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Available at: http://www.pmf.ni.ac.rs/filomat

Ideal convergence of multiset sequences

Nihal Demira, Hafize Gümüşb,∗
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Abstract. Although elements are written only once in classical set theory, it is possible to find many exam-
ples in daily life where an element is repeated more than once in a set and each repetition is indispensable.
This situation is an indication of how important multisets are. On the other hand, ideal convergence is a type
of convergence that generalizes many convergence types, and it is quite interesting how this convergence
type can be defined for multiset sequences and what properties it will provide. For this purpose, in this
paper we introduce the ideal convergence of multiset sequences and we investigate some basic algebraic
and topological properties of a multiset sequences.

1. Introduction and Background

1.1. History of multiset sequences
In classical set theory, the elements of a set are written only once. Unlike this, multiset is a collection of

objects in which elements are allowed to repeat. In fact, it is possible to see multisets in many areas of our
lives. For example:

Telephone numbers: 0 535 7597...
Computer codes: 1110001101101...
Water molecule: H2O
Coincident roots of equations: (x − 3)2 = 0.
In each example, there are same numbers and same molecules that play different roles. If these numbers

are used once rather than multiple times, it is clear that there will be problems. Weyl explained this situation
as there can be more than one white ball, more than one red ball, and more than one green ball in the same
sack and he tried to apply his notion of multiset (a set with an equivalence relation) to a variety of problems
in physics, chemistry, and genetics [37]. Hence, multisets are very interesting in mathematics, physics,
philosophy, logic, linguistics, computer science, etc. Manna and Waldinger develop an elementary theory
of bags using a primitive binary insertion symbol ⊙. If an atom u has multiplicity n ≥ 0 in bag x, then u has
multiplicity n+1 in bag u⊙x. Their theory BAG admits only finite collections of atoms (no hierarchy of bags)
and is developed to the point of a simple algebra of bags [21]. Actually, the development of multiset theory
is, in fact, one small part of the remarkable proliferation of non-classical set theories such as Zadeh’s fuzzy
set theory, Vopënka’s alternative (or semi-) set theory, Church’s set theory with a universal set, intuitionistic
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and constructive set theory and Pawlak’s rough set theory. It is also possible to say that in social sciences,
multisets can be used to model social structures, etc. [35].

It is observed from the survey of literature, multisets have been studied under the names of bags,
occurrence set, sample and weighted set in the past years. Since the 1970s, Bender [2], Lake [19], Hickman
[14], Meyer [23], and Monro [24] investigated some important properties of multisets. In 1981, Knuth
[17] studied computer programing and multisets. On the other hand, Blizard studied on multisets in his
doctoral thesis [5], [4], [3]. In multisets, the order of the elements is not important. So, {1, 3, 5, 3, 4, 1, 1} and
{1, 1, 1, 3, 3, 4, 5} sets are same. On the other hand, it is very important how many times the elements are
repeated in the set. We denote {1, 3, 5, 3, 4, 1, 1} multiset by {1, 3, 4, 5}3,2,1,1 or {1|3, 3|2, 4|1, 5|1} and it means
1 appearing 3 times, 3 appearing 2 times, 4 appearing 2 times and 5 appearing 2 times. The cardinality of a
multiset is the sum of the multiplicities of its elements.

Studies on multisets continued in the 2000s and the studies titled ”Mathematics of multisets” published
by Syropoulos in 2001 [35], ”An overview of the application of multiset” published by Singh in 2007 [33]
, ”Soft multisets” published by Majumdar in 2012 [20], ”On multisets and multigroups” published by
Nazmul in 2013 [24] and ”Multigroup actions on multisets” published by İbrahim in 2017 [15] took its
place among the important studies.

Despite all these studies several mathematicians have voiced their belief that the lack of adequate
terminology and notation for this common concept has been a definite handicap to the development of
mathematics, logic and philosophy. After these studies on multisets, the multiset sequences and their
properties have started to be the subject of research. Usual convergence of multiset sequences was studied
by Pachilangode and John in 2021 [29] and statistical convergence on R was studied by Debnath and
Debnath in 2021 [8].

Definition 1.1. [29] Let R be the set of real numbers. A sequence in which all the terms are multiset is known as a
multiset sequence. For any sequence x = (xi) ∈ R, a multiset sequence is defined by

mx = {xi|ci : xi ∈ R, ci ∈N0} .

Example 1.2. [29] Let Nn = {1|1, 2|2,···,n|n}. Then {Nn} is an multiset sequence and nth terms has n(n+1)
2 elements.

Example 1.3. [29] The prime factorises n completely, and let Fn be the mset of these factors, including 1. Then,
F1 = {1}, F2 = {1, 2}, F3 = {1, 3}, F4 = {1, 2, 2} and F36 = {1, 2, 2, 3, 3}. In this case {Fn} is an mset sequence.

1.2. Statistical convergence of multiset sequences
Statistical convergence was formally introduced by Fast [10] and Steinhaus [34] , independently. After

the 1950s, studies on the concept of statistical convergence made rapid progress and many studies were
conducted on this subject [11] , [32], [36] . Since it was defined, many researchers have studies on this
subject [26] , [28] .

Definition 1.4. [10] A number sequence (xi) is statistically convergent to L provided that for every ε > 0,

lim
n→∞

1
n
|i ≤ n : |xi − L| ≥ ε| = 0.

In this case we write st − lim xi = L and usually the set of statistically convergent sequences is denoted by S.

Debnath and Debnath studied statistical convergence of multiset sequences on R [8] and definitions of
statistical convergence of multiset sequences are basis of our study.

Definition 1.5. [8] LetN0 is the set of non-negative integers. The set

mR = {mx = xi|ci : xi ∈ R and ci ∈N0}

is called multiset of real numbers.
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Definition 1.6. [8] Let x = (xi) be a real sequence and c = (ci) be a sequence ofN0. A multiset sequence mx = (xi|ci)
of mR is statistically convergent to l|c of mR if given for any ε > 0,

lim
n→∞

1
n

∣∣∣∣∣i ≤ n :
√

(xi − l)2 + (ci − c)2
≥ ε

∣∣∣∣∣ = 0.

Example 1.7. [8] Consider a multisequence mx = (xi|ci), given by

xi =

{
i, i = n2; n = 1, 2, 3, ...
1, otherwise. and ci =

{
i, i = n3; n = 1, 2, 3, ...
5, otherwise. .

Then for any ε > 0,

lim
n→∞

1
n

∣∣∣∣∣i ≤ n :
√

(xi − 1)2 + (ci − 5)2
≥ ε

∣∣∣∣∣
= Density of perfect squared or perfect cubic positive integers or both

≤ lim
n→∞

1
n

(
n

1
2 + n

1
3 − n

1
6

)
= 0.

Therefore, the multisequence mx statistically converges to 1|5.

1.3. I−convergence
I−convergence has emerged as a generalized form of many types of convergences. This means that, if

we choose different ideals we will have different convergences. Kostyrko et al. [18] introduced this concept
in a metric space. Due to its generalization property, it has been and continues to be the center of many
researches [1], [12], [13], [16], [27], [31]. We will explain this situation with two examples later. Before
defining I−convergence, the definitions of ideal and filter will be needed.

Definition 1.8. A family of sets I ⊆ 2N is an ideal if the following properties are provided:

i) ∅ ∈ I
ii) A,B ∈ I implies A ∪ B ∈ I
iii) For each A ∈ I and each B ⊆ A implies B ∈ I.
We say that I is non-trivial ifN < I and I is admissible if {n} ∈ I for each n ∈N.

Definition 1.9. A family of sets F ⊆ 2N is a filter if the following properties are provided:

i) ∅ < F ,
ii) If A,B ∈ F then we have A ∩ B ∈ F ,
iii) For each A ∈ F and each A ⊆ B we have B ∈ F .

Proposition 1.10. If I is an ideal inN then the collection,

F (I) = {A ⊂N :N\A ∈ I}

forms in a filter inNwhich is called the filter associated with I.

Definition 1.11. [18] A sequence of reals x = (xi) is I−convergent to L ∈ R if and only if the set

Aε = {i ∈N : |xi − L| ≥ ε} ∈ I

for each ε > 0. In this case, we say that L is the I−limit of the sequence x.

Example 1.12. Define the set of all finite subsets ofN by I f . Then, I f is an ideal and I f −convergence coincides
with the usual convergence.

Example 1.13. Define the set Id by Id = {A ⊂N : d(A) = 0} where d(A) = limn
|An |

n . Then, Id is an ideal and
Id−convergence gives the statistical convergence.
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2. Main Results

After specifying our purpose, let’s start by giving the definition of ideal convergence for multiset
sequences onR.The aim of the study is to generalize the concepts of convergence and statistical convergence
which were previously defined for multiset sequences with the help of ideals. As it is known, multisets
are sets whose elements can repeat a finite number of times. Due to repetitive elements of the multisets, it
is necessery to define a new metric in order to work on multisets. Let (X, d) be a metric space and M be a
multiset in a metric space (X, d). The d metric is not very functional on M because of the repetitive elements
of M. Hence, if a new dM metric is defined on M, then (M, dM) is a metric space. In this study, it is defined as

dM
(
mx,my

)
= dM

(
xi|ci, yi|ti

)
=
√

(xi − yi)2 + (ci − ti)2 where dM : M ×M→ R

for each i ∈N. It is easily seen that dM satisfies the metric conditions with Minkowsky inequality. With the
help of all this information, the ideal convergence of multiset sequences on R is defined.

Definition 2.1. A multiset sequence mx = (xi|ci) of mR is convergent to l|c if given the set

lim
i→∞

dM (xi|ci, l|c) = lim
i→∞

√
(xi − l)2 + (ci − c)2 = 0.

In this case, xi → l and ci → c i.e. for each ε > 0, |xi − l| < ε and |ci − c| < ε.

Definition 2.2. A multiset sequence mx = (xi|ci) of mR is I−convergent to l|c if given the set

{i ∈N : dM (xi|ci, l|c) ≥ ε} =
{

i ∈N :
√

(xi − l)2 + (ci − c)2
≥ ε

}
∈ I

for each ε > 0. In this case, we say that l|c is the I− limit of the sequence x and it is denoted by I− lim mx = l|c.

Theorem 2.3. Every constant (l|c) multiset sequence is I−convergent to l|c.

Proof. Let mx = (l|c) be a constant multiset sequence. Then,{
i ∈N :

√
(l − l)2 + (c − c)2

≥ ε

}
= ∅ ∈ I

and we have the proof.

Theorem 2.4. The convergent multiset sequences are also I−convergent.

Proof. Let mx = (xi|ci) be a convergent multiset sequence which converges to l|c of mR. Then, from the
definition, (xi) converges to l and (ci) converges to c. We know that, every convergent sequence is also
I−convergent to the same limit. Hence, for each ε > 0 we have

A = {i ∈N : |xi − l| ≥ ε} ∈ I

and

B = {i ∈N : |ci − c| ≥ ε} ∈ I.

On the other hand,√
(xi − l)2 + (ci − c)2

≤

√
(xi − l)2 +

√
(ci − c)2

= |xi − l| + |ci − c| .
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For each i ∈ A ∩ B we can write,{
i ∈N :

√
(xi − l)2 + (ci − c)2

≥ ε

}
⊆ {i ∈N : |xi − l| ≥ ε} ∪ {i ∈N : |ci − c| ≥ ε} .

According to the first property of the ideal, the right side belongs to the ideal. Again, in accordance with
the second property of the ideal,{

i ∈N :
√

(xi − l)2 + (ci − c)2
≥ ε

}
∈ I

and this completes the proof.

Considering thatI−convergence is a type of convergence that generalizes usual convergence, it is clear that
the inverse of this theorem may not always be true. We chose to leave this situation as an open problem.

Theorem 2.5. The I−limit of a multiset sequence is unique.

Proof. Let a multiset sequence mx = (xi|ci) has two limits such as (l1|c1) and (l2|c2). Then for each ε > 0,{
i ∈N :

√
(xi − l1)2 + (ci − c1)2

≥
ε
2

}
∈ I

and{
i ∈N :

√
(xi − l2)2 + (ci − c2)2

≥
ε
2

}
∈ I.

This means that,

A1 (ε) =
{

i ∈N :
√

(xi − l1)2 + (ci − c1)2 <
ε
2

}
∈ F (I)

and

A2 (ε) =
{

i ∈N :
√

(xi − l2)2 + (ci − c2)2 <
ε
2

}
∈ F (I)

where F(I) is the filter produced by I.
For each i ∈ A1 (ε) ∩ A2 (ε) , from Minkowsky inequality we have,√

(l1 − l2)2 + (c1 − c2)2 =

√
[(l1 − xi) + (xi − l2)]2 + [(c1 − ci) + (ci − c2)]2

≤

√
(xi − l1)2 + (ci − c1)2 +

√
(x2 − l2)2 + (ci − c2)2

< ε
2 +

ε
2 = ε

Therefore,
√

(l1 − l2)2 + (c1 − c2)2 < ε for infinitely many i ∈ N which implies (l1 − l2)2 + (c1 − c2)2 = 0.
So, l1 = l2 and c1 = c2 which completes the proof.

Definition 2.6. A multiset sequence mx = (xi|ci) is said to be I−bounded if there exists a non-negative real number
K such that{

i ∈N :
√

x2
i + (ci − 1)2 > K

}
∈ I.
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Example 2.7. Consider a multisequence mx = (xi|ci), given by

xi =

{
i, i = n2; n = 1, 2, 3, ...
1, otherwise. and ci =

{
i, i = n3; n = 1, 2, 3, ...
5, otherwise. .

Then,

√
x2

i + (ci − 1)2 ≤

√
x2

i +

√
(ci − 1)2 = |xi| + |ci − 1|{

i ∈N :
√

x2
i +

√
(ci − 1)2 > K

}
⊆ {i ∈N : |xi| > K} ∪ {i ∈N : |ci − 1| > K} .

The right side belongs to the ideal so mx = (xi|ci) is bounded.

Theorem 2.8. An I−convergent multiset sequence is I−bounded.

Proof. Let mx = (xi|ci) is ideal convergent to l|c. Then for any ε > 0,{
i ∈N :

√
(xi − l)2 + (ci − c)2

≥ ε

}
∈ I

which is equivalent to{
i ∈N :

√
(xi − l)2 + (ci − c)2

≥ ε

}
∈ I =⇒ {i ∈N : |xi − l| < ε, |ci − c| < ε} ∈ F (I)

=⇒ {i ∈N : l − ε < xi < l + ε, c − ε < ci < c + ε} ∈ F (I)

=⇒
{
i ∈N : xi < K′ , ci < K′

}
∈ F (I),

where K′ = max (l + ε, c + ε)

=⇒
{
i ∈N : x2

i + c2
i < 2K′2

}
∈ F (I)

=⇒
{
i ∈N : x2

i + (ci − 1)2 < 2K′2
}
∈ F (I)

=⇒
{
i ∈N :

√
x2

i + (ci − 1)2 < K
}
∈ F (I)

where K2 = 2K′2.

=⇒
{
i ∈N :

√
x2

i + (ci − 1)2
≥ K
}
∈ I

Then, for any number N greater than K,{
i ∈N :

√
x2

i + (ci − 1)2 > N
}
∈ I.

Hence, mx is ideal bounded.

Now let’s give the definition of I∗−convergence, which is an important definition, and examine its
relationship with I−convergence.
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Definition 2.9. A multisequence mx = (xi|ci) is said to be I∗−convergent to l|c if and only if there exists a set
M = {m1 < m2 < ... < mi < ...} ∈ F (I) such that

(
xmi |cmi

)
submultiset sequence converges to l|c.

Theorem 2.10. If a multisequence mx is I∗−convergent to l|c then it is I−convergent to l|c.

Proof. Assume that mx is aI∗−convergent sequence to l|c. Then, there exists a set H ∈ I such that H =N\M
and lim

i→∞
dM(xmi |xmi , l|c) = 0. Let ε > 0. From the convergence of the submultiset sequence, there exists i0 ∈N

such that

dM(xmi |cmi , l|c) =
√

(xi − l)2 + (ci − c)2 < ε

for each i > i0.When the H set and the definition of convergence are considered together we can write,{
i ∈N :

√
(xi − l)2 + (ci − c)2

≥ ε

}
⊆ H ∪

{
m1 < m2 < ... < mi0

}
.

Since the right side belongs to the ideal we have the proof.

We will state in the next theorem that the inverse of Theorem 2.11 will be satisfied when the ideal I
has the property (AP). If I has the property (AP), then I−convergence and I∗−convergence are equivalent.
What would be the situation when the (AP) property is not provided we chose to leave it as an open
problem. In this case, let’s define the (AP) property first.

Definition 2.11. Let I ⊂ 2N is an admissible ideal. I is said to satisfy the condition (AP) if for every countable
family of mutually disjoint sets {A1,A2, ...} belonging to I there exists a countable family of sets {B1,B2, ...} such that
A j∆B j is finite set for j ∈N and B = ∪∞j=1B j ∈ I. In this definition, A j∆B j =

(
A j\B j

)
∪

(
B j\A j

)
.

Theorem 2.12. Let I ⊂2N is an admissible ideal. If I has property (AP), for the multiset sequence mx = (xi|ci),
I − limi→∞mx = l|c implies I∗ − limi→∞mx = l|c.

Proof. Assume that I is an ideal that property that has (AP) and I − limi→∞mx = l|c. Then, for ε > 0

Aε =
{

i ∈N :
√

(xi − l)2 + (ci − c)2
≥ ε

}
∈ I.

Now, let’s create mutually disjoint and countable sets with the help of the elements of the multiset
sequence. Put

A1 =

{
i ∈N :

√
(xi − l)2 + (ci − c)2

≥ 1
}

A2 =

{
i ∈N : 1

2 ≤

√
(xi − l)2 + (ci − c)2 < 1

}
...

Ai =

{
i ∈N : 1

i ≤

√
(xi − l)2 + (ci − c)2 < 1

i−1

}
for i ∈N. By property (AP), there exists a sequences of sets {B1,B2, ...} such that A j∆B j is finite set for j ∈N
and B = ∪∞j=1Bi ∈ I. Here, since both A j, B j are infinite sets and A j∆B j is a finite set, this means that there
are infinite elements at the A j ∩ B j. We can also say that, for a given j > i0, the elements of A j and B j are
same.
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We know that B = ∪∞j=1B j ∈ I. Choose M = {m1 < m2 < ...} = N\B ∈ F (I) and let’s see that

limi→∞ dM(xmi |cmi , l|c) = 0. Let η > 0 and for k ∈N, 1
k+1 < η. It is obvious,{

i ∈N :
√

(xi − l)2 + (ci − c)2
≥ η

}
⊂ ∪

k+1
j=1A j.

Since A j∆B j finite for j = 1, 2, ..., k + 1 there exists i0 ∈N such that(
∪

k+1
j=1B j

)
∩ {i ∈N : i > i0} =

(
∪

k+1
j=1A j

)
∩ {i ∈N : i > i0} . (1)

If i > i0 and i < B then, i <
(
∪

k+1
j=1B j

)
and by (2.1), i <

(
∪

k+1
j=1A j

)
. But then,

dM(xmi |cmi , l|c) =
√(

xmi − l
)2 + (cmi − c

)2 < 1
k + 1

< η

for ε > 0 and i > i0,we have the proof.

3. Conclusions

Multisets have a very important place in many areas of science and even in our daily lives. Therefore,
the properties of multiset sequences consisting of these sets are very interesting. On the other hand, how
the concept of I−convergence, which generalizes many convergence types, can be defined for multiset
sequences is the main purpose of this study. We think that, this study will hold an important place for other
studies in this subject.
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