Elementary properties of [$\infty, C]$-symmetric operators

Junli Shen ${ }^{\text {a,b }}$, Yayi Yuan ${ }^{\text {a }}$, Alatancang Chen ${ }^{\text {c }}$
${ }^{a}$ College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China
${ }^{b}$ College of Computer and Information Technology, Henan Normal University, Xinxiang 453007, China
${ }^{\text {c S School of Mathematical Science, Inner Mongolia Normal University, Hohhot 010022, China }}$

Abstract

Inspired by recent works on [m$]$-complex symmetric operator, we introduce the class of $[\infty, C]-$ symmetric operators and study various properties of this class. We study the quasi-nilpotent perturbations of [$\infty, C]$-symmetric operator. Also, we prove that the class of $[\infty, C]$-symmetric operators is norm closed. Finally, we characterize when product of [$\infty, C]$-symmetric operators is also [$\infty, C]$-symmetric operator.

1. Introduction

Let \mathcal{H} be a separable complex Hilbert space and let $\mathcal{B}(\mathcal{H})$ be the C^{*}-algebra of all bounded linear operators acting on \mathcal{H}, and let \mathbb{N}, \mathbb{C} be the set of natural numbers and complex numbers, respectively. An operator C on \mathcal{H} is said to be conjugation if C is antilinear operator and satisfies $C^{2}=I$ and $(C x, C y)=(y, x)$ for all $x, y \in \mathcal{H}$.

In [11], [m]-complex symmetric operator with conjugation C is introduced as follow: if there exists some conjugation C satisfying

$$
\sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i} C T^{i} C T^{m-i}=0
$$

T is called an [m]-complex symmetric operator. For an operator $T \in \mathcal{B}(\mathcal{H})$ and a conjugation C, define $w_{m}(T)$ as follows:

$$
w_{m}(T)=\sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i} C T^{i} C T^{m-i}
$$

It's clear that T is [m]-complex symmetric if and only if $w_{m}(T)=0$. Moreover,

$$
C T C . w_{m}(T)-w_{m}(T) \cdot T=w_{m+1}(T)
$$

holds. Hence every [m]-complex symmetric is [n]-complex symmetric for each $n \geq m$. But the converse isn't true in general, see [11]. We now introduce the class of [$\infty, C]$-symmetric operators.

[^0]Definition 1.1. Let $T \in \mathcal{B}(\mathcal{H})$. If T satisfies

$$
\limsup _{m \rightarrow \infty}\left\|w_{m}(T)\right\|^{\frac{1}{m}}=0
$$

then T is said to be an [$\infty, C]$-symmetric operator.
Let $T \in \mathcal{B}(\mathcal{H})$. If T is an [m]-complex symmetric operator for some $m \geq 1$, then T is called a finite [m]-complex symmetric operator with conjugation C. The class of $[\infty, C]$-symmetric operators is larger than finite [m]-complex symmetric operators with conjugation C.

The motivation of studying [$\infty, C]$-symmetric operator comes from recent interests in [m]-complex symmetric operator and m-complex symmetric operator [2-11], and [$\infty, C]$-symmetric operator enjoys many properties of [m$]$-complex symmetric operator.

2. [$\infty, C]$-symmetric operator

We next show that the following result about eigenvectors for (∞, C)-isometric operators does not extend to [$\infty, C]$-symmetric operators, see part (a) of Theorem 2.2 in [1].

Theorem 2.1. [1] Let $T \in \mathcal{B}(\mathcal{H})$. If T is an (∞, C)-isometric operator and satisfies $(T-\alpha) x=0$ and $(T-\beta) y=0$ with $\alpha \beta \neq 1$, then $(C x, y)=0$.

Example 2.2. Let $\mathcal{H}=\mathbb{C}^{2}$ and let C be a conjugation on \mathcal{H} satisfying $C\binom{x}{y}=\binom{\bar{x}}{\bar{y}}$. If $T=\left(\begin{array}{ll}1 & 2 \\ 5 & 4\end{array}\right)$ on \mathbb{C}^{2}, simple calculations show that $(T-6)\binom{2}{5}=0,(T+1)\binom{1}{-1}=0$, and T is a [2]-complex symmetric operator, hence T is an $[\infty, C]$-symmetric operator, while $\left(C\binom{2}{5},\binom{1}{-1}\right)=-3 \neq 0$.

But we have the following result.
Theorem 2.3. Suppose that $T \in \mathcal{B}(\mathcal{H})$ is an $[\infty, C]$-symmetric operator.
(i) If there exist nonzero vectors x, y such that $(T-\alpha) x=0$ and $\left(T^{*}-\beta\right) y=0$ with $\alpha \neq \beta$, then $(C x, y)=0$.
(ii) If there exists nonzero vector x such that $(T-\alpha) x=0$ and $\left(T^{*}-\beta\right) C x=0$, then $\alpha=\beta$.
(iii) If there exist sequences of unit vectors $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ such that $\lim _{n \rightarrow \infty}(T-\alpha) x_{n}=0$ and $\lim _{n \rightarrow \infty}\left(T^{*}-\beta\right) y_{n}=0$ with $\alpha \neq \beta$, then $\left\{\left(C x_{n}, y_{n}\right)\right\}$ has a subsequence $\left\{\left(C x_{n l}, y_{n l}\right)\right\}$ which converges to 0 .
(iv) If there exists a sequence of unit vectors $\left\{x_{n}\right\}$ such that $\lim _{n \rightarrow \infty}(T-\alpha) x_{n}=0$ and $\lim _{n \rightarrow \infty}\left(T^{*}-\beta\right) C x_{n}=0$, then $\alpha=\beta$.

Proof. (i) Let x, y be nonzero vectors such that $(T-\alpha) x=0$ and $\left(T^{*}-\beta\right) y=0$. Then

$$
\begin{aligned}
\left(C w_{m}(T) x, y\right) & =\left(C \sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i} C T^{i} C T^{m-i} x, y\right) \\
& =\left(\sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i} T^{i-\alpha^{m-i}} C x, y\right) \\
& =\sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i}\left(\bar{\alpha}^{m-i} C x, \beta^{i} y\right) \\
& =\sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i} \bar{\alpha}^{m-i} \bar{\beta}^{i}(C x, y) \\
& =(\bar{\beta}-\bar{\alpha})^{m}(C x, y),
\end{aligned}
$$

and hence

$$
\left|\bar{\beta}-\bar{\alpha}\left\|\left.(C x, y)\right|^{\frac{1}{m}}=\left|\left(C w_{m}(T) x, y\right)\right|^{\frac{1}{m}} \leq\right\| w_{m}(T)\left\|^{\frac{1}{m}}\right\| x\left\|^{\frac{1}{m}}\right\| y \|^{\frac{1}{m}}\right.
$$

Since T is an $[\infty, C]$-symmetric operator, we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left|\bar{\beta}-\bar{\alpha}\left\|\left.(C x, y)\right|^{\frac{1}{m}} \leq \lim _{m \rightarrow \infty}\right\| w_{m}(T)\left\|^{\frac{1}{m}}\right\| x\left\|^{\frac{1}{m}}\right\| y \|^{\frac{1}{m}}=0 .\right. \tag{2.1}
\end{equation*}
$$

Since $\alpha \neq \beta$, it follows from (2.1) that

$$
\lim _{m \rightarrow \infty}|(C x, y)|^{\frac{1}{m}}=0
$$

This implies $(C x, y)=0$.
(ii) Assume that $\alpha \neq \beta$. Set $y=C x$. Then y is a nonzero vector. By (i), $\|x\|^{2}=(C x, C x)=0$, which contradicts with the fact that x is a nonzero vector. Hence $\alpha=\beta$.
(iii) Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences of unit vectors such that

$$
\lim _{n \rightarrow \infty}(T-\alpha) x_{n}=0 \text { and } \lim _{n \rightarrow \infty}\left(T^{*}-\beta\right) y_{n}=0
$$

Since $\left\{\left(C x_{n}, y_{n}\right)\right\}_{n=1}^{\infty}$ is bounded, there exists a convergent subsequence $\left\{\left(C x_{n l}, y_{n l}\right)\right\}$. Set $\lim _{l \rightarrow \infty}\left(C x_{n l}, y_{n l}\right)=\mu$. For $\forall m \geq 1$,

$$
\begin{aligned}
\left|(\bar{\alpha}-\bar{\beta})^{m} \mu\right| & =\left|(\bar{\alpha}-\bar{\beta})^{m}\right| \lim _{l \rightarrow \infty}\left|\left(C x_{n l}, y_{n l}\right)\right| \\
& =\lim _{l \rightarrow \infty}\left|\sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i} \bar{\alpha}^{m-i} \bar{\beta}^{i}\left(C x_{n l}, y_{n l}\right)\right| \\
& =\lim _{l \rightarrow \infty}\left|\sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i}\left(C T^{m-i} x_{n l}, T^{* i} y_{n l}\right)\right| \\
& =\lim _{l \rightarrow \infty}\left|\left(C \sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i} C T^{i} C T^{m-i} x_{n l}, y_{n l}\right)\right| \\
& =\lim _{l \rightarrow \infty}\left|\left(C w_{m}(T) x_{n l}, y_{n l}\right)\right| \\
& \leq\left\|w_{m}(T)\right\| .
\end{aligned}
$$

Since T is an $[\infty, C]$-symmetric operator, we have

$$
|\bar{\alpha}-\bar{\beta}| \lim _{m \rightarrow \infty}|\mu|^{\frac{1}{m}} \leq \limsup _{m \rightarrow \infty}\left\|w_{m}(T)\right\|^{\frac{1}{m}}=0
$$

Since $\alpha \neq \beta$, it follows that $\mu=0$, i.e., $\lim _{l \rightarrow \infty}\left(C x_{n l}, y_{n l}\right)=0$.
(iv) Assume that $\alpha \neq \beta$. Set $y_{n}=C x_{n}$. It follows from (iii) that $\left\{\left(C x_{n}, C x_{n}\right)\right\}$ has a subsequence $\left\{\left(C x_{n l}, C x_{n}\right)\right\}$ which converges to 0 . While $\left(C x_{n l}, C x_{n l}\right)=1$, which is a contradiction. Hence $\alpha=\beta$.
Theorem 2.4. Suppose that $T \in \mathcal{B}(\mathcal{H})$. If $T C T C=C T C T$, then

$$
\limsup _{m \rightarrow \infty}\left\|w_{m}(T)\right\|^{\frac{1}{m}}=r(T-C T C)
$$

where $r(A)$ denotes the spectral radius of A. In particular, if $r(T-C T C)=0$, then T is an $[\infty, C]$-symmetric operator. Proof. Since TCTC $=C T C T$, we have

$$
w_{m}(T)=\sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i} C T^{m} C T^{m-i}=(C T C-T)^{m}
$$

and hence

$$
\underset{m \rightarrow \infty}{\limsup }\left\|w_{m}(T)\right\|^{\frac{1}{m}}=\limsup _{m \rightarrow \infty}\left\|(T-C T C)^{m}\right\|^{\frac{1}{m}}=r(T-C T C) .
$$

In particular, if $r(T-C T C)=0$, then T is an $[\infty, C]$-symmetric operator.
Lemma 2.5. Suppose that $T, Q \in \mathcal{B}(\mathcal{H})$ satisfy $T Q=Q T$ and $T C Q C=C Q C T$. Then, for $m \geq 2$,

$$
\left\|w_{m}(T+Q)\right\| \leq M^{m}\left(\max _{j \leq n \leq m}\left\|w_{n}(T)\right\|+\max _{j \leq n \leq m}\left\|Q^{n}\right\|\right)
$$

where $M=2(2\|T\|+2\|Q\|+1)$ and $j=\left[\frac{m}{3}\right]$ is the integer part of $\frac{m}{3}$.
Proof. Since

$$
\begin{aligned}
{[(a+b)-(c+d)]^{m} } & =[(a-c)+b-d]^{m} \\
& \left.=\sum_{m_{1}+m_{2}+m_{3}=m}(-1)^{m_{2}\left(m_{1}, m_{2}, m_{3}\right)}{ }^{m}\right)(a-c)^{m_{1}} d^{m_{2}} b^{m_{3}},
\end{aligned}
$$

we have

$$
w_{m}(T+Q)=\sum_{m_{1}+m_{2}+m_{3}=m}(-1)^{m_{2}}\left({ }_{m_{1}, m_{2}, m_{3}}^{m}\right) w_{m_{1}}(T)(C Q C)^{m_{2}} Q^{m_{3}}
$$

Suppose that $j=\left[\frac{m}{3}\right]$ is the integer part of $\frac{m}{3}$. Put

$$
\left.M_{i}=\sum_{m_{1}+m_{2}+m_{3}=m, m_{i} \geq j} \underset{\left(m_{1}, m_{2}, m_{3}\right.}{m}\right)\left\|w_{m_{1}}(T)(C Q C)^{m_{2}} Q^{m_{3}}\right\|, i=1,2,3 .
$$

Since $m_{1}+m_{2}+m_{3}=m$, then there exists some $m_{i} \geq j, i=1,2,3$, and

$$
\begin{aligned}
\left\|w_{m}(T+Q)\right\| & \left.\leq \sum_{m_{1}+m_{2}+m_{3}=m} \underset{\left(m_{1}, m_{2}, m_{3}\right.}{m}\right)\left\|w_{m_{1}}(T)(C Q C)^{m_{2}} Q^{m_{3}}\right\| \\
& \leq M_{1}+M_{2}+M_{3} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
M_{1} & \left.=\sum_{m_{1}+m_{2}+m_{3}=m, m_{1} \geq j} \underset{\left(m_{1}, m_{2}, m_{3}\right.}{m}\right)\left\|w_{m_{1}}(T)(C Q C)^{m_{2}} Q^{m_{3}}\right\| \\
& \left.\leq \sum_{m_{1}+m_{2}+m_{3}=m, m_{1} \geq j} \sum_{m_{1}, m_{2}, m_{3}}^{m}\right)\left\|w_{m_{1}}(T)\right\|\left\|\left\|\left\|^{m_{2}}\right\| Q\right\|^{m_{3}}\right. \\
& \leq \max _{j \leq n \leq m}\left\|w_{n}(T)\right\|(2\|Q\|+1)^{m} \\
& \leq\left(\frac{M}{2}\right)^{m} \max _{j \leq n \leq m}\left\|w_{n}(T)\right\| .
\end{aligned}
$$

Since $\left\|w_{k}(T)\right\| \leq(2\|T\|)^{k}$ for all $k \in \mathbb{N}$, by the similar way, we have

$$
\begin{aligned}
M_{2} & \leq \max _{j \leq n \leq m}\left\|Q^{n}\right\|(2\|T\|+\|Q\|+1)^{m} \\
& \leq\left(\frac{M}{2}\right)^{m} \max _{j \leq n \leq m}\left\|Q^{n}\right\|
\end{aligned}
$$

and

$$
\begin{aligned}
M_{3} & \leq \max _{j \leq n \leq m}\left\|Q^{n}\right\| \cdot(2\|T\|+\|Q\|+1)^{m} \\
& \leq\left(\frac{M}{2}\right)^{m} \max _{j \leq n \leq m}\left\|Q^{n}\right\| .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left\|w_{m}(T+Q)\right\| & \leq\left(\frac{M}{2}\right)^{m} \max _{j \leq n \leq m}\left\|w_{n}(T)\right\|+2\left(\frac{M}{2}\right)^{m} \max _{j \leq n \leq m}\left\|Q^{n}\right\| \\
& \leq M^{m}\left(\max _{j \leq n \leq m}\left\|w_{n}(T)\right\|+\max _{j \leq n \leq m}\left\|Q^{n}\right\|\right) .
\end{aligned}
$$

Theorem 2.6. Suppose that $T \in \mathcal{B}(\mathcal{H})$ and C is a conjugation on \mathcal{H}. Then the following statements hold:
(i) If T is an $[\infty, C]$-symmetric operator, $Q^{n}=0$ for some $n \in \mathbb{N}, T Q=Q T$ and $T C Q C=C Q C T$, then $T+Q$ is an [$\infty, C]$-symmetric operator.
(ii) If T_{n} is a sequence of commuting [$\left.\infty, C\right]$-symmetric operators which satisfy $\lim _{n \rightarrow \infty}\left\|T_{n}-T\right\|=0$, then T is an [$\infty, C]$-symmetric operator.

Proof. (i) Let T be an [$\infty, C]$-symmetric operator and $Q^{n}=0$ for some $n \in \mathbb{N}$, Then for a given $0<\varepsilon<1$, there exists N which satisfies

$$
\left\|w_{n}(T)\right\| \leq \varepsilon^{n} \text { and }\left\|Q^{n}\right\| \leq \varepsilon^{n}
$$

for all $n \geq N$. It follows from Lemma 2.5 , for $m \geq 3 N$ and $j=\left[\frac{m}{3}\right] \geq N$,

$$
\begin{aligned}
\left\|w_{m}(T+Q)\right\|^{\frac{1}{m}} & \leq M\left(\max _{j \leq n \leq m}\left\|w_{n}(T)\right\|+\max _{j \leq n \leq m}\left\|Q^{n}\right\|\right)^{\frac{1}{m}} \\
& \leq M\left(2 \varepsilon^{n}\right)^{\frac{1}{m}} \leq M\left(2 \varepsilon^{j}\right)^{\frac{1}{m}} \\
& =2^{\frac{1}{m}} M \varepsilon^{\frac{j}{m}}=2^{\frac{1}{m}} M \varepsilon^{\frac{1}{m}\left[\frac{m}{3}\right]}
\end{aligned}
$$

Since ε is arbitrary, $\lim \sup \left\|w_{m}(T+Q)\right\|^{\frac{1}{m}}=0$, i.e., $T+Q$ is an $[\infty, C]$-symmetric operator.
(ii) Suppose that $T_{n} T_{k}=T_{k} T_{n}$ for all $k, n \in \mathbb{N}$. Then $T T_{n}=T_{n} T$ for all $n \geq 1$. For a given $0<\varepsilon<1$, there exists n_{0} which satisfies

$$
\left\|T-T_{n_{0}}\right\| \leq \varepsilon \text { and }\left\|w_{n}\left(T_{n_{0}}\right)\right\| \leq \varepsilon^{n}
$$

for all $n \geq n_{0}$. It follows from Lemma 2.5, for $m \geq 3 n_{0}$ and $j=\left[\frac{m}{3}\right] \geq n_{0}$,

$$
\begin{aligned}
\left\|w_{m}(T)\right\|^{\frac{1}{m}} & =\left\|w_{m}\left(T_{n_{0}}+T-T_{n_{0}}\right)\right\|^{\frac{1}{m}} \\
& \leq M\left(\max _{j \leq n \leq m}\left\|w_{n}\left(T_{n_{0}}\right)\right\|+\max _{j \leq n \leq m}\left\|T-T_{n_{0}}\right\|^{n}\right)^{\frac{1}{m}} \\
& \leq 2^{\frac{1}{m}} M \varepsilon^{\frac{j}{m}}=2^{\frac{1}{m}} M \varepsilon^{\frac{1}{m}\left[\frac{m}{3}\right]} .
\end{aligned}
$$

Since ε is arbitrary, $\lim \sup _{m \rightarrow \infty}\left\|w_{m}(T)\right\|^{\frac{1}{m}}=0$, i.e., T is an $[\infty, C]$-symmetric operator.
We use Theorem 2.6 (ii) to illustrate the following example.
Example 2.7. Let $C_{n}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be the conjugation given by

$$
C_{n}\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T}=\left(\overline{x_{1}}, \overline{x_{2}}, \cdots, \overline{x_{n}}\right)^{T}
$$

Put $T=\oplus_{n=1}^{\infty} T_{n}$, where T_{n} is an nth order matrix such that

$$
\begin{aligned}
T_{n} & =I_{n}+N_{n} \\
& =\left(\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right)+\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & 0 \\
\frac{1}{2 n} & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & 0 & 0 \\
0 & 0 & 0 & \cdots & \frac{1}{2 n} & 0
\end{array}\right) .
\end{aligned}
$$

Since N_{n} is a nilpotent operator of order n, it follows from [11] that T_{n} is a [2n-1]-complex symmetric operator with conjugation C_{n}, we have T is an $[\infty, C]$-symmetric operator with a conjugation $C=\oplus_{n=1}^{\infty} C_{n}$. In fact, Set $S_{n}=T_{1} \oplus \cdots \oplus T_{n} \oplus I \oplus I \oplus \cdots$. Then S_{n} is a $[2 n-1]$-complex symmetric operator with conjugation C and $S_{n} S_{k}=S_{k} S_{n}$ for all $n, k \geq 1$. Since $S_{n} \rightarrow T$ in the operator norm, it follows from Theorem 2.6 (ii) that T is an [$\infty, C]$-symmetric operator.

In the following, we study the product properties of [$\infty, C]$-symmetric operators.
Lemma 2.8. Suppose that $T, R \in \mathcal{B}(\mathcal{H})$ satisfy $T R=R T$ and $T(C R C)=(C R C) T$. Then

$$
w_{m}(T R)=\sum_{i=0}^{m}\left({ }_{i}^{m}\right) C T^{i} C w_{m-i}(T) w_{i}(R) R^{m-i}
$$

where $w_{0}(*)=I$.
Proof. Suppose that $T R=R T$ and $T(C R C)=(C R C) T$. Since

$$
\begin{aligned}
(a b-c d)^{m} & =[(a-c) b+(b-d) c]^{m} \\
& =\sum_{i=0}^{m}\left({ }_{i}^{m}\right) c^{i}(a-c)^{m-i}(b-d)^{i} b^{m-i}
\end{aligned}
$$

it follows that

$$
\begin{aligned}
w_{m}(T R) & =\sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i} C(T R)^{i} C(T R)^{m-i} \\
& =\sum_{i=0}^{m}\left({ }_{i}^{m}\right) C T^{i} C w_{m-i}(T) w_{i}(R) R^{m-i} .
\end{aligned}
$$

Theorem 2.9. Suppose that T and R are $[\infty, C]$-symmetric operators. If $T R=R T$ and $T(C R C)=(C R C) T$, then $T R$ is an [$\infty, C]$-symmetric operator.

Proof. Suppose that T and R are $[\infty, C]$-symmetric operators. Then for a given $0<\varepsilon<1$, there exist N_{1} and N_{2} such that

$$
\left\|w_{n_{1}}(T)\right\| \leq \varepsilon^{n} \text { and }\left\|w_{n_{2}}(R)\right\| \leq \varepsilon^{n}
$$

for $n_{1} \geq N_{1}$ and $n_{2} \geq N_{2}$. Set $N=\max \left\{N_{1}, N_{2}\right\}$. Then it suffices to show that there exists a constant $M>0$ which satisfies for $m \geq 2 N$,

$$
\left\|w_{m}(T R)\right\| \leq M^{m} \varepsilon^{\frac{m}{2}}
$$

Let $j=\left[\frac{m}{2}\right]$ denote the integer part of $\frac{m}{2}$. It follows from Lemma 2.8 that

$$
\begin{aligned}
w_{m}(T R) & =\sum_{i=0}^{j}\left(m_{i}^{m}\right) C T^{i} C w_{m-i}(T) w_{i}(R) R^{m-i} \\
& +\sum_{i=j+1}^{m}\left({ }_{i}^{m}\right) C T^{i} C w_{m-i}(T) w_{i}(R) R^{m-i}
\end{aligned}
$$

If $i \leq j=\left[\frac{m}{2}\right]$, then $m-i \geq\left[\frac{m}{2}\right]=j \geq N$, and so $\left\|w_{m-i}(T)\right\| \leq \varepsilon^{m-i} \leq \varepsilon^{j}$. Since $\|C\|=1,\left\|w_{i}(R)\right\| \leq(2\|R\|)^{i}$ for all $i \geq 1$. Thus we have

$$
\begin{aligned}
& \left\|\sum_{i=0}^{j}\binom{m}{i} C T^{i} C w_{m-i}(T) w_{i}(R) R^{m-i}\right\| \\
& \leq \sum_{i=0}^{j}\left(_{i}^{m}\right)\left\|w _ { m - i } (T) \left|\left\|\left|\left\|C T^{i} C\right\|\| \| R^{m-i}\| \|\right| w_{i}(R)\right\|\right.\right. \\
& \leq \sum_{i=0}^{j}\left({ }_{i}^{m}\right) \varepsilon^{j}\|T\|^{i}\|R\| \|^{m-i}(2\|R\|)^{i} \\
& \leq \varepsilon^{j}(2\|T\|\|R\|+\|R\|)^{m}
\end{aligned}
$$

Similarly, if $i \geq j+1 \geq N$, then $\left\|w_{i}(R)\right\| \leq \varepsilon^{j}$, and hence we have

$$
\left\|\sum_{i=j+1}^{m}\binom{m}{i} C T^{i} C w_{m-i}(T) w_{i}(R) R^{m-i}\right\| \leq \varepsilon^{j}(\|T\|+2\|T\|\| \| R \|)^{m}
$$

Then for $m \geq 2 N$

$$
\left\|w_{m}(T R)\right\| \leq \varepsilon^{\left[\frac{m}{2}\right]}\left((2\|T\|\|R\|+\|R\|)^{m}+(\|T\|+2\|T\|\|R\|)^{m}\right) .
$$

Hence $\underset{m \rightarrow \infty}{\limsup }\left\|w_{m}(T R)\right\|^{\frac{1}{m}}=0$, i.e., $T R$ is an $[\infty, C]$-symmetric operator.
We use Theorem 2.9 to illustrate the following example.
Example 2.10. Let C be the conjugation on \mathcal{H} given by

$$
C\left(x_{1}, x_{2}, \cdots, x_{n}, \cdots\right)^{T}=\left(\overline{x_{1}}, \overline{x_{2}}, \cdots, \overline{x_{n}}, \cdots\right)^{T} .
$$

Suppose that $T, S \in \mathcal{B}(\mathcal{H})$ satisfy $T e_{n}=\alpha e_{n}$ and $S e_{n}=\beta_{n} e_{n+1}$ with $\beta_{n}=\frac{1}{n}$ for all $n \geq 1$. Then T and $S+I$ are [$\infty, C]$-symmetric operators, and it is easy to compute

$$
\operatorname{TCSCe}_{n}=\operatorname{TCSe}_{n}=\operatorname{TC}\left(\beta_{n} e_{n+1}\right)=T \overline{\beta_{n}} e_{n+1}=\alpha \overline{\beta_{n}} e_{n+1}
$$

and

$$
\operatorname{CSCTe}_{n}=\operatorname{CSC}\left(\alpha e_{n}\right)=\operatorname{CS}\left(\bar{\alpha} e_{n}\right)=C\left(\bar{\alpha} \beta_{n} e_{n+1}\right)=\alpha \overline{\beta_{n}} e_{n+1}
$$

Moreover, $T S e_{n}=T \beta_{n} e_{n+1}=\beta_{n} \alpha e_{n+1}$ and STe $e_{n}=S \alpha e_{n}=\alpha \beta_{n} e_{n+1}$. Hence TCSC $=$ CSCT and TS $=$ ST, it follows from Theorem 2.9 that $T(I+S)$ is an [$\infty, C]$-symmetric operator.

Corollary 2.11. Suppose that T is an $[\infty, C]$-symmetric operator. If $T(C T C)=(C T C) T$, then T^{n} is an [$\left.\infty, C\right]-$ symmetric operator for any $n \in \mathbb{N}$.

Proof. We shall prove T^{n} is an $[\infty, C]$-symmetric operator by induction. It's easy to show that T^{2} is an [$\infty, C]$-symmetric operator by Theorem 2.9. Assume that T^{n-1} is an $[\infty, C]$-symmetric operator. Since $T^{n-1} C T C=C T C T^{n-1}$, it follows from Theorem 2.9 that T^{n} is an $[\infty, C]$-symmetric operator.

Theorem 2.12. Suppose that $T \in \mathcal{B}(\mathcal{H})$. Then the following statements hold:
(i) T is an $[\infty, C]$-symmetric operator if and only if T^{*} is an [$\left.\infty, C\right]$-symmetric operator.
(ii) If T is an invertible $[\infty, C]$-symmetric operator, then T^{-1} is an $[\infty, C]$-symmetric operator.

Proof. (i) Let T be an [$\infty, C]$-symmetric operator. Since

$$
w_{m}\left(T^{*}\right)=\sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i} C T^{* i} C T^{* m-i}
$$

then

$$
\begin{aligned}
w_{m}\left(T^{*}\right) & =\sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i} C T^{* i} C T^{* m-i} \\
& =C \sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i} T^{* i} C T^{* m-i} C C \\
& =\left\{\begin{array}{l}
C\left(w_{m}(T)\right)^{*} C, \quad \text { if } m \text { is even, } \\
-C\left(w_{m}(T)\right)^{*} C, \quad \text { if } m \text { is odd. } .
\end{array}\right.
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\limsup _{m \rightarrow \infty}\left\|w_{m}\left(T^{*}\right)\right\|^{\frac{1}{m}} & =\limsup _{m \rightarrow \infty}\left\|C\left(w_{m}(T)\right)^{*} C\right\|^{\frac{1}{m}} \\
& \leq \limsup _{m \rightarrow \infty}\left\|\left(w_{m}(T)\right)^{*}\right\|^{\frac{1}{m}} \\
& =\limsup _{m \rightarrow \infty}\left\|w_{m}(T)\right\|^{\frac{1}{m}} \\
& =0,
\end{aligned}
$$

i.e., T^{*} is an $[\infty, C]$-symmetric operator. The converse implication holds by a similar way.
(ii) Note for any $b, c \in \mathbb{C}$,

$$
b^{m}\left(c^{-1}-b^{-1}\right)^{m} c^{m}=(b-c)^{m}=\sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i} b^{i} c^{m-i} .
$$

Take $c=T$ and $b=C T C$. Then we have

$$
w_{m}(T)=(-1)^{m}(C T C)^{m} w_{m}\left(T^{-1}\right) T^{m}
$$

Therefore,

$$
(-1)^{m}(C T C)^{-m} w_{m}(T) T^{-m}=w_{m}\left(T^{-1}\right) .
$$

Hence

$$
\underset{m \rightarrow \infty}{\limsup }\left\|w_{m}\left(T^{-1}\right)\right\|^{\frac{1}{m}} \leq \limsup _{m \rightarrow \infty}\left\|T^{-1}\right\|\left\|w_{m}(T)\right\|^{\frac{1}{m}}\left\|T^{-1}\right\|=0
$$

i.e., T^{-1} is an $[\infty, C]$-symmetric operator.

References

[1] M. Chō, E. Ko, J.E. Lee, (∞, C)-isometric operators, Oper. Matrices 11(3)(2017) 793-806.
[2] M. Chō, E. Ko, J.E. Lee, On m-complex symmetric operators, Mediterr. J. Math. 13(4)(2016) 2025-2038.
[3] M. Chō, E. Ko, J.E. Lee, On ∞-complex symmetric operator, Glasg. Math. J. 60(1)(2018) 35-50.
[4] S.R. Garcia, Aluthge transforms of complex symmetric operators and applications, Integral Equ. Oper. Theory 60(2008) 357-367.
[5] S.R. Garcia, M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358(2006) 1285-1315.
[6] S.R. Garcia, M. Putinar, Complex symmetric operators and applications II, Trans. Amer. Math. Soc. 359(2007) 3913-3931.
[7] S.R. Garcia, W. R. Wogen, Some new classes of complex symmetric operators, Trans. Amer. Math. Soc. 362(2010) 6065-6077.
[8] S. Jung, E. Ko, M. Lee, J.E. Lee, On local spectral properties of complex symmetric operators, J. Math. Anal. Appl. 379(2011) 325-333.
[9] S. Jung, E. Ko, J.E. Lee, On scalar extensions and spectral decompositions of complex symmetric operators, J. Math. Anal. Appl. 382(2011) 252-260.
[10] S. Jung, E. Ko, J.E. Lee, On complex symmetric operator matrices, J. Math. Anal. Appl. 406(2013) 373-385.
[11] J.L. Shen, The spectral properties of [m]-complex symmetric operators, J. Inequal. Appl. 209(2018) 1-9.

[^0]: 2020 Mathematics Subject Classification. Primary 47B20; Secondary 47A10.
 Keywords. [$\infty, C]$-symmetric operator; Perturbation; Product.
 Received: 12 January 2023; Accepted: 25 June 2023
 Communicated by Dragan S. Djordjević
 Research supported by the National Research Cultivation Foundation of Henan Normal University(No.20210372)
 Email addresses: zuoyawen1215@126.com (Junli Shen), yuanyayi@stu.htu.edu.cn.com (Yayi Yuan), alatanca@imu.edu.cn (Alatancang Chen)

