∇W1 S)(V,G)U − (∇W1 S)(U,G)V

+1(V,G)(∇W1 Q)U − 1(U,G)(∇W1 Q)V]

+
(W1Ψ)
n − 2

[1(V,G)QU − 1(U,G)V + S(V,G)U − S(U,G)V]

−
(W1Ψ)R +Ψ(W1R)

(n − 2)(n − 1)
[1(V,G)U − 1(U,G)V]. (21)

Contracting the previous equation, we acquire

(∇W1 S)(V,G) =
1

1 −Ψ
dΨ(W1)S(V,G). (22)

Again contracting the equation (22), we obtain

dR(W1) =
R

1 −Ψ
dΨ(W1). (23)

From the previous equation, we infer

(1 −Ψ)(W1lo1R) = dΨ(W1). (24)

Making use of (23) and (24) in (22), we obtain

(∇W1 S)(V,G) = (W1lo1R)S(V,G). (25)

This finishes the proof.

3. (PCS)n (n > 2) manifolds

Proposition 3.1. In a (PCS)n manifold, theΨ-conformal curvature tensor satisfies the Second Bianchi Identity, that
is,

(∇XC)(U,V,G,H) + (∇GC)(U,V,H,X) + (∇HC)(U,V,X,G) = 0. (26)

Proof. Using (6) in the left hand side of the previous equation, we get the desired result.

Proposition 3.2. If a (PCS)n permits divergence-free Ψ-conformal curvature tensor, then the scalar curvature
vanishes.

Proof. From (2), taking a frame field over V and G we infer

C⋆(U,H) = (1 −Ψ)S(U,H), (27)

where C⋆ denotes the contractedΨ-conformal curvature tensor.
Now contracting the equation(6) over X and H we acquire

(divC)(U,V)G = D(C(U,V)G))
+D(U)C⋆(V,G) −D(V)C⋆(U,G). (28)
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Making use of (2) and (27) in the foregoing equation, we obtain

(divC)(U,V)G = D(K(U,V)G) −
Ψ

n − 2
[D(QU)1(V,G)

−D(QV)1(U,G) + S(V,G)D(U) − S(U,G)D(V)]

+
ΨR

(n − 2)(n − 1)
[1(V,G)D(U) − 1(U,G)D(V)]

+D(U)(1 −Ψ)S(V,G)
−D(V)(1 −Ψ)S(U,G). (29)

If divC = 0, then contracting the previous equation, we infer

R[1 −
2(1 − n)

n − 2
Ψ]D(U) = 0. (30)

Hence, either R = 0 orΨ = − (2−n)
2(1−n) = constant, a contradiction(since,Ψ is an arbitrary scalar function).

This finishes the proof.

4. Ψ-Conformally flat spacetimes

To find out a model of the universe, Einstein applied the field equations of general relativity. The vast
range of the universe displays isotropy and homogeneity, and the universe’s matter (stars, nebulas, galaxies,
and so on) can be comparable to a PF.

In this article, we explore the Ψ-Conformally flat spacetimes and pseudo Ψ-conformally symmetric
spacetime. The conclusions reached for the pseudo Ψ-conformally symmetric manifolds apply equally
to the Lorentzian situation. Now, we select the associated vector corresponding to the 1-form D is a unit
timelike vector field, that is, 1(ρ, ρ) = −1.

In this case, we take into account a PF spacetime with vanishing Ψ-conformal curvature tensor. In a
Ψ-conformally flat PF spacetime (8) takes into the shape

kT(U,V) = 0. (31)

Now using (31) and (7), we infer

k[(σ + p)B(U)B(V) + p1(U,V)] = 0. (32)

Executing contraction over U and V, we acquire

3p − σ = 0. (33)

Again, putting U = V = ρ in (32), we obtain σ = 0 and hence using it (33), we provide p = 0. Therefore, the
fluid is vaccum.

Thus, we write:

Theorem 4.1. If a spacetime with vanishing Ψ-conformal curvature tensor satisfies EFE without cosmological
constant, then the fluid is vaccum.

Since aΨ-conformally flat PF spacetime is Ricci flat, hence we obtain the scalar curvature R = 0. Thus, (16)
infers that the spacetime has vanishing sectional curvature. Therefore, a Ψ-conformally flat PF spacetime
and Minkowski spacetime are locally isometric ([13], p. 67).
Hence we write:

Theorem 4.2. AΨ-conformally flat PF spacetime is locally isometric to Minkowski spacetime.
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We know that

(divW)(U,V)G =
n − 3
n − 2

[{(∇US)(V,G) − (∇VS)(U,G)}

−
1

2(n − 1)
{1(V,G)dR(U) − 1(U,G)dR(V)}]. (34)

Since in aΨ-conformally flat PF-spacetime S = 0 and R = 0, from (34) we acquire (divW)(U,V)G = 0.
In [18], Mantica et al established that a PF-spacetime with R = constant and (divW)(U,V)G = 0 reduces

to a GRW-spacetime.
Therefore, we state:

Theorem 4.3. AΨ-conformally flat PF spacetime is a GRW-spacetime.

In a dust fluid spacetime [24], the T is described by

T(U,V) = µB2(U)B2(V), (35)

in which B2 stands for the velocity vector field of the flow, that is, 1(ρ, ρ) = −1 and µ is the energy density
of the dust-like matter.

Using the equation (8) and (35) we acquire

kµB2(U)B2(V) = 0. (36)

Contracting the foregoing equation by taking a frame field, we get

kµ = 0, (37)

Therefore, the equation (35) yields

T(U,V) = 0. (38)

Hence, the fluid is vacuum. This is not a physically significant scenario bearing in mind that the universe
contains matter. Hence, we state

Theorem 4.4. A dust fluid spacetime with vanishingΨ-conformal curvature tensor satisfying EFE without cosmo-
logical constant does not exist.

4.1. Projective collineation
If a continuous group of local diffeomorphism of M maps geodesics into geodesics, it is referred to as

projective collineation (PC) [2] and its generator is referred to as a projective vector field. A vector field V
is a P C if and only if

LVΓ
i
jk = δ

i
jqk + δ

i
kq j,

in which LV stands for the Lie derivative operator along V and q j = q, j in which q is a 1-form. Therefore,
locally q j is an exact form. Specifically, if LVΓ

i
jk = 0, then the PC turns into the affine collineation or affine

motion. The maximum dimension of the projective algebra of M is n2 + n for which M is projectively flat.
We know that the projective vector field V obeys

LVKl
i jk = δ

l
kqi, j − δ

l
jqi,k, (39)

LVKi j = (1 − n)qi, j, (40)

LVPl
i jk = 0, (41)
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in which Kl
i jk, Ki j and Pl

i jk are the components of the curvature tensor, Ricci tensor and projective curvature
tensor, respectively.

Let us choose the PC in aΨ-conformally flat spacetime. From equation (18) we see that theΨ-conformally
flat spacetime is Ricci flat and hence from (40), we acquire qi, j = 0. If qi , 0, then the PC is proper and for
n = 4, the metric must be either a pp-wave [14] or flat. If qi = 0,, then V generates an affine collineation
and for the spacetime the metric is a pp-wave or decomposable, or V is a homothetic Killing vector field.
Hence, we write the outcomes as:

Theorem 4.5. Let aΨ-conformally flat spacetime permits a projective collineation V . Then
(i) the projective collineation is proper and, for n = 4, the metric is either a pp-wave or flat, provided qi , 0.
(ii) V generates an affine collineation and the metric is a pp-wave or decomposable, or a homothetic Killing vector

field, provided qi = 0.

Definition 4.6. On a Riemannian manifold a vector field X is named Ricci bi-conformal vector field [11] if it obeys
the subsequent equations

LX1 = α1 + βS (42)

and

LXS = αS + β1 (43)

for non-zero smooth functions α and β.

Since S = 0, equation (42) implies LX1 = α1which entails that X is a conformal vector field. In [23], Sharma
has established that “ If a spacetime with divergence-free conformal curvature tensor permits a conformal
Killing vector field, then the spacetime is either conformally flat or of Petrov type N.”

Here S = 0, then obviously the divergence of the conformal curvature tensor vanishes. Therefore, we
can write:

Theorem 4.7. If aΨ-conformally flat spacetime admits a Ricci bi-conformal vector field, then it is either conformally
flat or of Petrov type N.

5. (PCS)4 spacetimes

Definition 5.1. A semi-Riemannian manifold is called Ricci semi-symmetric if the Ricci tensor S fulfills

K(U,V) · S = 0,

for all U,V ∈ χ(M), where K(U,V) acts as a derivation on the curvature tensor K.

Let the (PCS)4 spacetime permits harmonicΨ-conformal curvature tensor. Then by Proposition 3.2, we get
the scalar curvature R = 0. Therefore, using equation (8), we acquire

S(U,V) = kT(U,V). (44)

From the last relation, we infer K · S = K · T.

Theorem 5.2. In a (PCS)4 spacetime with harmonic Ψ-conformal curvature tensor, the semi-symmetric EMT and
Ricci semi-symmetry are equivalent.

Also, from equation (44), we obtain ∇S = ∇T. Since ∇T = 0 entails K ·T = 0 , hence we write the subsequent:

Theorem 5.3. A (PCS)4 spacetime with harmonic Ψ-conformal curvature tensor and covariant constant EMT is
Ricci semi-symmetric.
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For a general relativistic spacetime the foregoing theorem has been established in [6].
In [12], De and Velimirovic established the subsequent outcomes:

Theorem 5.4. In a PF spacetime let the EMT be semi-symmetric. Then the spacetime is characterized by the
subsequent cases:

(i) The PF behaves as a cosmological constant and the spacetime represents inflation. Also, it is named as a
phantom barrier.

(ii) The PF will start to behave as exotic matter or, equivalently it represents the quintessence barrier.

Remark 5.5. The above theorem holds in a (PCS)4 spacetime with harmonic Ψ-conformal curvature tensor if the
spacetime is Ricci semi-symmetric.

We state that M permits a matter collineation if a provided symmetric vector field V (non trivial) of M leaves
the matter tensor invariant (LVTi j = 0). Similarly, it is called Ricci collineation if LVSi j = 0 holds where Si j
are the components of the Ricci tensor S.

From equation (44), we can easily get

LVSi j = LVTi j. (45)

Hence, we have

Theorem 5.6. In a (PCS)4 spacetime with harmonicΨ-conformal curvature tensor the Ricci collineation and matter
collineation are equivalent.
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