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Some one-variable identities on generalized matrix functions which
imply determinant
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Abstract. In this paper we prove that if a generalized matrix function satisfies some one-variable identities
for some classes of n-by-n matrices over C, then it is a scalar multiple of the determinant.

1. Introduction

Throughout the paper denote by Mn(C) the set of all n-by-n matrices over C and let Sn be the symmetric
group of degree n. Let G ⩽ Sn and χ : G → C be an arbitrary function. The generalized matrix function
associated with G and χ is the function dG

χ : Mn(C)→ C given by

dG
χ (A) =

∑
σ∈G

χ(σ)
n∏

i=1

aiσ(i),

where A = (ai j) ∈Mn(C). The determinant and the permanent are two famous generalized matrix functions.
In fact, if G = Sn and χ = ε is the alternating character of G, then dG

χ = det is the determinant and if G = Sn

and χ = 1G is the principal character of G, then dG
χ = per is the permanent. Clearly if χ, φ : G → C are

two functions and λ ∈ C, then dG
χ+λφ = dG

χ + λdG
φ , and if χ̂ is the unique extension of χ to Sn which vanishes

outside of G, then dG
χ = dSn

χ̂ . We refer the reader to the books [4] and [5] for some deep information about
generalized matrix functions.

Let us introduce some notations and preliminaries which will be used throughout. For each σ ∈ Sn, let

Fix(σ) = {i : 1 ≤ i ≤ n, σ(i) = i}

be the set of fixed points of σ and l(σ) = n − |Fix(σ)| be the length of σ. Obviously σ = 1 if and only if
l(σ) = 0, and also l(σ) , 1 for all σ ∈ Sn. It is important to note that the composition of permutations in
Sn means left-to-right, that is, (στ)(i) = τ(σ(i)), for any σ, τ ∈ Sn. It is also known that each 1 , σ ∈ Sn
can be uniquely written as a product of (nontrivial) disjoint cycles. The number of (nontrivial) disjoint
cycles in the decomposition of σ is denoted by c(σ). We denote the set of involutions of Sn by Tn, that is,
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Tn = {σ ∈ Sn : σ2 = 1}.

Let Ers = (δirδsj) ∈Mn(C) be the standard matrix units, that is, the matrix which has 1 in the (r, s)-th entry
and 0 elsewhere. Also for each σ ∈ Sn, let Aσ = (δσ(i) j) ∈ Mn(C) be the permutation matrix induced by σ. It
can be easily verified that for any σ, τ ∈ Sn :
(1) Aσ = In if and only if σ = 1;
(2) Aστ = AσAτ;
(3) det Aσ = sgn(σ);
(4) Aσ is diagonalizable;
(5) if σ has order m, then each eigenvalue of Aσ is an m-th root of unity;
(6) A−1

σ = Aσ−1 = At
σ;

(7) Aσ is a symmetric matrix if and only if σ2 = 1;
(8) ErsAσ = Erσ(s) and AσErs = Eσ−1(r)s.

Let us consider the following question:

Question: If G ⩽ Sn, χ : G → C is a function, and C is a class of matrices in Mn(C) such that the
two-variable identity

dG
χ (AB) = dG

χ (A)dG
χ (B),

holds for all A,B ∈ C, then what is the relationship between dG
χ and det?

This question has been extensively studied for several classes C. Exercise 2 of Chapter 8 in [5] says that
if χ is an irreducible character of G = Sn and C = Mn(C), then dG

χ = det. The authors in [2] showed that
dG
χ = det if χ is nonzero and C is the set of all nonsingular matrices in Mn(C), and dG

χ = χ(1) det if C is the set
of all singular matrices in Mn(C). It was proved later in [6] that if χ is a character of G and C is the set of all
symmetric matrices in Mn(C), then dG

χ = det. Recently, we proved in [3], among other things, that dG
χ = det

or dG
χ = per if χ is nonzero and C is the set of all permutation matrices in Mn(C), dG

χ = det if χ is nonzero and
C is the set of all nonsingular symmetric matrices in Mn(C), and dG

χ = χ(1) det if C is the set of all singular
symmetric matrices in Mn(C).

The main purpose of this paper is the study of generalized matrix functions that satisfy some one-
variable identities related to the above question. More precisely, let G ⩽ Sn, χ : G → C be a function, and
C,C′,D,D′ be the set of all nonsingular matrices, all singular matrices, all nonsingular symmetric matrices,
all singular symmetric matrices in Mn(C), respectively. We prove that the following are equivalent:
(1) dG

χ (A) = χ(1) det(A) for all A ∈ C ∪ C′ (for all A ∈ D ∪D′) and χ(1) ∈ {0, 1};
(2) dG

χ (A2) = dG
χ (A)2 for all A ∈ C (for all A ∈ D);

(3) dG
χ (In) = dG

χ (A)dG
χ (A−1) for all A ∈ C (for all A ∈ D);

(4) dG
χ (AAt) = dG

χ (A)dG
χ (At) for all A ∈ C (for all A ∈ D).

Also we prove that the following are equivalent:
(1) dG

χ (A) = χ(1) det(A) for all A ∈ C ∪ C′ (for all A ∈ D ∪D′);
(2) dG

χ (A2) = dG
χ (A)2 for all A ∈ C′ (for all A ∈ D′);

(3) dG
χ (AAt) = dG

χ (A)dG
χ (At) for all A ∈ C′ (for all A ∈ D′).

It should be remarked that the proofs of the above results will be much more simple if it is assumed that
χ is a character of G but they became much more difficult if the character condition on χ is removed, as it
will be seen later.
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2. Main Results

To state our results, we need three key lemmas. In [3], a binary relation on Sn was defined as follows:

σ ∼ τ⇐⇒
n∏

i=1

aiσ(i) =

n∏
i=1

aiτ(i), for any symmetric matrix A = (ai j) ∈Mn(C),

where σ, τ ∈ Sn. It is clear that ∼ is an equivalence relation on Sn. The equivalence class of σ ∈ Sn is denoted
by [σ].

The first lemma is:

Lemma 2.1. Let σ, τ ∈ Sn − {1}, where σ = σ1 . . . σs is the decomposition of σ into disjoint cycles. Then
(i) [σ] = {σn1

1 . . . σ
ns
s : n1, . . . ,ns ∈ {−1, 1}};

(ii) if τ(i) ∈ {σ(i), σ−1(i)} for any 1 ≤ i ≤ n, and c(τ) ≤ c(σ), then τ ∈ [σ].

Proof. These are parts (vii) and (viii) of Lemma 2.5 in [3].

The second lemma is:

Lemma 2.2. Let σ, τ ∈ Sn such that τ(i) ∈ {i, σ(i), σ−1(i)} for any 1 ≤ i ≤ n. Then one of the following holds:
(i) l(τ) < l(σ);
(ii) l(τ) = l(σ) and c(τ) > c(σ);
(iii) τ ∈ [σ].

Proof. By hypothesis Fix(σ) ⊆ Fix(τ). If Fix(σ) ⊂ Fix(τ), then l(τ) < l(σ) and one has (i). If Fix(σ) = Fix(τ),
then l(τ) = l(σ) and τ(i) ∈ {σ(i), σ−1(i)} for any 1 ≤ i ≤ n. Now if c(τ) > c(σ), then one has (ii), and if c(τ) ≤ c(σ),
then by Lemma 2.1 one has (iii). This completes the proof.

It should be remarked that if τ ∈ [σ], then l(τ) = l(σ) and c(τ) = c(σ).

Finally the third lemma is:

Lemma 2.3. Let σ, τ ∈ Sn, where σ is a cycle and k is an integer. If τ(i) ∈ {σk(i), σk+1(i)} for any 1 ≤ i ≤ n, then
τ ∈ {σk, σk+1

}.

Proof. Notice that by hypothesis Fix(σ) ⊆ Fix(τ). It suffices to show that if τ(a) = σk(a) for some a < Fix(σ),
then τ = σk. Assuming

σ = (a σ(a) . . . σm−1(a)),

for some integer m ≥ 2, and assuming by way of contradiction that τ , σk, there exists the least integer
1 ≤ r ≤ m − 1 such that τ(σr(a)) , σk(σr(a)). It can be shown by induction that τ(σ j(a)) = σk+1(σ j(a)),
for any r ≤ j ≤ m − 1. This is true by hypothesis for j = r. Now assuming r < j ≤ m − 1 and that
τ(σ j−1(a)) = σk+1(σ j−1(a)), one has

σk(σ j(a)) = σk+ j(a) = τ(σ j−1(a)) , τ(σ j(a)),

and so by hypothesis τ(σ j(a)) = σk+1(σ j(a)). In particular,

τ(σm−1(a)) = σk+1(σm−1(a)) = σk+m(a) = σk(a) = τ(a),

implying that σm−1(a) = a, a contradiction.

We are now ready to state our first theorem.
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Theorem 2.4. Let G ⩽ Sn andχ : G→ C be a nonzero function. Then dG
χ = det if and only if dG

χ (In) = dG
χ (A)dG

χ (A−1)
for all nonsingular matrices A ∈Mn(C).

Proof. By hypothesis

χ(1) = dG
χ (In) = dG

χ (In)dG
χ (In) = χ(1)2,

so either χ(1) = 0 or χ(1) = 1. If χ(1) = 1, then by hypothesis dG
χ (A) , 0 for all nonsingular matrices

A ∈Mn(C) and so the result follows by applying Theorem 2.1 of [1] or of [2].
Now if χ(1) = 0, then

0 = dG
χ (In) = dG

χ (A)dG
χ (A−1) = dSn

φ (A)dSn
φ (A−1),

for all nonsingular matrices A ∈Mn(C), whereφ = χ̂. We claim thatφ = 0 and soχ = 0, a clear contradiction.
Suppose by way of contradiction that there is some σ ∈ Sn so that l(σ) is as minimum as possible andφ(σ) , 0.
Thus l(σ) ≥ 2, for φ(1) = 0, and if τ ∈ Sn with l(τ) < l(σ), then φ(τ) = 0.

Let m ≥ 2 be the order of σ. For any 1 < x ∈ R, the matrix A(x) = In − xAσ is nonsingular because

λIn = A(x)B(x),

where

B(x) =
m−1∑
i=0

xiAσi , λ = 1 − xm,

and so by hypothesis

dSn
φ (A(x))dSn

φ (B(x)) = λndSn
φ (A(x))dSn

φ (λ−1B(x)) = 0.

We show that dSn
φ (A(x)) , 0 and hence dSn

φ (B(x)) = 0. Let A(x) = (ai j(x)) and let τ ∈ Sn be such that∏n
i=1 aiτ(i)(x) , 0. Hence τ(i) ∈ {i, σ(i)} for any 1 ≤ i ≤ n and so Fix(σ) ⊆ Fix(τ). If Fix(σ) ⊂ Fix(τ), then

l(τ) < l(σ) and so by the choice of σwe have φ(τ) = 0. Thus if Fix(σ) = Fix(τ), then τ = σ and therefore

dSn
φ (A(x)) = φ(σ)

n∏
i=1

aiσ(i)(x) = φ(σ)(1 − x)|Fix(σ)|(−x)l(σ) , 0.

Now if B(x) = (bi j(x)) and k ∈ Fix(σ), then for any 1 ≤ l ≤ n

bkl(x) = blk(x) = δkl(
m−1∑
i=0

xi). (1)

Note that each nonzero non-diagonal entry bi j(x) of B(x) is the sum of some distinct elements of the set
{x, x2, . . . , xm−1

}, that is,

bi j(x) = xs1 + xs2 + · · · + xsk , (2)

for some 1 ≤ s1 < s2 < · · · < sk ≤ m − 1, where

σs1 (i) = σs2 (i) = · · · = σsk (i) = j.

Suppose now that τ ∈ Sn is chosen so that
∏n

i=1 biτ(i)(x) , 0. Then Fix(σ) ⊆ Fix(τ) by (1). If Fix(σ) ⊂ Fix(τ),
then l(τ) < l(σ) and so φ(τ) = 0 by the choice of σ. Therefore if

Ω = {τ ∈ Sn : Fix(τ) = Fix(σ)},
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µ(x) = (
m−1∑
i=0

xi)|Fix(σ)|,

then

dSn
φ (B(x)) =

∑
τ∈Ω

φ(τ)
n∏

i=1

biτ(i)(x)

= µ(x)
(∑
τ∈Ω

φ(τ)
n∏

i=1
i<Fix(σ)

biτ(i)(x)
)

= µ(x)
(
φ(σ)

n∏
i=1

i<Fix(σ)

biσ(i)(x) +
∑
τ∈Ω−{σ}

φ(τ)
n∏

i=1
i<Fix(σ)

biτ(i)(x)
)
.

On the one hand, by (2) one knows for any i < Fix(σ) that biσ(i) is a polynomial in x which is divisible by x
but not by x2 and so

φ(σ)
n∏

i=1
i<Fix(σ)

biσ(i)(x) = φ(σ)xl(σ)p(x),

where p(x) is a polynomial in x so that p(0) = 1.
On the other hand, if τ ∈ Ω− {σ} is arbitrary, then there exists some 1 ≤ t ≤ n such that τ(t) , σ(t). Hence

t < Fix(τ) and so btτ(t)(x) is a non-diagonal entry of B(x). Thus one can see using (2) that btτ(t)(x) is a (possibly
zero) polynomial in x which is divisible by x2. Again by (2), biτ(i)(x), for any i < Fix(τ) ∪ {t}, is a (possibly
zero) polynomial in x which is divisible by x. Hence

φ(τ)
n∏

i=1
i<Fix(σ)

biτ(i)(x) = φ(τ)xl(σ)+1q(x),

where q(x) is a polynomial in x. Thus∑
τ∈Ω−{σ}

φ(τ)
n∏

i=1
i<Fix(σ)

biτ(i)(x) = xl(σ)+1r(x),

where r(x) is a polynomial in x.

Therefore

0 = dSn
φ (B(x)) = µ(x)

(
φ(σ)xl(σ)p(x) + xl(σ)+1r(x)

)
,

implying that φ(σ), the coefficient of xl(σ), must be zero, which is a contradiction. This completes the proof
of the claim.

To state our next results, we bring the following remark which will be used frequently.

Remark 2.5. (i) Let Γ be the set of representatives for the equivalence classes of ∼ on Sn. Then for any function
χ : Sn → C and for any symmetric matrix A = (ai j) ∈Mn(C), one has

dSn
χ (A) =

∑
σ∈Γ

∑
τ∈[σ]

χ(τ)
n∏

i=1

aiτ(i) =
∑
σ∈Γ

( ∑
τ∈[σ]

χ(τ)
) n∏

i=1

aiσ(i).
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(ii) Let χ : Sn → C be a function. Then, by Theorem 2.6 of [3], the following are equivalent:
(1)
∑
τ∈[σ] χ(τ) = |[σ]|χ(1)ε(σ) for all σ ∈ Sn;

(2) dSn
χ (A) = χ(1) det(A) for all symmetric matrices A ∈Mn(C).

We are now going to prove a theorem for symmetric matrices which is similar to Theorem 2.4.

Theorem 2.6. Let χ : Sn → C be a function. Then dSn
χ (In) = dSn

χ (A)dSn
χ (A−1) for all nonsingular symmetric matrices

A ∈Mn(C) if and only if χ(1) ∈ {0, 1} and∑
τ∈[σ]

χ(τ) = χ(1)|[σ]|ε(σ),

for any σ ∈ Sn.

Proof. One part is trivial by part (ii) of Remark 2.5. For the other part, we mimic the proof of Theorem 2.4.
By hypothesis

χ(1) = dSn
χ (In) = dSn

χ (In)dSn
χ (In) = χ(1)2,

so either χ(1) = 0 or χ(1) = 1. If χ(1) = 1, then by hypothesis dSn
χ (A) , 0 for all nonsingular symmetric

matrices A ∈Mn(C) and so the result follows by applying Theorem 2.6 of [3].
Now if χ(1) = 0, then

0 = dSn
χ (In) = dSn

χ (A)dSn
χ (A−1),

for all nonsingular symmetric matrices A ∈Mn(C). We claim that∑
τ∈[σ]

χ(τ) = 0,

for any σ ∈ Sn. By way of contradiction choose σ ∈ Sn so that l(σ) is minimal and c(σ) is maximal and∑
τ∈[σ]

χ(τ) , 0.

Thus l(σ) ≥ 2 and if τ ∈ Sn and either l(τ) < l(σ) or l(τ) = l(σ) and c(τ) > c(σ), then∑
α∈[τ]

χ(α) = 0.

Let m ≥ 2 be the order of σ. For any 1 < x ∈ R, the matrix

A(x) = (In − xAσ)(In − xAσ−1 ) = (x2 + 1)In − x(Aσ + Aσ−1 )

is symmetric and nonsingular because

λIn = A(x)B(x),

where

B(x) = (
m−1∑
i=0

xiAσ−i )(
m−1∑
i=0

xiAσi ), λ = (1 − xm)2,

and so by hypothesis

dSn
χ (A(x))dSn

χ (B(x)) = λndSn
χ (A(x))dSn

χ (λ−1B(x)) = 0.
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We show that dSn
χ (A(x)) , 0 and hence dSn

χ (B(x)) = 0. Let A(x) = (ai j(x)) and let τ ∈ Sn be such that∏n
i=1 aiτ(i)(x) , 0. Hence τ(i) ∈ {i, σ(i), σ−1(i)} for any 1 ≤ i ≤ n and it then follows by Lemma 2.2 and the

choice of σ that if τ < [σ] then∑
α∈[τ]

χ(α) = 0.

Note that if (rs) is a transposition in the decomposition of σ into disjoint cycles, then

arj(x) = (x2 + 1)δrj − 2xδsj, asj(x) = (x2 + 1)δsj − 2xδrj

and so arσ(r)(x) = asσ(s)(x) = −2x.

Therefore, if k is the number of transpositions in the decomposition of σ into disjoint cycles, then by
Remark 2.5

dSn
χ (A(x)) = (

∑
τ∈[σ]

χ(τ))
n∏

i=1

aiσ(i)(x)

= (
∑
τ∈[σ]

χ(τ))(1 − x)2|Fix(σ)|(−2x)2k(−x)l(σ)−2k

, 0,

as desired.
Now if B(x) = (bi j(x)) and k ∈ Fix(σ), then for any 1 ≤ l ≤ n

bkl(x) = blk(x) = δkl(
m−1∑
i=0

xi)2. (1)

To get some information about nonzero non-diagonal entries of B(x) we have

B(x) =

m−1∑
i=0

m−1∑
j=0

xi+ jAσ j−i

= (
m−1∑
i=0

x2i)In +

m−1∑
i=1

i−1∑
j=0

xi+ j(Aσ j−i + Aσi− j )

= (
m−1∑
i=0

x2i)In +

m−1∑
i=1

i∑
k=1

x2i−k(Aσ−k + Aσk )

= (
m−1∑
i=0

x2i)In +

m−1∑
k=1

m−1∑
i=k

x2i−k(Aσ−k + Aσk )

= (
m−1∑
i=0

x2i)In +

m−1∑
k=1

xk(
m−k−1∑

i=0

x2i)(Aσ−k + Aσk )

= (
m−1∑
i=0

x2i)In +

m−1∑
k=1

xkpk(x)(Aσ−k + Aσk ),

where pk(x) =
∑m−k−1

i=0 x2i is a polynomial in x with nonnegative coefficients and pk(0) = 1.

Note that each nonzero non-diagonal entry bi j(x) of B(x) is the sum of the elements of the set

{xp1(x), x2p2(x), . . . , xm−1pm−1(x)}



M. H. Jafari, A. R. Madadi / Filomat 37:30 (2023), 10301–10321 10308

with a coefficient, that is,

bi j(x) =
m−1∑
k=1

ckxkpk(x), (2)

where

ck =


0 if j < {σk(i), σ−k(i)}
1 if j ∈ {σk(i), σ−k(i)}, σk(i) , σ−k(i)
2 if j ∈ {σk(i), σ−k(i)}, σk(i) = σ−k(i)

Suppose now that τ ∈ Sn is chosen so that
∏n

i=1 biτ(i)(x) , 0. Then Fix(σ) ⊆ Fix(τ) by (1). If Fix(σ) ⊂ Fix(τ),
then l(τ) < l(σ) and so by the choice of σ∑

α∈[τ]

χ(α) = 0.

Hence Fix(τ) = Fix(σ) and so l(τ) = l(σ). Now if c(τ) > c(σ), then again by the choice of σ∑
α∈[τ]

χ(α) = 0.

Therefore if

Γ0 = {τ ∈ Γ : Fix(τ) = Fix(σ), c(τ) ≤ c(σ)},

µ(x) = (
m−1∑
i=0

xi)2|Fix(σ)|,

then by Remark 2.5

dSn
χ (B(x)) =

∑
τ∈Γ0

( ∑
α∈[τ]

χ(α)
) n∏

i=1

biτ(i)(x)

= µ(x)
∑
τ∈Γ0

( ∑
α∈[τ]

χ(α)
) n∏

i=1
i<Fix(σ)

biτ(i)(x)

= µ(x)
(
(
∑
α∈[σ]

χ(α))
n∏

i=1
i<Fix(σ)

biσ(i)(x) +
∑
τ∈Γ0−{σ}

(
∑
α∈[τ]

χ(α))
n∏

i=1
i<Fix(σ)

biτ(i)(x)
)
.

On the one hand, by (2) one knows for any i < Fix(σ) that biσ(i)(x) is a polynomial in x which is divisible by
x but not by x2 and so

(
∑
α∈[σ]

χ(α))
n∏

i=1
i<Fix(σ)

biσ(i)(x) = (
∑
α∈[σ]

χ(α))xl(σ)p(x),

where p(x) is a polynomial in x so that p(0) , 0.
On the other hand, if τ ∈ Γ0 − {σ} is arbitrary, then τ < [σ] and c(τ) ≤ c(σ), and so by Lemma 2.1 there

exists some 1 ≤ t ≤ n such that τ(t) < {σ(t), σ−1(t)}. Hence t < Fix(τ) and so btτ(t)(x) is a non-diagonal entry
of B(x). Thus one can see using (2) that btτ(t)(x) is a (possibly zero) polynomial in x which is divisible by
x2. Again by (2), biτ(i)(x), for any i < Fix(τ) ∪ {t}, is a (possibly zero) polynomial in x which is divisible by x.
Hence

(
∑
α∈[τ]

χ(α))
n∏

i=1
i<Fix(σ)

biτ(i)(x) = (
∑
α∈[τ]

χ(α))xl(σ)+1q(x),
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where q(x) is a polynomial in x. Thus

∑
τ∈Γ0−{σ}

(
∑
α∈[τ]

χ(α))
n∏

i=1
i<Fix(σ)

biτ(i)(x) = xl(σ)+1r(x),

where r(x) is a polynomial in x.

Therefore

0 = dSn
φ (B(x)) = µ(x)

(
(
∑
α∈[σ]

χ(α))xl(σ)p(x) + xl(σ)+1r(x)
)
,

implying that
∑
α∈[σ] χ(α), the coefficient of xl(σ), must be zero, which is a contradiction. This completes the

proof of the claim.

For a subsetΩ of {1, 2, . . . ,n}, we say that the matrix A = (ai j) ∈Mn(C) is anΩ-block matrix if ai j = a ji = 0
for any i ∈ Ω and j < Ω. Obviously if B = (bi j) ∈Mn(C) is another matrix and AB = (ci j), then

ci j =

{ ∑
k∈Ω aikbkj if i ∈ Ω∑
k<Ω aikbkj if i < Ω

If B is an Ω-block matrix too, then so is AB. In particular, A2, AAt, AA∗, and AĀ are Ω-block matrices.

We now prove our next theorem.

Theorem 2.7. Let G ⩽ Sn and χ : G→ C be a function. Then dG
χ = χ(1) det if and only if dG

χ (A2) = dG
χ (A)2 for all

singular matrices A ∈Mn(C).

Proof. First it is claimed that if φ : Sn → C is a function such that φ(1) = 0 and

dSn
φ (A2) = dSn

φ (A)2

for all singular matrices A ∈Mn(C), then φ = 0.
By way of contradiction choose σ ∈ Sn so that l(σ) is minimal and c(σ) is maximal and φ(σ) , 0. Thus

l(σ) ≥ 2 and if τ ∈ Sn and either l(τ) < l(σ) or l(τ) = l(σ) and c(τ) > c(σ), then φ(τ) = 0.

In the sequel, let σ = σ1 . . . σs be the decomposition of σ into disjoint cycles.

Step 1: The cycles σi are even permutations.

Without loss of generality, we may assume that σ1 = (a1a2 . . . am) is an odd permutation with the set of
moving points Ω. So m is even and define the matrix A = (ai j) ∈Mn(C) as follows:

ai j =


−δi j − δσ(i) j if i = a1
δi j + δσ(i) j if i ∈ Ω − {a1}

δσ(i) j if i < Ω

Note that A is an Ω-block matrix because σ(Ω) = Ω. Suppose that τ ∈ Sn so that
∏n

i=1 aiτ(i) , 0. Hence
τ(i) ∈ {i, σ(i)} = {i, σ1(i)} if i ∈ Ω and τ(i) = σ(i) if i < Ω. One obtains using Lemma 2.3 for k = 0 that
τ ∈ {σ, σ2 . . . σs}. Therefore

det(A) = −ε(σ) − ε(σ2 . . . σs) = 0,
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which means that A is singular, and also

dSn
φ (A) = −φ(σ) − φ(σ2 . . . σs).

Since l(σ2 . . . σs) < l(σ), hence φ(σ2 . . . σs) = 0 by the choice of σ and so dSn
φ (A) = −φ(σ).

Let us now compute the Ω-block matrix A2. If i ∈ Ω, then

n∑
k=1

aikakj =
∑
k∈Ω

aikakj

= ∓

∑
k∈Ω

(δik + δσ(i)k)akj

= ∓

(
(δia1 + δσ(i)a1 )(−δa1 j − δσ(a1) j) +

∑
k∈Ω−{a1}

(δik + δσ(i)k)(δkj + δσ(k) j)
)

= ∓(−δia1δa1 j − δσ(i)a1δa1 j − δia1δσ(a1) j − δσ(i)a1δσ(a1) j)

∓

∑
k∈Ω−{a1}

δikδkj + δσ(i)kδkj + δikδσ(k) j + δσ(i)kδσ(k) j.

It can be easily verified that if i ∈ {a1, am}, then

n∑
k=1

aikakj = δi j − δσ2(i) j,

and if i ∈ Ω − {a1, am}, then

n∑
k=1

aikakj = δi j + 2δσ(i) j + δσ2(i) j.

Now if i < Ω, then
n∑

k=1

aikakj =
∑
k<Ω

aikakj

=
∑
k<Ω

δσ(i)kδσ(k) j

= δσ2(i) j.

Therefore if A2 = (bi j), then

bi j =


δi j − δσ2(i) j if i ∈ {a1, am}

δi j + 2δσ(i) j + δσ2(i) j if i ∈ Ω − {a1, am}

δσ2(i) j if i < Ω

We show that dSn
φ (A2) = 0. If not, then there exists some τ ∈ Sn such that φ(τ) , 0 and

∏n
i=1 biτ(i) , 0.

Hence τ(i) = σ2(i) if i < Ω, τ(i) ∈ {i, σ2(i)} if i ∈ {a1, am}, and τ(i) ∈ {i, σ(i), σ2(i)} if i ∈ Ω − {a1, am}. In
particular, Fix(σ) ⊆ Fix(τ). If Fix(σ) ⊂ Fix(τ), then l(τ) < l(σ) and so φ(τ) = 0 by the choice of σ, a
contradiction. Thus Fix(σ) = Fix(τ) and so τ(i) ∈ {σ1(i), σ2

1(i)} if i ∈ Ω. Now by using Lemma 2.3 for
k = 1 one has τ ∈ {σ2, σ1σ2

2 . . . σ
2
s }. But τ(a1) = σ2(a1) , σ(a1) and so τ = σ2. Since m is even, hence one

has c(τ) = c(σ2) > c(σ). It then follows from l(τ) = l(σ) and the choice of σ thatφ(τ) = 0, again a contradiction.
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Now by hypothesis

φ(σ)2 = dSn
φ (A)2 = dSn

φ (A2) = 0,

a final contradiction.

From now on, let θ = θ1 . . . θs ∈ Sn be a permutation with the same cycle structure as σ, where
θ1 = (a1a2 . . . am) is a cycle with the set of moving points Ω. Notice that all the cycles θi are even permuta-
tions by Step 1.

Step 2: φ(θ)2 = φ(θ2).

We define the Ω-block matrix A = (ai j) ∈Mn(C) as follows:

ai j =


−δi j + δθ(i) j if i = a1
δi j + δθ(i) j if i ∈ Ω − {a1}

δθ(i) j if i < Ω

One can obtain similar to the proof of Step 1 that

det(A) = ε(θ) − ε(θ2 . . . θs) = 0,

meaning that A is singular, and also

dSn
φ (A) = φ(θ) − φ(θ2 . . . θs).

Since l(θ2 . . . θs) < l(θ) = l(σ), hence φ(θ2 . . . θs) = 0 by the choice of σ and so dSn
φ (A) = φ(θ).

Also similar computations as Step 1 show that if A2 = (bi j), then

bi j =


δi j + δθ2(i) j if i ∈ {a1, am}

δi j + 2δθ(i) j + δθ2(i) j if i ∈ Ω − {a1, am}

δθ2(i) j if i < Ω

Now if τ ∈ Sn is so that
∏n

i=1 biτ(i) , 0, then one has in a similar manner as Step 1 that either φ(τ) = 0 or
τ = θ2. Therefore dSn

φ (A2) = φ(θ2) and using hypothesis the proof is completed.

Step 3: φ(θ1θ2
2 . . . θ

2
s ) = 0.

Recall that θ1 is an even permutation and so m is odd. Now define theΩ-block matrix A = (ai j) ∈Mn(C)
as follows:

ai j =

{
δi j − δθ(i) j if i ∈ Ω
δθ(i) j if i < Ω

If τ ∈ Sn is so that
∏n

i=1 aiτ(i) , 0, then using Lemma 2.3 for k = 0 one obtains that τ ∈ {θ, θ2 . . . θs} and so

det(A) = (−1)mε(θ) + ε(θ2 . . . θs) = 0,

which means that A is singular, and also

dSn
φ (A) = (−1)mφ(θ) + φ(θ2 . . . θs).

Since l(θ2 . . . θs) < l(θ) = l(σ), hence φ(θ2 . . . θs) = 0 by the choice of σ and so dSn
φ (A) = −φ(θ).
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One has by similar computations as before that if A2 = (bi j), then

bi j =

{
δi j − 2δθ(i) j + δθ2(i) j if i ∈ Ω
δθ2(i) j if i < Ω

and if τ ∈ Sn is so that
∏n

i=1 biτ(i) , 0, then either φ(τ) = 0 or τ ∈ {θ2, θ1θ2
2 . . . θ

2
s }. Now by hypothesis

φ(θ)2 = dSn
φ (A)2 = dSn

φ (A2) = φ(θ2) + (−2)mφ(θ1θ
2
2 . . . θ

2
s ),

and the proof is completed by Step 2.

To complete the proof of the claim, let r be the least common multiple of the odd numbers l(σ2), . . . , l(σs).
Hence by Euler’s Theorem there is a natural number k such that r divides 2k

− 1. Hence 2k = 1+ rt for some
natural number t. Now the permutation σ1σ2k−1

2 . . . σ2k−1

s clearly has the same cycle structure as σ and so by
applying Step 3 to this permutation we obtain

0 = φ(σ1(σ2k−1

2 )2 . . . (σ2k−1

s )2)

= φ(σ1σ
2k

2 . . . σ
2k

s )

= φ(σ1σ
1+rt
2 . . . σ1+rt

s )
= φ(σ1σ2 . . . σs)
= φ(σ),

a contradiction.

To complete the proof, suppose that φ = χ̂ − χ(1)ε and so φ(1) = 0. Thus for all singular matrices
A ∈Mn(C)

dSn
φ (A2) = dSn

χ̂ (A2) − χ(1) det(A2)

= dSn
χ̂ (A2)

= dG
χ (A2)

= dG
χ (A)2

= (dSn
χ̂ (A) − χ(1) det(A))2

= dSn
φ (A)2,

which implies that φ = 0 by the claim and the proof of the theorem is completed.

As a consequence we obtain:

Corollary 2.8. Let G ⩽ Sn and χ : G→ C be a nonzero function. Then dG
χ = det if and only if dG

χ (A2) = dG
χ (A)2 for

all nonsingular matrices A ∈Mn(C).

Proof. For any singular matrix A ∈ Mn(C) there exists some ϵ > 0 such that for all 0 < x < ϵ the matrix
xIn + A is nonsingular and so by hypothesis

dG
χ ((xIn + A)2) = dG

χ (xIn + A)2.

But both sides of the above equality are polynomials in x and therefore their constant coefficients are equal,
that is,

dG
χ (A2) = dG

χ (A)2



M. H. Jafari, A. R. Madadi / Filomat 37:30 (2023), 10301–10321 10313

for all singular matrices A ∈Mn(C). It now follows by Theorem 2.7 that χ̂ = χ(1)ε. By hypothesis

χ(1) = dG
χ (I2

n) = dG
χ (In)2 = χ(1)2,

so either χ(1) = 0 or χ(1) = 1. If χ(1) = 0, then χ̂ = 0, a contradiction. Thus χ(1) = 1 and so dG
χ = det. This

completes the proof.

To prove our next theorem, we need a useful group theoretical lemma which has been used frequently
in [3]. Its easy proof is omitted.

Lemma 2.9. (i) Let σ = (a1a2 . . . am) ∈ Sn, where m ≥ 2. Then σ = αβ, where α, β ∈ Tn are defined as follows:

α = (a1am)(a2am−1) · · · (al−1al+2)(alal+1),

β = (ama2)(am−1a3) · · · (al+3al−1)(al+2al),

if m = 2l is even, and

α = (a1am)(a2am−1) · · · (al−1al+3)(alal+2),

β = (ama2)(am−1a3) · · · (al+3al)(al+2al+1),

if m = 2l + 1 is odd;
(ii) For each σ ∈ Sn there exist α, β ∈ Tn such that σ = αβ and Fix(σ) = Fix(α) ∩ Fix(β).

Now we can state the following theorem for symmetric matrices which is similar to Theorem 2.7. As it
will be seen, its proof is entirely different than that of Theorem 2.7.

Theorem 2.10. Let χ : Sn → C be a function. Then dSn
χ (A2) = dSn

χ (A)2 for all singular symmetric matrices
A ∈Mn(C) if and only if∑

τ∈[σ]

χ(τ) = χ(1)|[σ]|ε(σ),

for any σ ∈ Sn.

Proof. One part is trivial by part (ii) of Remark 2.5. For the other part, first we claim that if φ : Sn → C is a
function such that φ(1) = 0 and

dSn
φ (A2) = dSn

φ (A)2

for all singular matrices A ∈Mn(C), then∑
τ∈[σ]

φ(τ) = 0,

for any σ ∈ Sn.

First we prove by induction on c(τ) that φ(τ) = 0 for any τ ∈ Tn − {1}. Let 1 , τ ∈ Tn, c(τ) = s, and
τ = τ1 . . . τs be the decomposition of τ into disjoint transpositions with τ1 = (a1a2). Then the matrices

A = Aτ + Ea1a1 + Ea2a2 , B = Aτ + Ea1a1 + 4Ea2a2 + Ea1a2 + Ea2a1

are singular and symmetric and

A2 = In + Ea1a1 + Ea2a2 + 2Ea1a2 + 2Ea2a1 ,
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B2 = In + 4Ea1a1 + 19Ea2a2 + 10Ea1a2 + 10Ea2a1 .

Hence by hypothesis

4(φ(1) + φ(τ1)) = dSn
φ (A2) = dSn

φ (A)2 = (φ(τ) + φ(τ2 . . . τs))2,

100(φ(1) + φ(τ1)) = dSn
φ (B2) = dSn

φ (B)2 = 16(φ(τ) + φ(τ2 . . . τs))2.

If s = 1, then one has

4φ(τ) = 4(φ(1) + φ(τ1)) = (φ(τ) + φ(1))2 = φ(τ)2,

100φ(τ) = 100(φ(1) + φ(τ1)) = 16(φ(τ) + φ(1))2 = 16φ(τ)2,

which imply that φ(τ) = 0. Now assume that s > 1 and so τ1, τ2 . . . τs ∈ Tn − {1} with c(τ1) = 1 and
c(τ2 . . . τs) = s − 1 and hence by induction φ(τ1) = φ(τ2 . . . τs) = 0. Thus

0 = 4(φ(1) + φ(τ1)) = (φ(τ) + φ(τ2 . . . τs))2 = φ(τ)2,

which means that φ(τ) = 0. Therefore the claim is true for the elements of Tn.

To complete the proof, by way of contradiction choose σ ∈ Sn so that l(σ) is minimal and c(σ) is maximal
and ∑

τ∈[σ]

φ(τ) , 0.

Thus σ < Tn and if τ ∈ Sn and either l(τ) < l(σ) or l(τ) = l(σ) and c(τ) > c(σ), then∑
α∈[τ]

φ(α) = 0.

We see by Lemma 2.9 that there exist α, β ∈ Tn such that σ = αβ and Fix(σ) = Fix(α) ∩ Fix(β). More
precisely, if σ = σ1 . . . σs is the decomposition of σ into disjoint cycles, then there exist disjoint permutations
α1, . . . , αs ∈ Tn and disjoint permutations β1, . . . , βs ∈ Tn so that

α = α1 . . . αs, β = β1 . . . βs, σ = αβ,

where if σ j = (a1a2 . . . am), then

α j = (a1am)(a2am−1) · · · (al−1al+2)(alal+1),

β j = (ama2)(am−1a3) · · · (al+3al−1)(al+2al),

if m = 2l is even, and

α j = (a1am)(a2am−1) · · · (al−1al+3)(alal+2),

β j = (ama2)(am−1a3) · · · (al+3al)(al+2al+1),

if m = 2l + 1 is odd.

Now we define the matrix A = (ai j) ∈Mn(C) as follows:

ai j =

{
δα(i) j − δβ(i) j if i < Ω
δi j if i ∈ Ω
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where Ω = Fix(σ). Obviously, A is an Ω-block matrix because α(Ω) = β(Ω) = Ω. Since α, β ∈ Tn, hence

δα(i) j − δβ(i) j = δiα−1( j) − δiβ−1( j) = δiα( j) − δiβ( j),

which means that A is symmetric. Now consider the vector X = (x1, . . . , xn)t with xi = 1 if i < Ω and xi = 0
otherwise. Since σ , 1, hence X , 0 and one can easily see that AX = 0, meaning that A is singular.

First we show that dSn
φ (A) = 0. Assuming by way of contradiction that dSn

φ (A) , 0, there is some θ ∈ Sn
by Remark 2.5 such that

∑
τ∈[θ]

φ(τ) , 0,
n∏

i=1

aiθ(i) , 0.

Hence θ(i) ∈ {i, α(i), β(i)} for any 1 ≤ i ≤ n. It then follows that if Ω j is the set of moving points of σ j, then
θ(Ω j) ⊆ Ω j, Fix(σ) ⊆ Fix(θ), and so l(θ) ≤ l(σ). But we deduce by the choice of σ that l(θ) = l(σ) and so
Fix(σ) = Fix(θ). Now if θ j is the restriction of θ to Ω j, then θ j ∈ SΩ j and θ = θ1 . . . θs which implies that
c(θ) ≥ c(σ). Again by the choice of σ we have c(θ) = c(σ). We show that θ = α. To this end, we know that
θ j(i) ∈ {α j(i), β j(i)}, for any i ∈ Ω j = {a1, a2, . . . , am}, where 1 ≤ j ≤ s. Notice that θ j fixes no element of Ω j
and β j fixes a1 in both cases for m, so θ j(a1) = α j(a1) = am. It follows from β j(a2) = am = θ j(a1) , θ j(a2) that
θ j(a2) = α j(a2) = am−1. Continuing in this way, we obtain that θ j = α j and so θ = α. It then follows from
α ∈ Tn that [θ] = [α] = {α} and so

0 ,
∑
τ∈[θ]

φ(τ) = φ(α) = 0,

a contradiction.
Let us now compute the Ω-block matrix A2. If i < Ω, then

n∑
k=1

aikakj =
∑
k<Ω

(δα(i)k − δβ(i)k)(δα(k) j − δβ(k) j)

=
∑
k<Ω

δα(i)kδα(k) j + δβ(i)kδβ(k) j − δα(i)kδβ(k) j − δβ(i)kδα(k) j

= δα2(i) j + δβ2(i) j − δβ(α(i)) j − δα(β(i)) j

= 2δi j − δ(αβ)(i) j − δ(βα)(i) j

= 2δi j − δσ(i) j − δσ−1(i) j.

If i ∈ Ω, then

n∑
k=1

aikakj =
∑
k∈Ω

δikδkj = δi j

Therefore A2 = (bi j) ∈Mn(C), where

bi j =

{
2δi j − δσ(i) j − δσ−1(i) j if i < Ω
δi j if i ∈ Ω

If τ ∈ Sn is so that
∏n

i=1 biτ(i) , 0, then τ(i) ∈ {i, σ(i), σ−1(i)} for any 1 ≤ i ≤ n and so we can apply Lemma 2.2.
Also note that if (rs) is a transposition in the decomposition of σ into disjoint cycles, then

brj = 2δrj − 2δsj, bsj = 2δsj − 2δrj

and so brσ(r) = bsσ(s) = −2.
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Therefore, if k is the number of transpositions in the decomposition of σ into disjoint cycles, then, using
hypothesis, Remark 2.5, and Lemma 2.2, one obtains by the choice of σ that

0 = dSn
φ (A)2

= dSn
φ (A2)

=
∑
γ∈Γ

( ∑
τ∈[γ]

φ(τ)
) n∏

i=1

biγ(i)

= (
∑
τ∈[σ]

φ(τ))
n∏

i=1

biσ(i)

= (−1)l(σ)−2k(−2)2k
∑
τ∈[σ]

φ(τ),

, 0,

which is a contradiction. This completes the proof of the claim.

To complete the proof, suppose that φ = χ − χ(1)ε and so φ(1) = 0. Thus by hypothesis for all singular
matrices A ∈Mn(C)

dSn
φ (A2) = dSn

χ (A2) − χ(1) det(A2)

= dSn
χ (A2)

= dSn
χ (A)2

= (dSn
χ (A) − χ(1) det(A))2

= dSn
φ (A)2,

which implies by the claim that

0 =
∑
τ∈[σ]

φ(τ) =
∑
τ∈[σ]

χ(τ) − χ(1)|[σ]|ε(σ),

and the proof of the theorem is completed.

As a consequence we obtain:

Corollary 2.11. Let χ : Sn → C be a class function. Then dSn
χ (A2) = dSn

χ (A)2 for all singular symmetric matrices
A ∈Mn(C) if and only if dSn

χ = χ(1) det.

As another consequence we obtain:

Corollary 2.12. Let χ : Sn → C be a function. Then dSn
χ (A2) = dSn

χ (A)2 for all nonsingular symmetric matrices
A ∈Mn(C) if and only if χ(1) ∈ {0, 1} and∑

τ∈[σ]

χ(τ) = χ(1)|[σ]|ε(σ),

for any σ ∈ Sn.

Proof. For any singular symmetric matrix A ∈ Mn(C) there exists some ϵ > 0 such that for all 0 < x < ϵ the
matrix xIn + A is a nonsingular symmetric matrix and so by hypothesis

dSn
χ ((xIn + A)2) = dSn

χ (xIn + A)2.
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But both sides of the above equality are polynomials in x and therefore their constant coefficients are equal,
that is,

dSn
χ (A2) = dSn

χ (A)2

for all singular symmetric matrices A ∈Mn(C). It now follows by Theorem 2.10 that∑
τ∈[σ]

χ(τ) = χ(1)|[σ]|ε(σ),

for any σ ∈ Sn. Also by hypothesis

χ(1) = dSn
χ (I2

n) = dSn
χ (In)2 = χ(1)2,

so either χ(1) = 0 or χ(1) = 1. This completes the proof.

The following is an immediate consequence of Corollary 2.12.

Corollary 2.13. Let χ : Sn → C be a nonzero class function. Then dSn
χ (A2) = dSn

χ (A)2 for all nonsingular symmetric
matrices A ∈Mn(C) if and only if dSn

χ = det.

The next is our final theorem.

Theorem 2.14. Let G ⩽ Sn and χ : G→ C be a function. Then the following are equivalent:
(i) dG

χ = χ(1) det;
(ii) dG

χ (AAt) = dG
χ (A)dG

χ (At) for all singular matrices A ∈Mn(C);
(iii) dG

χ (AA∗) = dG
χ (A)dG

χ (A∗) for all singular matrices A ∈Mn(C);
(iv) dG

χ (AĀ) = dG
χ (A)dG

χ (Ā) for all singular matrices A ∈Mn(C).

Proof. (i)⇒ (ii), (i)⇒ (iii), and (i)⇒ (iv) are obvious.

(ii)⇒ (i): First we claim that if φ : Sn → C is a function such that φ(1) = 0 and

dSn
φ (AAt) = dSn

φ (A)dSn
φ (At)

for all singular matrices A ∈Mn(C), then φ = 0.

The first lines of the proof of Theorem 2.10 show that if τ ∈ Tn, then φ(τ) = 0. By way of contradiction
choose σ ∈ Sn so that l(σ) is minimal and c(σ) is maximal and φ(σ) , 0. Thus σ < Tn and if τ ∈ Sn and either
l(τ) < l(σ) or l(τ) = l(σ) and c(τ) > c(σ), then φ(τ) = 0.

Now let σ = σ1 . . . σs be the decomposition of σ into disjoint cycles, where one of the cycles σi is of length
at least 3 because σ < Tn.

Step 1: φ(θ)φ(θ−1) = 0 if θ ∈ Sn has the same cycle structure as σ.

Suppose that θ = θ1 . . . θs is the decomposition of θ into disjoint cycles, where θ1 = (a1a2 . . . am) is an m-
cycle with m ≥ 3. Ifα = (a1a2) and τ = αθ, thenθ is even if and only if τ is odd, and so ε(θ) = −ε(τ). Moreover,
l(τ) = l(θ) − 1 < l(σ) and so φ(τ) = φ(τ−1) = 0 by the choice of σ. Now the matrix A = Aθ + Ea1a3 + Ea2a2 is
singular, because

det(A) = ε(θ) + ε(τ) = 0.

Also At = Aθ−1 + Ea3a1 + Ea2a2 and it can be easily seen that

AAt = In + Ea1a1 + Ea2a2 + 2Ea1a2 + 2Ea2a1 .
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Since φ is zero on Tn, one has by hypothesis

0 = 4φ(1) + 4φ(α)

= dSn
φ (AAt)

= dSn
φ (A)dSn

φ (At)

= (φ(θ) + φ(τ))(φ(θ−1) + φ(τ−1))
= φ(θ)φ(θ−1),

which completes the proof.

Step 2:
∑
τ∈[θ] φ(τ) = 0 if θ ∈ Sn has the same cycle structure as σ.

Define the Ω-block matrix A = (ai j) ∈Mn(C) as follows:

ai j =

{
δi j − δθ(i) j if i < Ω
δi j if i ∈ Ω

where Ω = Fix(θ). Consider the vector X = (x1, . . . , xn)t with xi = 1 if i < Ω and xi = 0 otherwise. Since
θ < Tn, hence X , 0 and one can see that AX = 0, which means that A is singular. Now if

∏n
i=1 aiτ(i) , 0

for some τ ∈ Sn, then τ(i) ∈ {i, θ(i)} for any 1 ≤ i ≤ n and so Fix(θ) ⊆ Fix(τ). If Fix(θ) ⊂ Fix(τ), then
l(τ) < l(θ) = l(σ) and so by the choice of σ one has φ(τ) = 0. Thus if Fix(θ) = Fix(τ), then τ = θ. Therefore

dSn
φ (A) = (−1)l(θ)φ(θ).

If At = (bi j), then obviously

bi j =

{
δi j − δθ−1(i) j if i < Ω
δi j if i ∈ Ω

and similar as above

dSn
φ (At) = (−1)l(θ)φ(θ−1).

Now if AAt = (ci j), then one can easily see that

ci j =

{
2δi j − δθ(i) j − δθ−1(i) j if i < Ω
δi j if i ∈ Ω

Choose τ ∈ Sn such that
∏n

i=1 ciτ(i) , 0. Then τ(i) ∈ {i, θ(i), θ−1(i)} for any 1 ≤ i ≤ n. Since θ and σ have the
same cycle structures, we see by Lemma 2.2 that if τ < [θ], then φ(τ) = 0 by the choice of σ.

Therefore using Step 1, hypothesis, and Remark 2.5 one obtains

0 = (−1)2l(θ)φ(θ)φ(θ−1)

= dSn
φ (A)dSn

φ (At)

= dSn
φ (AAt)

=
∑
τ∈[θ]

φ(τ)
n∏

i=1

ciθ(i)

= (−1)l(θ)−2k(−2)2k
∑
τ∈[θ]

φ(τ),

where k is the number of transpositions in the decomposition of θ into disjoint cycles. This completes the
proof.
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Step 3: Ifθ = θ1θ2 . . . θs ∈ Sn has the same cycle structure as σ such thatφ(θ) , 0, thenφ(θ−1
1 θ2 . . . θs) , 0.

There is nothing to prove if θ1 is a transposition. So let θ1 be a cycle with the set of moving points Ω
and m = |Ω| ≥ 3. Define the Ω-block matrix A(x) = (ai j(x)) as follows:

ai j(x) =
{
δθ(i) j − δθ−1(i) j if i ∈ Ω
xδθ(i) j − δθ−1(i) j if i < Ω

where x ∈ R is arbitrary. Consider the vector X = (x1, . . . , xn)t with xi = 1 if i ∈ Ω and xi = 0 otherwise. Then
AX = 0, which means that A(x) is singular. We compute the Ω-block symmetric matrix A(x)A(x)t = (bi j(x)).
If i < Ω, then

bi j(x) =
∑
k<Ω

aik(x)a jk(x)

=
∑
k<Ω

(xδθ(i)k − δθ−1(i)k)(xδθ( j)k − δθ−1( j)k)

=
∑
k<Ω

x2δθ(i)kδθ( j)k − xδθ(i)kδθ−1( j)k − xδθ−1(i)kδθ( j)k + δθ−1(i)kδθ−1( j)k

= x2δθ(i)θ( j) − xδθ(i)θ−1( j) − xδθ−1(i)θ( j) + δθ−1(i)θ−1( j)

= x2δi j − xδθ2(i) j − xδθ−2(i) j + δi j

= (x2 + 1)δi j − x(δθ2(i) j + δθ−2(i) j).

Similarly, if i ∈ Ω, then

bi j(x) = 2δi j − (δθ2(i) j + δθ−2(i) j).

Hence

bi j(x) =
{

2δi j − (δθ2(i) j + δθ−2(i) j) if i ∈ Ω
(x2 + 1)δi j − x(δθ2(i) j + δθ−2(i) j) if i < Ω

First we show that dSn
φ (A(x)A(x)t) = 0. If not, then there exists some τ ∈ Sn such that

∏n
i=1 biτ(i)(x) , 0 and

φ(τ) , 0. Thus τ(i) ∈ {i, θ2(i), θ−2(i)} for any 1 ≤ i ≤ n and so by Lemma 2.2 three distinct cases can happen:

(1) l(τ) < l(θ2);
(2) l(τ) = l(θ2) and c(τ) > c(θ2);
(3) τ ∈ [θ2].

We know that l(θ2) ≤ l(θ), l(θ) = l(σ), and c(θ) = c(σ). Also recall that if τ ∈ [θ2], then l(τ) = l(θ2) and
c(τ) = c(θ2). Now if l(θ2) < l(θ), then in all three cases we have φ(τ) = 0 by the choice of σ, a contradiction.
Hence we must have l(θ2) = l(θ) which implies that there is no transposition in the decomposition of θ into
disjoint cycles and so c(θ2) ≥ c(θ). Since φ(τ) , 0, we see by the choice of σ that cases (1) and (2) cannot
occur at all and case (3) cannot occur if c(θ2) > c(θ). It then follows that l(θ2) = l(θ), c(θ2) = c(θ), and
τ ∈ [θ2]. Two former conditions imply that θ2 and θ (and hence θ2 and σ) have the same cycle structures
and so by Remark 2.5 and Step 2 one has

dSn
φ (A(x)A(x)t) = (

∑
α∈[θ2]

φ(α))
n∏

i=1

biθ2(i)(x) = 0,

which is a contradiction. Hence it was shown that dSn
φ (A(x)A(x)t) = 0 and so by hypothesis

dSn
φ (A(x))dSn

φ (A(x)t) = 0.
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It is clear that
∏n

i=1 aiτ(i)(x) is a polynomial in x of degree at most n −m for any τ ∈ Sn and so both dSn
φ (A(x))

and dSn
φ (A(x)t) are polynomials in x and so at least one of them must be zero.

Assume first that dSn
φ (A(x)) is the zero polynomial. If τ ∈ Sn is such that

∏n
i=1 aiτ(i)(x) , 0 and φ(τ) , 0,

then τ(i) ∈ {θ(i), θ−1(i)} for any 1 ≤ i ≤ n and so by Lemma 2.2 and the choice σ we have τ ∈ [θ]. Therefore,
if
∏n

i=1 aiτ(i)(x) is a polynomial in x of degree n − m, then τ ∈ {θ, θ−1
1 θ2 . . . θs}. But the coefficient of xn−m in

dSn
φ (A(x)) is zero, which implies that

φ(θ) + (−1)mφ(θ−1
1 θ2 . . . θs) = 0,

implying that φ(θ−1
1 θ2 . . . θs) , 0, as desired.

Assume now that dSn
φ (A(x)t) is the zero polynomial, where A(x)t = (ci j(x)) is as follows:

ci j(x) = a ji(x) =
{
δθ−1(i) j − δθ(i) j if i ∈ Ω
xδθ−1(i) j − δθ(i) j if i < Ω

Hence the constant coefficient in dSn
φ (A(x)t) is zero, that is, dSn

φ (A(0)t) = 0. One can show similar to the first
case that if τ ∈ Sn is such that

∏n
i=1 ciτ(i)(0) , 0 and φ(τ) , 0, then τ ∈ {θ, θ−1

1 θ2 . . . θs}. Therefore

0 = dSn
φ (A(0)t) = (−1)nφ(θ) + (−1)n−mφ(θ−1

1 θ2 . . . θs),

again implying that φ(θ−1
1 θ2 . . . θs) , 0, and the proof of Step 3 is completed.

To get a final contradiction, since φ(σ) , 0, by Step 3 we have φ(σ−1
1 σ2 . . . σs) , 0. Again since σ−1

1 σ2 . . . σs

and σ have the same cycle structures, by Step 3 we conclude that φ(σ−1
1 σ

−1
2 σ3 . . . σs) , 0. Continuing in this

way, we see that

φ(σ−1) = φ(σ−1
1 σ

−1
2 . . . σ

−1
s ) , 0,

which contradicts Step 1, and the proof of the claim is completed.

To complete the proof of the theorem, suppose that φ = χ̂ − χ(1)ε and so φ(1) = 0. Thus by hypothesis
for all singular matrices A ∈Mn(C)

dSn
φ (AAt) = dSn

χ̂ (AAt) − χ(1) det(AAt)

= dG
χ (AAt)

= dG
χ (A)dG

χ (At)

= (dSn
χ̂ (A) − χ(1) det(A))(dSn

χ̂ (At) − χ(1) det(At))

= dSn
φ (A)dSn

φ (At),

which implies that φ = 0 by the claim and so dG
χ = χ(1) det, as required.

(iii)⇒ (i): The proof of (ii)⇒ (i) will work here because all matrices used there have real entries.

(iv)⇒ (i): The proof of Theorem 2.7 will work here because all matrices used there have real entries.

As a final consequence we have:

Corollary 2.15. Let G ⩽ Sn and χ : G→ C be a nonzero function. Then the following are equivalent:
(i) dG

χ = det;
(ii) dG

χ (AAt) = dG
χ (A)dG

χ (At) for all nonsingular matrices A ∈Mn(C);
(iii) dG

χ (AA∗) = dG
χ (A)dG

χ (A∗) for all nonsingular matrices A ∈Mn(C);
(iv) dG

χ (AĀ) = dG
χ (A)dG

χ (Ā) for all nonsingular matrices A ∈Mn(C).
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Proof. (ii)⇒ (i): For any singular matrix A ∈ Mn(C) there exists some ϵ > 0 such that for all 0 < x < ϵ the
matrix xIn + A is nonsingular and so by hypothesis

dG
χ ((xIn + A)(xIn + A)t) = dG

χ (xIn + A)dG
χ ((xIn + A)t).

But both sides of the above equality are polynomials in x and therefore their constant coefficients are equal,
that is,

dG
χ (AAt) = dG

χ (A)dG
χ (At),

for all singular matrices A ∈Mn(C). It now follows by Theorem 2.14 that χ̂ = χ(1)ε. By hypothesis

χ(1) = dG
χ (In) = dG

χ (In)dG
χ (In) = χ(1)2,

so either χ(1) = 0 or χ(1) = 1. If χ(1) = 0, then χ̂ = 0, a contradiction. Thus χ(1) = 1 and so dG
χ = det, as

desired.

The proofs of (iii)⇒ (i) and (iv)⇒ (i) are similar to that of (ii)⇒ (i). This completes the proof.

We close this paper with two interesting research problems.

Let G ⩽ Sn and χ : G→ C be a function.

Problem 1. Let φ be a ring automorphism or a ring anti-automorphism of Mn(C). Is it true that
dG
χ = χ(1) det if dG

χ (Aφ(A)) = dG
χ (A)dG

χ (φ(A)) for all singular matrices A ∈Mn(C)?

By Theorems 2.7 and 2.14, this problem is true for the ring automorphisms φ1(A) = A and φ2(A) = Ā
and for the ring anti-automorphisms φ3(A) = At and φ4(A) = A∗.

Problem 2. Letφ be a group automorphism or a group anti-automorphism of GLn(C) and χ be a nonzero
function. Is it true that dG

χ = det if dG
χ (Aφ(A)) = dG

χ (A)dG
χ (φ(A)) for all nonsingular matrices A ∈Mn(C)?

By Theorem 2.4 and Corollaries 2.8 and 2.15, this problem is true for the group automorphismsφ1(A) = A
and φ2(A) = Ā and for the group anti-automorphisms φ3(A) = A−1, φ4(A) = At, and φ5(A) = A∗.
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