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Abstract. In this study, using the concept of the neutrosophic method introduced earlier, as done in
different types of topological spaces, a new type of sequential compactness is introduced and investigated.
After giving various definitions which constitute the cornerstones of our research, in the third section, a
new perspective to the concept of connectedness is brought, which is among the most important characters
of the topology world, based on the concept of the neutrosophic method. By giving examples of each
new definition given in the second and third sections, a better understanding of the new concepts given is
provided.

1. Introduction

Since the dawn of the mathematics, countless types of functions have been defined. However, as time
passed, each function type has become insufficient. Various functions were needed to be found. Thereupon,
a new type of function was introduced whose domain includes the set of convergent sequences and this
new function was named as method. With the help of this new type of function, mathematicians were
able to bring different perspectives to the concepts that form the cornerstones of the world of topology as
in [1, 13, 14]. This concept was also used in studies on neutrosophic topological spaces and some other
different topological spaces.

The concept of compactness has always been one of the fundamental and indispensable characters
in topology. This concept forms the basis not only for general topology but also for some other non-
standard topologies. Many research studies have been conducted on this concept, and some of them
have shown deviations, as noted in [5–8, 11, 13]. Thus, these research studies have never reached a
conclusion. However, as technology has advanced and industries have developed, people’s needs have
changed, rendering the basic concepts of these studies insufficient. In the face of developing technology
and changing life conditions, scientists might use the sequential definition of compactness instead of
the standard neighborhood definition of compactness for metric spaces to come up with stronger ideas.
Undoubtedly, this shift has been a significant advantage for mathematicians, as many properties of set
compactness can also be adapted to sequential compactness. Sequential compactness is widely recognized

2020 Mathematics Subject Classification. Primary 54A05; Secondary 54C10, 54D30, 54D10.
Keywords. Neutrosophic G-sequential compactness; Neutrosophic sequential Fréchet compactness; Neutrosophically sequentially
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by mathematicians worldwide. Çakallı [13] introduced G-sequentially compactness, providing another
aspect to the concept of sequential compactness.

The concept of connectedness, which is one of the indispensable members of the mathematical world,
is a complementary part not only in mathematics, but also in some sub-branches of geography, population
planning, and different fields of engineering such as robot manufacturing, which is an indispensable factor
of the industry. As time progressed, many areas such as the industry and geography, where the concept
of connectedness played important roles, became more complex. Therefore, almost all of the concepts in
mathematics lost their importance in these areas. So, it was an inevitable necessity to present the concepts
with more properties and to improve the existing concepts. Due to this requirement, scientists have
spent very much time in the realm of mathematics in order to meet the demands of daily life and rapidly
advancing technology, which is becoming increasingly complex. To illustrate this point, Çakallı [10], one
of the scientists who was dissatisfied with these contributions, introduced new identities to the concept of
connectedness in topology.

On the inadequacy of the classical set concept in general topology, Smarandache solved some of this
requirement by introducing the concept of neutrosophic set in [16]. Using this new set concept, Salma and
Albowi also contributed to overcoming problems by introducing the concept of neutrosophic topological
space in [15]. This concept of neutrosophic set also paved the way for the definition of neutrosophic soft
topological space, and these two topological spaces provided scientists with the opportunity to contribute
to the world of mathematics like never-cultivated fields as in [2–4, 9].

In the present study, we introduce and investigate the concept of G-sequentially compactness in neutro-
sophic topological spaces. One of our main goals in this study is to bring a new perspective to the concept
of compactness by introducing a new type of compactness and examine its basic properties. We also
present a new type of connectedness in neutrosophic spaces using the concept of neutrosophic sequence
and neutrosophic method previously defined in [1].

2. Preliminaries

In this section, we present the basic definitions related to neutrosophic set theory.

Definition 2.1. ([16]) A neutrosophic set A on the universe set X is defined as:

A = {⟨x,TA (x) , IA (x) ,FA (x)⟩ : x ∈ X} ,

where T, I, F : X→ ]−0, 1+[ and −0 ≤ TA (x) + IA (x) + FA (x) ≤ 3+.

Scientifically, membership functions, indeterminacy functions and non-membership functions of a neu-
trosophic set take value from real standart or nonstandart subsets of ]−0, 1+[. However, these subsets are
sometimes inconvenient to be used in real life applications such as economical and engineering problems.
On account of this fact, we consider the neutrosophic sets, whose membership functions, indeterminacy
functions and non-membership functions take values from subsets of [0, 1].

Definition 2.2. ([12]) Let X be a nonempty set. If r, t, s are real standard or non standard subsets of ]−0, 1+[
then the neutrosophic set xr,t,s is called a neutrosophic point in X given by

xr,t,s

(
xp

)
=

(r, t, s), if x = xp

(0, 0, 1), if x , xp

For xp ∈X, it is called the support of xr,t,s, where r denotes the degree of membership value, t denotes the
degree of indeterminacy and s is the degree of non-membership value of xr,t,s.

It is clear that every neutrosophic set is the union of its neutrosophic points.
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Definition 2.3. ([15]) Let A be a neutrosophic set over the universe set X. The complement of A is denoted
by Ac and is defined by:

Ac =
{
⟨x, FF̃(e)(x), 1 − IF̃(e)(x), TF̃(e)(x)⟩ : x ∈ X

}
It is obvious that [Ac]c = A.

Definition 2.4. ([15]) Let A and B be two neutrosophic sets over the universe set X. A is said to be a
neutrosophic subset of B if TA(x) ≤ TB(x), IA(x) ≤ IB(x),FA(x) ≥ FB(x), for every x ∈ X. It is denoted by A ⊆ B.
A is said to be neutrosophic equal to B if A ⊆ B and B ⊆ A. It is denoted by A = B.

Definition 2.5. ([15]) Let F1 and F2 be two neutrosophic sets over the universe set X. Then, their union is
denoted by F1 ∪ F2 = F3 and is defined by

F3 =
{〈

x, TF3 (x) , IF3 (x) , FF3 (x)
〉

: x ∈ X
}
,

where

TF3 (x) = max
{
TF1 (x) ,TF2 (x)

}
,

IF3 (x) = max
{
IF1 (x) , IF2 (x)

}
,

FF3 (x) = min
{
FF1 (x) ,FF2 (x)

}
.

Definition 2.6. ([15]) Let F1 and F2 be two neutrosophic sets over the universe set X. Then their intersection
is denoted by F1 ∩ F2 = F4 is defined by:

F4 = {⟨x,TF4 (x), IF4 (x),FF4 (x)⟩ : x ∈ X},

where

TF4(x) = min{TF1(x),TF2 (x)},

IF4(x) = min{IF1(x), IF2 (x)},

FF4(x) = max{FF1(x),FF2 (x)}.

Definition 2.7. ([15]) A neutrosophic set F over the universe set X is said to be a null neutrosophic set if
TF(x) = 0, IF(x) = 0, FF(x) = 1, for every x ∈ X. It is denoted by 0X.

Definition 2.8. ([15]) A neutrosophic set F over the universe set X is said to be an absolute neutrosophic
set if TF(x) = 1, IF(x) = 1, FF(x) = 0, for every x ∈ X. It is denoted by 1X.

Clearly 0c
X = 1X and 1c

X = 0X.

Definition 2.9. ([15]) Let NS(X) be the family of all neutrosophic sets over the universe set X and τ⊂NS(X).
Then, τ is said to be a neutrosophic topology on X, if:

1. 0X and 1X belong to τ,
2. The union of any number of neutrosophic sets in τ belongs to τ ,
3. The intersection of a finite number of neutrosophic sets in τ belongs to τ.

Then, (X, τ) is said to be a neutrosophic topological space over X. Each member of τ is said to be a
neutrosophic open set [15].

Definition 2.10. ([15]) Let (X, τ) be a neutrosophic topological space over X and F be a neutrosophic set
over X. Then F is said to be a neutrosophic closed set iff its complement is a neutrosophic open set.
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Definition 2.11. ([1]) A neutrosophic point xr,t,s is said to be neutrosophic quasi-coincident (neutrosophic q-
coincident, for short) with F, denoted by xr,t,s q F if and only if xr,t,s ⊈ Fc. If xr,t,s is not neutrosophic
quasi-coincident with F, we denote by xr,t,s q̃ F.

Definition 2.12. ([1]) A neutrosophic set F in a neutrosophic topological space (X, τ) is said to be a neutro-
sophic q-neighborhood of a neutrosophic point xr,t,s if and only if there exists a neutrosophic open set G such
that xr,t,s q G ⊂ F.

Definition 2.13. ([1]) A neutrosophic set G is said to be neutrosophic quasi-coincident (neutrosophic q-coincident,
for short) with F, denoted by G q F if and only if G ⊈ Fc. If G is not neutrosophic quasi-coincident with F,
we denote by G q̃ F.

Definition 2.14. ([1]) A neutrosophic point xr,t,s is said to be a neurosophic cluster point of a neutrosophic set
F if and only if every neutrosophic open q-neighborhood G of xr,t,s is q-coincident with F. The union of all
neutrosophic cluster points of F is called the neutrosophic closure of F and denoted by F.

Definition 2.15. ([1]) A neutrosophic point xr,t,s is said to be a neurosophic boundary point of a neutrosophic
set F if and only if every neutrosophic open q-neighborhood G of xr,t,s is q-coincident with F and Fc. The
union of all neutrosophic boundary points of F is called the neutrosophic limit of F and denoted by Fb.

Definition 2.16. ([1]) A neutrosophic sequence in a neutrosophic topological space (X, τ) is a function S : N→
(X, τ), where N is the set of naturel numbers. We write

{
xnrn ,tn ,sn

}
n∈N

to denote the sequence of neutrosophic
points in (X, τ) indexed by N.

Definition 2.17. ([1]) A neutrosophic subsequence of a neutrosophic sequence S : N→ (X, τ) is a composition
S ◦ P, where P : N→ N is an increasing cofinal function. That is,

a) P(n1) ≤ P(n2), whenever n1 ≤ n2 (P is increasing),
b) For each n1 ∈ N, there exists a naturel number n2 ∈ N such that n1 ≤ P(n2) (P is cofinal in N).
For k ∈ N, the neutrosophic point (S ◦ P)(k) will often be written xnrn ,tn ,sn

.

Definition 2.18. ([1]) Let
{
xnrn ,tn ,sn

}
n∈N

be a neutrosophic sequence in a neutrosphic topological space (X, τ).

Then,
{
xnrn ,tn ,sn

}
n∈N

converges to a neutrosophic point xe
α,β,γ in (X, τ) (written xnrn ,tn ,sn

→ xr,t,s) provided that, for

each neutrosophic q-neighbourhood
(
Ũ,E
)

of xe
α,β,γ there exists n0 ∈ N such that n ≥ n0 implies xe

α,β,γq
(
Ũ,E
)
.

We will use boldface letters x,y, z, . . . for neutrosophic sequences x =
{
xen

nrn ,tn ,sn

}
n∈N

, y =
{
yen

nrn ,tn ,sn

}
n∈N

,

z =
{
zen

nrn ,tn ,sn

}
n∈N
, . . . of neutrosophic points in (X, τ). s(X) and c(X) denote the set of all neutrosophic

sequences in (X, τ) and the set of all convergent neutrosophic sequences in (X, τ), respectively.

Definition 2.19. ([1]) Let (X,∆) is a neutrosophic group in a neutrosophic topological space (X, τ), where ∆
is a binary operation defined on (X, τ) such that the following conditions hold:

a) Closure: For all neutrosophic points x1r1 ,t1 ,s1
, x2r2 ,t2 ,s2

in (X, τ), x1r1 ,t1 ,s1
∆ x2r2 ,t2 ,s2

is a uniquely defined
neutrosophic point in (X, τ),

b) Associativity: For all neutrosophic points x1r1 ,t1 ,s1
, x2r2 ,t2 ,s2

, x3r3 ,t3 ,s3
in (X, τ), we have x1r1 ,t1 ,s1

∆
(
x2r2 ,t2 ,s2

∆ x3r3 ,t3 ,s3

)
.

c) Identity: There exists an identity neutrosophic point eα,β,γ in (X, τ) such that x1r1 ,t1 ,s1
∆ eα,β,γ = eα,β,γ ∆ x1r1 ,t1 ,s1

=
x1r1 ,t1 ,s1

for any neutrosophic point x1r1 ,t1 ,s1
in (X, τ),

d) Inverses: For any neutrosophic point x1r1 ,t1 ,s1
in (X, τ), there exists an inverse neutrosophic point(

x1r1 ,t1 ,s1

)−1
in (X, τ) such that x1r1 ,t1 ,s1

∆
(
x1r1 ,t1 ,s1

)−1
= eα,β,γ and

(
x1r1 ,t1 ,s1

)−1
∆x1r1 ,t1 ,s1

= eα,β,γ.

Definition 2.20. ([1]) Let (s(X),∗ ) be a group of neutrosophic sequences and (X,∆) be a neutrosophic group
in a neutrosophic topological space (X, τ). A neutrosophic method is a function G defined on a subgroup
(cG(X),∗ ) of (s(X),∗ ) into (X, τ) such that G(x ∗ y) = G(x)∆G(y) for all neutrosophic sequences x, y in (X, τ).
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Definition 2.21. ([1]) A neutrosophic sequence x =
{
xnrn ,tn ,sn

}
n∈N

is said to be G-convergent to xr,t,s, if x ∈ cG(X)
and G(x) = xr,t,s.

Definition 2.22. ([1]) A neutrosophic method G is called neutrosophic regular, if every convergent neutro-
sophic sequence x = {xnrn ,tn ,sn

}n∈N is G-convergent with G (x) = xr,t,s, where x converges to xr,t,s.

Definition 2.23. ([1]) A neutrosophic point ur,t,s is in the neutrosophic G-sequential derived set of A (or called
a neutrosophic G-sequential accumulation point of A) if there exists a neutrosophic sequence x =

{
xnrn ,tn ,sn

}
n∈N

of
neutrosophic points, where xnrn ,tn ,sn

q(ur,t,s)c for all n ∈ N, in A such that G(x) = ur,t,s. We denote neutrosophic
G-sequential derived set (the set of all neutrosophic G-sequential accumulation points) of a neutrosophic
set A by (A′)G.

Definition 2.24. ([1]) Let A be a neutrosophic set and xr,t,s be a neutrosophic point in (X, τ). Then, xr,t,s is in
the neutrosophic G-sequential closure of A (or neutrosophic G-hull of A), if there is a neutrosophic sequence
x =
{
xnrn ,tn ,sn

}
n∈N

of neutrosophic points in A such that G (x) = xr,t,s. We denote neutrosophic G-sequential

closure of a neutrosophic set A by A
G

. We say that a neutrosophic set is neutrosophically G-sequentially closed
if it contains all the neutrosophic points in its neutrosophic G-closure. And, a neutrosophic set is said to be
neutrosophically G-sequentially open if its complement is neutrosophically G-sequentially closed.

3. Neutrosophic compactness via summability

In the following, we introduce definitions. Then, main results are presented at the end of this section.

Definition 3.1. A σ ⊂ τ is said to be a neutrosophic open base of τ if for every F ∈ τ there is a subfamily
{Fi}i∈∆ ⊂ σ such that F =

⋃
i∈∆ Fi.

If the neutrosophic topology τ has a countable neutrosophic open basis σ, then (X, τ) is said to be a
neutrosophic second countable space.

Example 3.2. Let (X, τ) be any neutrosophic topological space, where X = {a, b, c} and
τ =
{
0X, 1X, a1,1,0, b1,1,0 ∪ c1,1,0

}
. Consider a subfamily σ defined as σ =

{
0X, a1,1,0, b1,1,0 ∪ c1,1,0

}
. Then, σ is a

countable neutrosophic open basis for τ and (X, τ) is a neutrosophic second countable space.

Definition 3.3. A collection of neutrosophic open sets σ(xr,t,s) is said to form a neutrosophic local base at the
neutrosophic point xr,t,s if for any F ∈ τ with xr,t,s ∈ F there is a neutrosophic set G ∈ σ(xr,t,s) such that
xr,t,sqG ⊂ F.

If every neutrosophic point xr,t,s in the neutrosophic topological space (X, τ) has a countable neutrosophic
local basis σ(xr,t,s), then (X, τ) is said to be a neutrosophic first countable space.

Example 3.4. Let (X, τ) be any neutrosophic topological space, where X = {a, b, c} and
τ =

{
0X, 1X, a1,1,0 ∪ b1,1,0, c1,1,0

}
. Consider a neutrosophic point a1,1,0 and subfamily σ(a1,1,0) defined as

σ(a1,1,0) =
{
a1,1,0 ∪ b1,1,0, c1,1,0

}
. Then σ(a1,1,0) is a neutrosophic local base at the neutrosophic point a1,1,0.

It is clear that σ(a1,1,0) is a neutrosophic local base at every neutrosophic point in the neutrosophic topolog-
ical space (X, τ). So, (X, τ) is a neutrosophic first countable space.

Definition 3.5. A neutrosophic topological space (X, τ) is said to be neutrosophically Hausdorff if for any two
neutrosophic points xr,t,s and ym,n,p with different supports, there exist F,G ∈ τ such that xr,t,s ∈ F, ym,n,p ∈ G
and Fq̃G.

Example 3.6. Let (X, τ) be any neutrosophic topological space, where X = {a, b} and τ = {0X, 1X, a1,1,0, b1,1,0}.
Then (X, τ) is neutrosophically Hausdorff.

Definition 3.7. A neutrosophic topological space (X, τ) is said to be strongly neutrosophically Hausdorff if for
any two neutrosophic points xr,t,s and xm,n,p with same supports, there exist F,G ∈ τ such that xr,t,s ∈ F,
xm,n,p ∈ G and Fq̃G for all points x of X.
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Example 3.8. Let (X, τ) be any neutrosophic topological space, where X = {a, b} and τ = {0X, 1X} ∪ {{⟨a, 1 −
k, r, k⟩, ⟨b, 1 − k, r, k⟩} | k, r ∈ [0, 1]}. Then, (X, τ) is strongly neutrosophically Hausdorff.

Definition 3.9. A neutrosophic set F in a neutrosophic topological space (X, τ) is said to be neutrosophically
sequentially closed if every neutrosophic convergent sequence of neutrosophic points in F converges to a
neutrosophic point in F.

Definition 3.10. Let x =
{
xkrk ,tk ,sk

}
k∈N

be a neutrosophic sequence in a neutrosphic topological space (X, τ). A

neutrosophic sequence y =
{
yimi ,ni ,pi

}
i∈N

of neutrosophic points in (X, τ) is said to be a generalized neutrosophic
subsequence of x if yimi ,ni ,pi

⊂ xkirki
,tki
,ski

for some k1 < k2 < k3 < ...) for any i ∈ N.
Any generalized neutrosophic subsequence of a convergent neutrosophic sequence is convergent to the
same neutrosophic point.

Example 3.11. Let x =
{
k1,1,0
}
k∈N be a neutrosophic sequence in a neutrosphic topological space (N, τ), where

N is the set of naturel numbers. Then, y =
{
k0,5,0,5,0,5

}
k∈N is a generalized neutrosophic subsequence of x.

Definition 3.12. A neutrosophic set F is said to exhibit generalized neutrosophic sequential compactness if any
neutrosophic sequence x =

{
xnrn ,tn ,sn

}
n∈N

in F has a generalized neutrosophic subsequence y =
{
yimi ,ni ,pi

}
i∈N

which is neutrosophically convergent in F.
In this study, we will mean generalized neutrosophic sequential compactness by neutrosophic sequential
compactness.

Definition 3.13. A neutrosophic set F is said to be neutrosophically G-sequentially compact if any neutrosophic
sequence x =

{
xnrn ,tn ,sn

}
n∈N

in F has a generalized neutrosophic subsequence y =
{
yimi ,ni ,pi

}
i∈N

with G(y) ∈ F.
For regular methods any neutrosophically sequentially compact subset of X is also neutrosophically G-
sequentially compact and the converse is not always true.

Definition 3.14. A neutrosophic set F in a neutrosophic topological space (X, τ) is said to be neutrosophically
G-sequentially Frechet compact if any neutrosophic subset K of F with TA(x) > 0 or IA(x) > 0 or FA(x) < 1 for
infinitely many points x ∈ X has at least one neutrosophic G-sequential accumulation point in F.

Definition 3.15. A neutrosophic method G is called neutrosophic subsequential if, for any neutrosophic G-
sequence x such that G(x) = xr,t,s, there exists a generalized neutrosophic subsequence of x that converges
to xr,t,s.

Firstly, we note that if F is a fuzzy subset in a neutrosophic topological space (X, τ) with TA(x) > 0
or IA(x) > 0 or FA(x) < 1 for only finite number of points of X, then it immediately follows that F is
neutrosophically G-sequentially compact. The union of two neutrosophically G-sequentially compact
subsets in (X, τ) is neutrosophically G-sequentially compact and the intersection of any neutrosophically
G-sequentially compact subsets in (X, τ) is neutrosophically G-sequentially compact.

Theorem 3.16. Let G be a neutrosophic regular subsequential method in a neutrosophic topological space (X, τ).
Then, a neutrosophic subset F in (X, τ) is neutrosophically G-sequentially compact if and only if it is neutrosophically
sequentially compact.

Proof. Let F be a neutrosophically G-sequentially compact subset of X and x be any neutrosophic sequence
in F. As F is G-neutrosophically sequentially compact, there exists a generalized neutrosophic subsequence
y of the sequence x such that G(y) ∈ F. As G is a neutrosophic subsequential method, there is a generalized
neutrosophic subsequence z of y that converges to G(y). Hence F is neutrosophically sequentially compact.
Now, take a neutrosophically sequentially compact subset F of X and let x be any neutrosophic sequence
in F. As F is neutrosophically sequentially compact, there exists a generalized neutrosophic subsequence
y of x that converges to a neutrosophic point xr,t,s ∈ F. As G is neutrosophically regular, G(y) = xr,t,s. This
completes the proof of the theorem.
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Theorem 3.17. Any neutrosophically G-sequentially closed subset of a neutrosophically G-sequentially compact
subset in a neutrosophic topological space (X, τ) is neutrosophically G-sequentially compact.

Proof. Let F be any neutrosophically G-sequentially compact subset of X and K be a neutrosophically G-
sequentially closed subset of F.Take any sequence x of neutrosophic points in K. Then, x is a sequence
of neutrosophic points in F. Since F is neutrosophically G-sequentially compact, there is a generalized
neutrosophic subsequence y of the sequence x such that G(y) ∈ F. Now, the generalized neutrosophic sub-
sequence y is also a sequence of neutrosophic points in K. Since K is neutrosophically G-sequentially closed,
G(y) ∈ K. Thus, x has a generalized neutrosophic subsequence y with G(y) ∈ K. So, K is neutrosophically
G-sequentially compact.

Theorem 3.18. Let G be a neutrosophic subsequential method, (X, τ) be neutrosophically Hausdorff and A be a

neutrosophically G-sequentially compact subset A of X. Let B = A
G

. For any α ∈ X, if TB(α) > 0 or IB(α) > 0 or
FB(α) < 1 then TA(α) > 0 or IA(α) > 0 or FA(α) < 1.

Proof. Let A be any neutrosophically G-sequentially compact subset of X and B be neutrosophic subset of

X such that B = A
G

. Let α ∈ X be such that TB(α) > 0 or IB(α) > 0 or FB(α) < 1. Suppose that TA(α) = 0
and IA(α) = 0 and FA(α) = 1. Write TB(α) = s and IB(α) = t and FB(α) = s. Then, αr,t,s ∈ B. Then,
there exists a neutrosophic sequence x of neutrosophic points in A such that G(x) = αr,t,s. Since G is a
neutrosophic subsequential method, there is a generalized neutrosophic subsequence y of the neutrosophic
sequence x that converges to αr,t,s. From G-neutrosophic sequential compactness of A, there is a generalized
neutrosophic subsequence z of the neutrosophic subsequence y such that G(z) ∈ A. Let the support of G(z)
be β. Then, TA(β) > 0 or IA(β) > 0 or FA(β) < 1. Again there is a generalized neutrosophic subsequence
w of z that converges to G(z). Since w is also a generalized neutrosophic subsequence of y, then it is also
neutrosophically convergent to αr,t,s. Since TA(α) = 0 and IA(α) = 0 and FA(α) = 1 and G(z) ∈ A , β , α. Since
(X, τ) is neutrosophically Hausdorff, w cannot be neutrosophically convergent to both αr,t,s and G(z). This
contradiction shows that TA(α) > 0 or IA(α) > 0 or FA(α) < 1. This completes the proof of the theorem.

Corollary 3.19. Let G be a neutrosophically regular subsequential method and (X, τ) be strongly neutrosophically
Hausdorff. Then, any neutrosophically G-sequentially compact subset of X is neutrosophically G-sequentially closed.

Corollary 3.20. Let G be a neutrosophically regular subsequential method. Then, any neutrosophically G-sequentially
compact subset of X is neutrosophically sequentially closed.

Lemma 3.21. Let G be a neutrosophically regular method. Then, G is a neutrosophically subsequential method if

and only if A = A
G

for every neutrosophic subset A of X.

Theorem 3.22. Let G be a neutrosophically regular subsequential method and X be infinite and neutrosophically
first countable. Then a neutrosophic subset A of X is G-neutrosophically sequentially compact if and only if it
isneutrosophically G-sequentially Frechet compact.

Proof. Let A be any neutrosophically G-sequentially compact subset of X and B a neutrosophic subset of A
with TB(x) > 0 or IB(x) > 0 or FB(x) < 1 at an infinite number of points of X. We can choose a sequence x of
neutrosophic points of B with distinct supports. G-neutrosophic sequential compactness of A implies that
the sequence x has a generalized neutrosophic subsequence y with G(y) ∈ A. Then, G(y) is G-neutrosophic
sequential accumulation point of B. Thus, A is neutrosophically G-sequentially Frechet compact.

Now suppose that A is any neutrosophically G-sequentially Frechet compact subset of X. Let x be any
sequence of neutrosophic points in A. If infinitely many supports of neutrosophic points in x are equal, then
clearly x has a generalized neutrosophic subsequence which is neutrosophically G-sequentially convergent
in A. Otherwise assume that no point of X appears as a support of any neutrosophic point in x more than
finite number of times. We now consider a subsequence y of x with distinct supports. Let us construct the
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sequence of neutrosophic subsets (Cn) of X in the following way:
For any x of X,

TCi (x) =

mk, if x = yk and k ≥ i, where ykmk ,nk ,pk
is a neutrosophic point in y

0, otherwise

ICi (x) =

nk, if x = yk and k ≥ i, where ykmk ,nk ,pk
is a neutrosophic point in y

0, otherwise

FCi (x) =

pk, if x = yk and k ≥ i, where ykmk ,nk ,pk
is a neutrosophic point in y

1, otherwise

Clearly, C1 ⊃ C2 ⊃ C3. . . and TCn (x) > 0 or FCn (x) < 1, at an infinite number of points of X for each
n ∈ 1, 2, 3, . . . . So each Cn has a neutrosophically G-sequentially accumulation point. Then we must have⋂
∞

n=1 Cn
G
, 0X. Let x0r0 ,t0 ,s0

∈
⋂
∞

n=1 Cn
G

. Since G is a neutrosophically regular subsequential method, it
follows from by Lemma 3.21 that x0r0 ,t0 ,s0

∈
⋂
∞

n=1 Cn.
Let {Dk : k ∈ N} be a countable local base at the point x0r0 ,t0 ,s0

. Take a naturel number k1 such that yk1mk1
,nk1
,pk1

is a neutrosophic point in y that is also a neutrosophic point in C1 ∩ D1. (Clearly, mk1≤TC1 (yk1
, nk1≤IC1 (yk1

pk1≤FC1 (yk1 ). Suppose we have choosen yk1mk1
,nk1
,pk1
, yk2mk2

,nk2
,pk2
, yk3mk3

,nk3
,pk3

. We may choose with kα > kα−1

such that ykαmkα ,nkα ,pkα
∈ Cα ∩ Dα. Inductively, we may construct a generalized neutrosophic subsequence

z = {ykαmkα ,nkα ,pkα
} of y. Clearly z is also a generalized neutrosophic subsequence of x and it is neutrosophically

convergent to x0r0 ,t0 ,s0
. Since G is neutrosophically regular, G(z) = x0r0 ,t0 ,s0

. This completes the proof.

4. Sequential definitions of connectedness

Firstly, we give some new definitions that will be required in definining G-sequentially connectedness
and investigating its properties. Then, main results are presented at the end of this section.

Definition 4.1. Let (X, τ) be a neutrosophic topological space and Y ⊆ X. Let H be a neutrosophic set over
Y such that

TH(x) =

1, x ∈ Y
0, x < Y

, IH(x) =

1, x ∈ Y
0, x < Y

, FH(x) =

0, x ∈ Y
1, x < Y

Let τY = {H ∩ F : F ∈ τ}, then (Y, τY) is called neutrosophic subspace of (X, τ). If H ∈ τ (resp. Hc
∈ τ),

then (Y, τY) is called neutrosophic open (resp. closed) subspace of (X, τ).

Example 4.2. Let (X, τ) be a neutrosophic topological space, where X = {a, b, c, d} and
τ = {0X, 1X, {⟨a, 0.5, 0.5, 0.5⟩, ⟨b, 0.5, 0.5, 0.5⟩, ⟨c, 0.5, 0.5, 0.5⟩, ⟨d, 0.5, 0.5, 0.5⟩}}. Consider a subset Y = {b, c}.
Then, τY = {0Y, 1Y, {⟨a, 0, 0.1⟩, ⟨b, 0.5, 0.5, 0.5⟩, ⟨c, 0.5, 0.5, 0.5⟩, ⟨d, 0, 0.1⟩}},
and (Y, τY) is a neutrosophic subspace of (X, τ), where 1Y = {{⟨a, 0, 0.1⟩, ⟨b, 1, 1, 0⟩, ⟨c, 1, 1, 0⟩, ⟨d, 0, 0.1⟩}} and
0Y = {{⟨a, 0, 0.1⟩, ⟨b, 0, 0, 1⟩, ⟨c, 0, 0, 1⟩, ⟨d, 0, 0.1⟩}}.

Definition 4.3. Non-empty neutrosophic subsets U and V in a neutrosophic topological space (X, τ) is said
to be neutrosophically disjoint if Uq̃V and Ucq̃Vc.

Example 4.4. Let (X, τ) be a neutrosophic topological space, where X = {a, b}. Consider neutrosophic
subsets U and V, where U = {⟨a, 0.5, 0.5, 0.5⟩, ⟨b, 0.5, 0.5, 0.5⟩} and V = {⟨a, 0.3, 0.3, 0.7⟩, ⟨b, 0.3, 0.3, 0.7⟩}. Then,
U and V are neutrosophically disjoint.
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Definition 4.5. A non-empty neutrosophic subset A in a neutrosophic topological space (X, τ) is called
neutrosophically G-sequentially connected if there are no non-null neutrosophically disjoint and neutrosoph-
ically G-sequentially closed subsets U and V such that A ⊆ U ∪ V where A ∩ U and A ∩ V are non-null
neutrosophic subsets. In particular, X is called neutrosophically G-sequentially connected if there are no
non-null neutrosophically G-sequentially closed subsets in (X, τ) that are neutrosophically disjoint.

We give the following definition before presenting some characterization of neutrosophically connect-
edness of a subset.

Definition 4.6. Let A be a neutrosophic subset in (X, τ). A neutrosophic subset F of A is called neutrosophi-
cally G-sequentially closed in A if there exists a neutrosophically G-sequentially closed subset U in (X, τ) such
that F = U ∩ A. We say that a neutrosophic subset V of A is neutrosophically G-sequentially open in A if
A ∩ Vc is neutrosophically G-sequentially closed in A.

Here, we note that a neutrosophic subset B of A is neutrosophically G-sequentially open in A if and only
if there exists a neutrosophically G-sequentially open subset V in (X, τ) such that B = A ∩ V.

Now, we give the following lemma.

Lemma 4.7. For a neutrosophic subset A in (X, τ), the following are equivalent:

1. A is neutrosophically G-sequentially connected;

2. A can not be written as a union of non-null neutrosophically disjoint neutrosophically G-sequentially closed subsets
in A;

3. A can not be written as a union of non-null neutrosophically disjoint neutrosophically G-sequentially open subsets
in A;

4. There is no neutrosophically G-sequentially open and closed proper subset in A.

The proof is straightforward by Definition 4.5 and Definition 4.6 and is therefore omitted.

Definition 4.8. ([1]) A function f : X → X is neutrosophic G-sequentially continuous at a neutrosophic point
ur,t,s, if, for any given a sequence x =

{
xnrn ,tn ,sn

}
n∈N

of neutrosophic points in X, G(x) = ur,t,s implies that
G( f (x)) = f (ur,t,s). For a neutrosophic subset D of X, f continuous at every ur,t,s ∈ D and is neutrosophic
G-sequentially continuous, if it is neutrosophic G-sequentially continuous on X.

Theorem 4.9. A neutrosophically G-sequentially continuous image of any neutrosophically G-sequentially connected
subset in (X, τ) is neutrosophically G-sequentially connected.

Proof. Suppose that f (A) is not neutrosophically G-sequentially connected so that f (A) can be covered as
a union U ∪ V of some non-null, neutrosophically disjoint neutrosophically G-sequentially closed subsets
U and V of X. both meeting f (A). Because the inverse image of a neutrosophically G-sequentially closed
subset in (X, τ) is neutrosophically G-sequentially closed for the neutrosophically G-sequentially continuous
function f , f−1(U) and f−1(V) are non-null, neutrosophically disjoint neutrosophically G-sequentially closed
subsets in (X, τ) and cover A. This statement implies that A is not neutrosophically G-sequentially connected.
This contradiction completes the proof of the theorem.

Definition 4.10. Let G be a neutosophic sequential method and A,B be neutrosophic subsets in (X, τ) such
that B ⊆ A. A neutrosophic point ar,t,s ∈ A is said to be in the G-sequential closure of B in A if there is a
neutrosophic sequence x of points in B such that G(x) = ar,t,s.

We denote the neutrosophic G-sequential closure of B in A by BA
G

.
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Example 4.11. Let (X, τ) be a neutrosophic topological space, where X = {a, b}. Consider family of neutro-
sophic sets β = {Uk : Uk = {⟨a, 0.5 − 1

k+2 , 0.5 −
1

k+2 , 0.5 +
1

k+2 ⟩, ⟨b, 0.5 −
1

k+2 , 0.5 −
1

k+2 , 0.5 +
1

k+2 ⟩}andk ∈ Z+} a
neutrosophic method G such that G(y) = a0.5,0.5,0.5 for any convergent neutrosophic sequence y, neutrosophic
subsets A = {⟨a, 0.5, 0.5, 0.5⟩, ⟨b, 0.5, 0.5, 0.5⟩}, and B =

⋃
Uk∈βUk. Since x =

{
xnrn ,tn ,sn

}
n∈N

defined as xn = a,
rn = tn = 0.5 − 1

n+2 , sn = 0.5 + 1
n+2 is a convergent neutrosophic sequence of points in B and G(x) ∈ A,

a0.5,0.5,0.5 ∈ BA
G

.

Lemma 4.12. Let G be a neutosophic sequential method and A,B be neutrosophic subsets in (X, τ) such that B ⊆ A.

Then, BA
G
= B

G
∩ A.

Proof. The proof is straightforward and is therefore omitted.

Lemma 4.13. Let G be a neutosophic sequential method and A,B be neutrosophic subsets in (X, τ) such that B ⊆ A.
If A is neutrosophically G-sequentially closed in (X, τ), and B is neutrosophically G-sequentially closed in A, then B
is neutrosophically G-sequentially closed in (X, τ).

Proof. Let ar,t,s be a neutrosophic point in the neutrosophic G-sequential closure of B in (X, τ). Then there

exists a neutrosophic sequence x of points in B such that G(x) = ar,t,s. A ⊆ B implies B
G
⊆ A

G
, and thus

ar,t,s ∈ A
G

. Because A is neutrosophically G-sequentially closed in (X, τ), we have ar,t,s ∈ A. Therefore, ar,t,s
is a neutrosophic point in the neutrosophic G-sequential closure of B in A. Because B is neutrosophically
G-sequentially closed in A, we have that ar,t,s ∈ B. This conclusion completes the proof of the lemma.

Lemma 4.14. Let A be a neutrosophically G-sequentially connected subset in (X, τ). If U and V are non-null
neutrosophically disjoint and neutrosophically G-sequentially closed subsets in (X, τ) such that A ⊆ U ∪ V, then
either A ⊆ Uc or A ⊆ Vc.

Proof. Let (X, τ) be a neutrosophic topological space. Consider a neutrosophically G-sequentially connected
subset A and non-null neutrosophically disjoint and neutrosophically G-sequentially closed subsets U and
V in (X, τ) such that A ⊆ U ∪ V. Suppose that A ⊈ Uc and A ⊈ Vc. This means that AqU and AqV. This
implies that A is not neutrosophically G-sequentially connected subset in (X, τ). From this contradiction, it
is obvious that A ⊆ Uc or A ⊆ Vc.

Lemma 4.15. Let G be a neutrosophic sequential method, A be a neutrosophic subset in (X, τ), and U a neutrosophi-
cally G-sequentially open and neutrosophically G-sequentially closed subset in (X, τ) that is neutrosophically disjoint
with its complement and A ⊆ U ∪ Uc. If A is neutrosophically G-sequentially connected, then either A ⊆ U or
A ⊆ Uc.

Proof. If U = 0X or U = 1X, the proof is obvious. Suppose that U , 0X and U , 1X. Since A ⊆ U ∪ Uc, and
so by Lemma 4.14, either A ⊆ Uc or A ⊆ (Uc)c. So, A ⊆ Uc or A ⊆ U.

Theorem 4.16. Let G be a neutrosophic regular sequential method, B ⊆ 1X, and B ⊆ A ⊆ B
G

. If B is neutrosophic
G-sequentially connected, then so is A.

Proof. If B ⊆ A ⊆ B
G

, then A ⊆ B
G
∩ A = BA

G
. On the other hand, BA

G
⊆ A. Therefore, BA = A where BA

G
is

the neutrosophic G-sequential closure of B in A. Now, conversely, suppose that A is not neutrosophically
G-sequentially connected. So there are non-null and neutrosophically disjoint G-sequentially closed subsets
U and V in (X, τ) such that A ⊆ U ∪ V, and AqU and AqV . Because B is connected by Lemma 4.14, either

B ⊆ Uc or B ⊆ Vc. If B ⊆ Uc, then B ⊆ V and B
G
⊆ V

G
, and so BA

G
⊆ V

G
∩ A. Because G is neutrosophic

disjoint and V is neutrosophic G-sequentially closed in (X, τ), we have that V
G
= V. So we have that

A = BA
G
⊆ A ∩ V, which implies that A = A ∩ V. Similarly, if B ⊆ U, then A = A ∩ U. This contradiction

completes the proof.
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Corollary 4.17. If G is a neuosophic regular sequential method, and A is a neutrosophic G-sequentially connected

subset in (X, τ), then so is A
G

.

We know by Theorem 2 in [1] that for a neutrosophic G-regular method and a neutrosophic subset A,

A
G
= A if and only if G is a neutrosophic subsequential method. Here, A denotes the usual closure of A.

Thus, we can state the following corollary.

Corollary 4.18. Let G be a neutrosophic regular subsequential method. If there exists a neutrosophic G-sequentially
connected and dense neutrosophic subset in (X, τ), then (X, τ) is Neutrosophically G-sequentially connected space.

Theorem 4.19. Let {Ai | i ∈ I} be a class of neutrosophically G-sequentially connected subsets in (X, τ). If
⋂

i∈I Ai is
non-null

⋃
i∈I Ai, then is neutrosophically G-sequentially connected.

Proof. Suppose that A is not neutrosophically G-sequentially connected, so that there exist non-null neu-
trosophically disjoint G-sequentially closed subsets U and V in (X, τ) such that A ⊆ U ∪ V. Because each
Ai is neutrosophically G-sequentially connected, by Lemma 4.14, either Ai ⊆ Uc or Ai ⊆ Vc. If Ai ⊆ Uc and
A j ⊆ Vc for i , j, then Ai ⊆ U and A j ⊆ V for i , j. So, Ai and A j are neutrosophically disjoint sets. Because⋂

i∈I Ai is non-null, for all i ∈ I, either Ai ⊆ U or Ai ⊆ V. Therefore, either A ⊆ U or A ⊆ V. A ⊆ U, then
A = A ∩U. If A ⊆ V, then A = A ∩ V, which is a contradiction. Thus, A is neutrosophically G-sequentially
connected.

Corollary 4.20. Let {Ai | i ∈ I} be a class of neutrosophically G-sequentially connected subsets in (X, τ). Let B
be neutrosophically G-sequentially connected subsets in (X, τ) such that B ∩ Ai is non-null for each i ∈ I. Then
B ∪ (

⋃
i∈I Ai) is also neutrosophically G-sequentially connected.

Proof. Because B ∩ Ai is non-null, Bi = B ∪ Ai is neutrosophically G-sequentially connected for each i ∈ I,
and

⋂
i∈I Bi is non-null. Therefore, by Theorem 4.19, the union

⋃
i∈I Bi = B ∪ (

⋂
i∈I Ai) is neutrosophically

G-sequentially connected.

Definition 4.21. Let (X,∆) be a neutrosophic group in a neutrosophic topological space (X, τ), where ∆ is a
binary operation defined on (X, τ) and Y be a non-null subset of X. If (Y,∆) is a neutrosophic group then
(Y,∆) is said to be a subgroup of (X,∆) in (X, τ).

Definition 4.22. Let (X,∆) be a neutrosophic group in a neutrosophic topological space (X, τ), where ∆ is a
binary operation defined on (X, τ) and A,B be a non-null subsets of X. Then,

i. a∆B = {a∆b | b ∈ B}, where a ∈ X,

ii. A∆B = {a∆b | a ∈ A, b ∈ B},

iii. A−1 = {a−1
| a ∈ A}.

Definition 4.23. Let (X,∆) be a neutrosophic group in a neutrosophic topological space (X, τ) and (Y,∆) be a
subgroup of (X,∆) such that x∆Y = Y∆x for each x ∈ X. Then, (Y,∆) is said to be a normal subgroup of (X,∆).

Lemma 4.24. Let G be a neutrosophic regular method, and let A and B be neutrosophic subsets in (X, τ). Then the
following are satisfied:

i. If A ⊂ B, then A
G
⊂ B

G
;

ii. A
G
∆B

G
⊂ A∆B

G
;

iii. (A
G

)−1 = A−1
G

.
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Theorem 4.25. Let G be a neutrosophic regular sequential method. If H is a neutrosophic G-sequentially connected

(normal) subgroup in (X, τ), then so is H
G

.

Proof. Let H be a neutrosophically G-sequentially connected subgroup in (X, τ). Then, by Corollary 4.17,

H
G

is neutrosophically G-sequentially connected because H is a neutrosophic subgroup H − H ⊆ H. By

Lemma 4.24, H
G
− H

G
⊆ H −H

G
⊆ H

G
. Therefore, H

G
− H

G
⊆ H

G
, and so H

G
is a neutrosophic subgroup

in (X, τ). Furthermore, if H is neutrosophic normal, ar,t,s + H − ar,t,s ⊆ H for each neutrosophic point ar,t,s in
(X, τ). Thus, by Lemma 4.24,

ar,t,s
G
+H

G
− ar,t,s

G
⊆ ar,t,s +H − ar,t,s

G
⊆ H

G
.

Because G is neutrosophic regular, {a} ⊆ {a}, and so {a} + H
G
− {a} ⊆ H

G
. Therefore, H

G
is neutrosophic

normal.

Lemma 4.26. Let G be a neutrosophic regular sequential method and U a symmetric neighbourhood of identity
element. If U is G-sequentially connected, then so is U +U.

Proof. If U is neutrosophically G-sequentially connected, then, by Theorem 4.9, for each ar,t,s ∈ U, the set
ar,t,s +U is neutrosophically G-sequentially connected, and as U is symmetric, ar,t,s +U includes the identity
element. Because U+U =

⋃
ar,t,s∈U ar,t,s+U by Theorem 4.19, the set U+U is neutrosophically G-sequentially

connected.

Theorem 4.27. Let G be a neutrosophic regular sequential method, and let H be a neutrosophic subgroup in (X, τ).
If H is neutrosophic G-sequentially open, then it is neutrosophic G-sequentially closed.

Proof. Let H be a neutrosophic G-sequentially open subgroup in (X, τ). Then ar,t,s + H is neutrosophic G-
sequentially open for each neutrosophic point ar,t,s in (X, τ). On the other hand, because Hc =

⋃
ar,t,s∈Hc ar,t,s+H

and the union of neutrosophic G-sequentially open subsets is open, Hc becomes neutrosophic G-sequentially
open. Therefore, H is neutrosophically sequentially closed.

5. Conclusion

We gave a different identity to the concept of compactness by using a different function definition
in neutrosophic spaces to sequential compactness, which had been the basis of many previous studies.
We also introduced terms that had never been used before in neutrosophic spaces. At the end of this
research, we introduced neutrosophic G-sequentially connected spaces using a type of function called
the neutrosophic method. Besides, using this function type, we presented neutrosophic G-sequentially
continuity and neutrosophically G-sequentially closedness in neutrosophic spaces. Then, we examined the
relationships between these new concepts that we presented in this study and in what situations how their
behaviors were shaped. We hope that this study will contribute to many studies that will be conducted
in different disciplines. Also, we expect that this study also will help to overcome the handicaps faced
by many scientists working in the rapidly advancing technology world and create new fields of study for
scientists to contribute to the science. One of our expectations is that the achievements in this study inspire
scientists studying in mathematics and other sciences to come up with new ideas, and use these ideas for
the benefit of human life.
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