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Abstract. Studying various fixed point theorems on Banach spaces such as the Darbo’s fixed point
theorem, has recently proved to be quite effective while doing research on existence problems. We here use
a contraction operator to demonstrate a modified Darbo-type fixed point result with the intention to study
the existence of solutions of infinite system of nonlinear q-fractional boundary value problem in the Banach
spaces. Towards the end, reasonable example is presented to validate our findings.

1. Introduction and preliminaries

Kuratowski [23] was a person who first explain the idea of measure of noncompactness (shortly, MNC).
Darbo [13] presented the world with a fixed point theorem making use of the concepts of MNC, later
popularly known by his name as the “Darbo fixed point theorem”. Since then, it has become a crucial
tool for the researchers while studying existence or solvability of nonlinear functional equations forming
new Banach spaces and employing “Darbo fixed point theorem” on them. Recently, Banaś and Lecko
[9], Mohiuddine et al. [26], Mursaleen et al. [28, 29] made efforts on studying certain special kinds of
differential equations (infinite system) to instate the existence of solutions in certain Banach spaces. Some
works are related to the fractional derivatives are done in the following articles [11, 12, 14, 24, 31, 32, 34, 35].
For studying real world problems in science and engineering such as the theory of neural nets, kinetic
theory of gas, radiation, mechanics, neutron transportation etc, integral and differential equations are of
great help. Most recently, using infinite system integral and differential equations along with MNCs on
specified Banach spaces, many researches have shown existence of solutions to various real world problems
[6, 15–17, 19, 20, 25, 27, 30, 33].

Let E be a Banach space and B(θ, r̂) = {x ∈ E : ∥x − θ∥ ≤ r̂} be a closed ball in E. If Y
(
, ϕ
)
⊆ E, Ȳ and

ConvY denote the closure and the convex closure of the set Y. Further, the family of nonempty bounded
and relatively compact spaces are expressed with the symbolsME and NE respectively.

The definition of MNC in [7] (see also [10]) as follows:
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Definition 1.1. A mapping G :ME → R+(= [0,∞)) is called MNC in E if

(i) J ∈ME, implies G(J) = 0 gives J be relatively compact.
(ii) ker G = {J ∈ME : G (J) = 0} , ϕ. Also ker G ⊂ NE.

(iii) J ⊆ J1 =⇒ G (J) ≤ G (J1) .
(iv) G

(
J̄

)
= G (J) .

(v) G (ConvJ) = G (J) .
(vi) G (ςJ + (1 − ς)J1) ≤ ςG (J) + (1 − ς)G (J1) , ς ∈ [0, 1] .

(vii) for a nested sequence of sets Sk ∈ME, where Sk+1 ⊂ Sk for k ∈N and Sk = S̄k such that lim
k→∞
G (Sk) = 0 then⋂

∞

k=1 Sk , ϕ.

Now we recall a Banach space with it’s respective norm, namely

c0 =

{
θ ∈ w : lim

k→∞
θk = 0, ∥ θ ∥= sup

k
|θk|

}
.

In [7] the MNC χ in (c0, ∥∥) is as follows

χ (B) = lim
n→∞

sup
y∈B

(
max

k≥n
|yk|

) . (1)

C(I, c0) represents the set of all continuous functions from I = [0, 1] to c0 and C(I, c0) is a Banach space with

∥θ∥C(I,c0) = sup
s∈I
∥θ(s)∥c0 ,

where x(s) = (xn(s))∞n=1 ∈ C(I, c0). For any nonempty E ⊆ C(I, c0) and E(s) = {x(s) : x(s) ∈ E} for s ∈ Iand its
MNC is as follows

χC(I,c0) (E) = sup
s∈I
χc0 (E(s)) .

Recall the following in [13] as follows:

Theorem 1.2. For a nonempty, closed, bounded and convex (NCBC) subsetJ of Banach space, assume a continuous
function S : J → J and for some κ ∈ [0, 1) we have

G(SΛ) ≤ κG(Λ), Λ ⊆ J .

Then S has a fixed point.

2. Darbo-type results

We now start to recall certain class of functions quite essential for proving our generalized form of
Dorbo-fixed theorem. The following has already been discussed in [4].

Let F (R+), R+ = [0,∞), denotes the collection of functions f : R+ → R+. Suppose Θ̂ denotes the set of
operators

O (·; ·) : F (R+)→ F (R+) , f→ O(f; .)

such that

(1) O (f; τ) ≤ O (f; ς) for τ ≤ ς,
(2) O (f; max {τ, ς}) = max {O (f; τ) ,O (f; ς)} for some f ∈ F (R+),
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(3) O (f; τ) > 0 for τ > 0 and O (f; 0) = 0,

(4) lim
n→∞
O (f; τn) = O

(
f; lim

n→∞
τn

)
hold. An example of such function is O (f; τ) = τ.

Also, let us define the following class of functions:
Θ′ is the collection of all functions v : R→ R so that

∑
∞

n=1 v(sn) = ∞ for all {sn} ⊆ R (e.g. v(s) = τ ≥ 0).
Ω′ is the collection of all functions F : R+ → R+ satisfying

(1) F is strictly increasing,
(2) lim

n→∞
λn = 0 if and only if lim

n→∞
F (λn) = −∞ for each sequence {λn} in R+ = [0,∞) (e.g. F (s) = ln s for

all s > 0).

Theorem 2.1. For a NCBC subset D of a Banach space E with an arbitrary MNCG, let T : D→ D be a continuous
function satisfying the inequality

O (f;F (G (TX))) ≤ O [f;F (G (X))] − v (F (G (X))) (2)

for any X(, ϕ) ⊆ D where F ∈ Ω′, v ∈ Θ′, O ∈ Θ̂ and f ∈ F (R+) . Then

T has at least one f ixed point in D. (3)

Proof. We form a sequence of sets {Dn}
∞

n=1 satisfying D1 = D and Dn+1 = Conv(TDn) for n ∈ N. Clearly we
have, TD1 = TD ⊆ D = D1, D2 = Conv(TD1) ⊆ D = D1. Proceeding this way we get the following nested
sequence of sets,

D1 ⊇ D2 ⊇ D3 ⊇ . . . ⊇ Dn ⊇ Dn+1 ⊇ . . . .

Let ∃ n0 ∈ N with G(Dn0 ) = 0, then Dn0 is compact. And using Schauder theorem [2], we conclude T has a
fixed point in D ⊆ E.

Otherwise, G(Dn) > 0 for n ∈ N. The sequence {G(Dn)}∞n=1 is nonnegative, decreasing and bounded
below. Hence, {G(Dn)}∞n=1 is convergent.

If G(Dn+1) > 0 then F (G(Dn+1)) ≥ 0 which gives O (f;F (G (Dn+1))) ≥ 0.
Again, inequality (2) gives

O (f;F (G (Dn+1))) = O (f;F (G (ConvTDn)))
= O (f;F (G (TDn)))
≤ O [f;F (G (Dn))] − v (F (G (Dn)))
≤ O [f;F (G (Dn−1))] − v (F (G (Dn−1))) − v (F (G (Dn)))
. . .

≤ O [f;F (G (D1))] −
n∑

k=1

v (F (G (Dk))) .

Since
∑n

k=1 v (F (G (Dk)))→∞ as n→∞which gives

O (f;F (G (Dn+1)))→ −∞

as n→ ∞ which is a contradiction. Hence we can not take G(Dn+1) > 0 for all n. Therefore G(Dn+1) = 0 for
all n i.e.

lim
n→∞
G (Dn+1) = 0,

that is,

lim
n→∞
G (Dn) = 0.
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Since Dn ⊇ Dn+1 and from our definition at 1.1, we get

D∞ =
∞⋂
j=1

Dn ⊆ D

must be a convex, nonempty, closed subset of D. As, D∞ is T invariant, from Schauder theorem [2] we can
say that Eq. (3) holds.

Theorem 2.2. For a NCBC set D of a Banach space E with an arbitrary MNC G, if T : D → D be a continuous
function having the inequality

F (G (TX)) ≤ F (G (X)) − v (F (G (X))) (4)

for any X(, ϕ) ⊆ D where F ∈ Ω′, v ∈ Θ′. Then

T must have a f ixed point in D. (5)

Proof. Considering the function O (f; τ) = τ in Theorem 2.1 we obtain the result.

Theorem 2.3. For a NCBC set D of E with an arbitrary MNC G, let T : D → D be a continuous function having
the inequality

τ + F (G (TX)) ≤ F (G (X)) (6)

for any X(, ϕ) ⊆ D where F ∈ Ω′. Then

there exists a f ixed point f or T in D. (7)

Proof. Taking the function v(s) = τ ≥ 0 in Theorem 2.2, we get the required.

Remark 2.4. Taking τ = ln 1
k , 0 < k < 1 and F (s) = ln s in Theorem 2.3 we obtain

ln
1
k
+ ln (G (TX)) ≤ ln (G (X)) ,

that is,

G (TX) ≤ kG (X) , 0 < k < 1.

3. An infinite system of q-fractional differential equations with boundary conditions

We recall some q-calculus concepts. For deeper understanding, the reader might read these literature
[1, 3, 5, 18, 22].

Let q ∈ (0, 1). and define

[ξ]q =
1 − qξ

1 − q
, ξ ∈ R.

The q-analogue of (η − ζ)ν with ν = 0, 1, 2, . . . is

(η − ζ)0 = 1, (η − ζ)ν =
ν−1∏
k=0

(η − ζqk), ν ∈N, η, ζ ∈ R.

If ξ ∈ R, then

(η − ζ)(ξ) = ηξ
∞∏
ν=0

η − ζqν

η − ζqξ+ν
.
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If ζ = 0 then η(ν) = ην. The q-gamma function is as follows

Γq(ϖ) =
(1 − q)(ϖ−1)

(1 − q)ϖ−1 , ϖ ∈ R\ {0,−1,−2, . . .}

and Γq(ϖ + 1) = [ϖ]q Γq(ϖ).
The q-derivative of a function f is as follows

(Dqf)(ϖ) =
f(ϖ) − f(qϖ)

(1 − q)ϖ

and the q-integral of f on [0, b] is as follows

(Iqf)(ϖ) =
∫ ϖ

0
f(ι)dqι = ϖ(1 − q)

∞∑
ν=0

f(ϖqν)qν, ϖ ∈ [0, b].

Lemma 3.1. [21] If f : [0, 1]→ R is a continuous function, then∣∣∣∣∣∣
∫ ϖ

0
f(ι)dqι

∣∣∣∣∣∣ ≤
∫ ϖ

0
|f(ι)| dqι, ϖ ∈ [0, 1].

Lemma 3.2. [21] If ε > 0 and 0 ≤ ζ ≤ ρ ≤ τ implies

(τ − ρ)(ε)
≤ (τ − ζ)(ε).

Definition 3.3. For α ≥ 0 and f : [0, 1]→ R , the fractional q-integral of Riemann-Liouville type is defined as

(I0
qf)(ϖ) = f(ϖ)

and

(Iαq f)(ϖ) =
1
Γq(α)

∫ ϖ

0
(ϖ − qς)(α−1)f(ς)dqς, α > 0.

Definition 3.4. The fractional q-derivative of Riemann–Liouville type of order α ≥ 0 is defined by

(Dλq f)(ϖ) =
(
D[λ]

q I[λ]−λ
q f

)
(ϖ), λ > 0, ϖ ∈ [0, 1]

where [λ] is the smallest integer greater than or equal to λ. Evidently, (Dλq f)(ϖ) = (Dqf)(ϖ) when λ = 1.

For a continuous mapping f : [0, 1] × R → R+, consider the nonlinear q-fractional boundary value
problem (BVP) [18] as

(Dαqy)(ϖ) = −f(ϖ, y(ϖ)), 0 < ϖ < 1, y(0) = y(1) = 0 (8)

where , 1 < α ≤ 2, 0 < q < 1.
y is a solution of the BVP (8) iff y satisfies the integral equation:

y(ϖ) =
∫ 1

0
H(ϖ, qϱ)f(ϱ, y(ϱ))dqϱ

where H is as follows

H(ϖ, ϱ) =
1
Γq(α)

{
(ϖ(1 − ϱ))(α−1)

− (ϖ − ϱ)(α−1)
}
, 0 ≤ ϱ ≤ ϖ ≤ 1



S. A. Mohiuddine et al. / Filomat 37:30 (2023), 10171–10180 10176

and

H(ϖ, ϱ) =
1
Γq(α)

(ϖ(1 − ϱ))(α−1), 0 ≤ ϖ ≤ ϱ ≤ 1.

Here, we are investigating the solvability of following infinite system:

(Dαqyn)(ϖ) = −fn(ϖ, y(ϖ)), 0 < ϖ < 1, y(0) = y(1) = 0, (9)

where 1 < α ≤ 2, 0 < q < 1 and fn : [0, 1] × E (E := sequence space) → R+ are continuous functions for all
n ∈N. Also y(ϖ) = (yn(ϖ))∞n=1 ∈ E where E is a sequence space.
yn(ϖ) is a solution of problem (9) if and only if yn(ϖ) satisfies the following,

yn(ϖ) =
∫ 1

0
H(ϖ, qϱ)fn(ϱ, y(ϱ))dqϱ. (10)

We required the following assumptions to demonstrate our result.

(1) ∀n ∈ N, fn : I × C(I, c0) → R+ = [0,∞) are continuous where I = [0, 1]. The operator f is defined from
I × C(I, c0) to C(I, c0) as

(ϖ, y(ϖ))→ (fy)(ϖ) = (fn(ϖ, y(ϖ)))∞n=1

where ((fy)(ϖ))ϖ∈I is equicontinuous at every point of C(I, c0).
(2) For every y(ϖ) ∈ C(I, c0), n ∈N, ϖ ∈ I, gives

fn(ϖ, y(ϖ)) ≤ An(ϖ) + Bn(ϖ) |yn(ϖ)|

where both An(ϖ), Bn(ϖ) are nonnegative real continuous mappings on I satisfying {An(ϖ)}∞n=1 con-
verges uniformly to zero on I and {Bn(ϖ)}∞n=1 is equibounded on I.

Let us assume

B(ϖ) = sup
n∈N

Bn(ϖ), B = sup
ϖ∈I

B(ϖ) < Γq(α), A = sup
n∈N, ϖ∈I

An(ϖ).

Theorem 3.5. If assumptions (1)-(2) hold, system (9) has a solution in C(I, c0).

Proof. We have (ϖ(1 − ϱ))(α−1)
≤ (ϖ)(α−1) = ϖα−1

≤ 1.
Therefore

(ϖ(1 − ϱ))(α−1)
− (ϖ − ϱ)(α−1)

≤ ϖα−1
− (ϖ − ϱ)(α−1)

≤ ϖα−1
≤ 1

and

(ϖ(1 − ϱ))(α−1)
≤ ϖα−1

≤ 1.

Thus we have∣∣∣H(ϖ, ϱ)
∣∣∣ ≤ 1
Γq(α)

.
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For arbitrary fixed ϖ ∈ I, using (2) and (9)

∥y(ϖ)∥c0 = sup
n≥1

∣∣∣∣∣∣
∫ 1

0
H(ϖ, qϱ)fn(ϱ, y(ϱ))dqϱ

∣∣∣∣∣∣
≤ sup

n≥1

∫ 1

0

∣∣∣H(ϖ, qϱ)
∣∣∣ fn(ϱ, y(ϱ))dqϱ

≤
1
Γq(α)

sup
n≥1

∫ 1

0
fn(ϱ, y(ϱ))dqϱ

≤
1
Γq(α)

sup
n≥1

∫ 1

0

{
An(ϱ) + Bn(ϱ)

∣∣∣yn(ϱ)
∣∣∣} dqϱ

≤
1
Γq(α)

sup
n≥1

∫ 1

0

{
A +B ∥ y ∥C(I,c0)

}
dqϱ

=
A +B ∥ y ∥C(I,c0)

Γq(α)

which gives

(Γq(α) −B) ∥ y ∥C(I,c0)≤ A

i.e.

∥y∥C(I,c0) ≤
A

Γq(α) −B
= d (say).

Suppose,

B =
{
y ∈ C (I, c0) : ∥y∥C(I,c0) ≤ d

}
which is a NCBC subset of C (I, c0).

For fixed ϖ ∈ I,we define the operator from C(I, c0) to C(I, c0) as follows:

(Ty)(ϖ) = {(Tny)(ϖ)}∞n=1 =

{∫ 1

0
H(ϖ, qϱ)fn(ϱ, y(ϱ))dqϱ

}∞
n=1

where y(ϖ) = {yn(ϖ)}∞n=1 ∈ C (I, c0) and yn(ϖ) ∈ C(I,R).
As
{
fn(ϱ, y(ϱ))

}∞
n=1 ∈ C(I, c0) we have

lim
n→∞

(Tny)(ϖ) = lim
n→∞

∫ 1

0
H(ϖ, qϱ)fn(ϱ, y(ϱ))dqϱ =

∫ 1

0
H(ϖ, qϱ) lim

n→∞
fn(ϱ, y(ϱ))dqϱ = 0.

Hence (Ty)(ϖ) ∈ C (I, c0) .
Also (Tny)(ϖ)satisfies the boundary conditions

(Tny)(0) =
∫ 1

0
H(0, qϱ)fn(ϱ, y(ϱ))dqϱ =

∫ 1

0
0.fn(ϱ, y(ϱ))dqϱ = 0

and

(Tny)(1) =
∫ 1

0
H(1, qϱ)fn(ϱ, y(ϱ))dqϱ =

∫ 1

0
0.fn(ϱ, y(ϱ))dqϱ = 0.

Again, T maps B to B itself.
Taking the assumption (1) in our consideration we take z(ϖ) = {zn(ϖ)}∞n=1 ∈ B and ∃ ϵ > 0 for each δ > 0

satisfying
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∥ ( fy)(ϖ) − ( f z)(ϖ) ∥c0≤ ϵΓq(α) for y(ϖ), z(ϖ) ∈ B

whenever ∥ y(ϖ) − z(ϖ) ∥c0≤ δ for all ϖ ∈ I.
For fixed ϖ ∈ I,

∥ (Ty)(ϖ) − (Tz)(ϖ) ∥c0≤ sup
n≥1

∫ 1

0

∣∣∣H(ϖ, qϱ)
∣∣∣ ∣∣∣fn(ϱ, y(ϱ)) − fn(ϱ, y(ϱ))

∣∣∣ dqϱ < ϵ

thus T is continuous in B as ϖ is arbitrarily fixed.
Now,

χc0 (TB) = lim
n→∞

sup
y∈B

sup
k≥n

∣∣∣∣∣∣
∫ 1

0
H(ϖ, qϱ)fk(ϱ, yy(ϱ))dqϱ

∣∣∣∣∣∣
≤

1
Γq(α)

lim
n→∞

sup
y∈B

sup
k≥n

∫ 1

0

{
Ak(ϱ) + Bk(ϱ)

∣∣∣yk(ϱ)
∣∣∣} dqϱ

≤
B

Γq(α)
lim
n→∞

sup
y∈B

sup
k≥n

∫ 1

0

∣∣∣yk(ϱ)
∣∣∣ dqϱ

≤
B

Γq(α)
χc0 (B),

which gives

sup
x∈I
χc0 (TB) ≤ sup

x∈I

B

Γq(α)
χc0 (B), (11)

implies

χC(I,c0)(TB) ≤
B

Γq(α)
χC(I,c0)(B). (12)

Now using assumption (2) and Remark 2.4 we can say ∃ a fixed point for T in B ⊆ C (I, c0), i.e., the
system we considered has a solution in C (I, c0) .

Example 3.6. To validate the last Theorem 3.5, we suppose an infinite system as:

D1.5
0.5yn(ϖ) = −

ϖ

n2 − Γ0.5 (1.5)

 ∞∑
k=n

1
6k2

 yn(ϖ), yn(0) = yn(1) = 0, (13)

for ϖ ∈ [0, 1] = I and n ∈N.
And we write,

fn (ϖ, y(ϖ)) =
ϖ

n2 + Γ0.5 (1.5)

 ∞∑
k=n

1
6k2

 yn(ϖ)

and

q = 0.5, α = 1.5.

Here

|fn (ϖ, y(ϖ))| ≤
ϖ

n2 + Γ0.5 (1.5)

 ∞∑
k=n

1
6k2

 |yn(ϖ)|
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which implies

|fn (ϖ, y(ϖ))| ≤
1
n2 +

Γ0.5 (1.5)π2

36
|yn(ϖ)| .

We get An(ϖ) = 1
n2 , Bn(ϖ) = Γ0.5(1.5)π2

36 . Clearly the sequence
{

1
n2

}
is uniformly convergent to zero on I = [0, 1]

and
{
Γ0.5(1.5)π2

36

}
is equibounded on I. Also,

A = 1, B =
Γ0.5 (1.5)π2

36

and B
Γ0.5(1.5) < 1 i.e.B < Γ0.5 (1.5) .

If y(ϖ) ∈ C(I, c0) then for all ϖ ∈ I, lim
n→∞
fn (ϖ, y(ϖ)) = 0 i.e. {fn (ϖ, y(ϖ))}∞n=1 ∈ C(I, c0).

Let z(x) = {zn (ϖ)}∞n=1 ∈ C(I, c0) and ϵ > 0.
For arbitrary fixed ϖ ∈ I we have

∥ (fy)(ϖ) − (fz)(ϖ) ∥c0≤ sup
n≥1
|fn (ϖ, y(ϖ)) − fn (ϖ, z(ϖ))| ≤

π2Γ0.5 (1.5)
36

∥ y(ϖ) − z(ϖ) ∥c0 .

Thus

∥ (fy)(ϖ) − (fz)(ϖ) ∥C(I,c0)< ϵ

whenever

∥ y(ϖ) − z(ϖ) ∥C(I,c0)<
36ϵ

π2Γ0.5 (1.5)

which proves the equicontinuity of ((fy)(ϖ))x∈I on C(I, c0). Since all the required conditions are satisfied, using Theorem
3.5 we can conclude that the considered system (13) has a solution in C (I, c0).

4. Concluding remarks

Here in this paper, we draw connections among three disciplines of mathematics namely the concept
of MNC, infinite system of nonlinear q-fractional equations with boundary conditions and Banach space
theory. We begin our discussion by proving a Darbo-type fixed theorem, later to use it on a sequence space
with a suitable MNC predefined on it. Henceforth, we prove the existence of solution to our nonlinear
q-fractional boundary value problem (infinite system). We conclude our discussion with an example that
validate our findings.
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