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Threshold dynamics of an age-space structured brucellosis model with
nonlinear incidence rate on a heterogeneous environment
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?Facultad de Matemdticas, Universidad Auténoma de Yucatin, Anillo Periférico Norte,
Tablaje Catastral 13615, C.P. 97119, Mérida, Yucatin, Mexico

Abstract. We propose an age-space structured brucellosis model that includes diffusion with heteroge-
neous coefficients and a general nonlinear incidence rate. The renewal process is used to calculate the next
generation operator, and the basic reproduction number R is defined by the spectral radius of the next

generation operator. We prove that Ry governs the threshold dynamics of the brucellosis model: when
Ro < 1 the disease dies out, and when R, > 1 the disease persists.

1. Introduction

Brucellosis is a zoonotic disease caused by one of several species of the Gram-negative coccobacillus
Brucella; it is endemic to the Middle East, sub-Saharan Africa, and Central America [4]. Brucellosis affects
primarily domestic animals, although humans are often infected due to direct contact with animals or
ingestion of contaminated dairy products [3]. This disease causes a huge burden in society due to long-
term treatment of the infected people and losses in livestock, also causing abortion and infertility in
productive animals [1, 3]. Hence, many researchers have tried to study the prevalence of brucellosis and
determine the best strategies to control its spread with the aid of mathematical modelling. For instance, an
ordinary differential equation model for bovine brucellosis with four classes was proposed in [7]. Liang et
al. [10] studied an SI model of animal brucellosis with transport, while Hou et al. [9] evaluated the effect
of vaccination on brucellosis prevention.

More recent models have included spatial heterogeneity to account for the different contact rates in each
geographic location, as well as the movement of animals in their living space, which can be described with
systems of partial differential equations. A two-patch model was proposed in [14] to analyse the spatial
and seasonal variations in the transmission of brucellosis. On the other hand, Yang et al. [16] proposed an
age-structured model with spatial diffusion and studied its threshold dynamics with respect to the basic
reproduction number. Further, the dynamics of a periodic SIV brucellosis model with nonlocal infection
and heterogeneous diffusion rates was studied in [17].

In this paper, we propose a brucellosis transmission model with infection age and space structure
that generalizes the model studied in [16] by including heterogeneous coefficients and a general force of
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infection. Our model is given by

3S(t, x)
ot

=V - [Ds(x)VS(t, x)] + A(x) — u(x)S(t, x)
- S(t,x) [foo B(a,x)g(i(t, a,x)) da + B.(x)v(t, x) |, x € Q)
0

(% " %)i“f a,%) = V- [Dia, 2)Vi(t,a,x)] - [p(x) + a(@W))i(t,a,x),  a20, x€Q;

az’g;x) = V- [Dy(x)Volt, x)] + fo ) p(a, x)i(t, a,x) da
— c(x)v(t, x), x€Q;
i(t,0,x) = S(t,x) [ fo ) B(a, x)g(i(t,a, x)) da + Bo(x)u(t, x)], xeQ;
[Ds(x)VS(t, x)] - n = [Di(x)Vi(t, a,x)] - n = [Dy(x)Vo(t, x)] -n = 0, 120, x€dQ,
with the initial conditions
S(0,%) = ¢s(x) 20, i(0,a,%) = Pi(a,x) € LY (Ry; C(Q)), 0(0,x) = o(x) 20,  x€Q. )

The variables S(t,x) and v(t,x) denote the densities of susceptible animals and brucellosis virions,
respectively, at time ¢t > 0 and location x € Q, where () is a bounded, connected subset of IR”, called the
habitat. We denote by i(t, a, x) the density of infected animals with infection age a at time ¢ and location x.

The diffusion coefficients of susceptible animals, infected animals, and brucellosis virions are Ds(x),
Di(a, x), and Dy(x), respectively. The parameters A(x), u(x), and a(a, x) represent the birth rate, natural death
rate, and disease-induced death rate of animal population, respectively; c(x) is the clearance rate of virions.
Susceptible animals can be infected by infected animals with infection age a at rate 5(a, x)g(i(t, a, x)), and by
brucellosis virions at rate ,(x)v(t, x). Each infected animal with infection age a4 produces new virions at rate
p(a, x); dQ is the boundary of Q and n denotes the outward unit normal vector.

The organization of this paper is as follows: in Section 2, we present the assumptions of the model and
prove the existence and uniqueness of positive solutions. In Section 3, we compute the basic reproduction
number. The threshold dynamics, stability of the disease-free equilibrium, and uniform persistence of the
model are studied in Section 4. Finally, Section 5 presents some conclusions for our work.

2. Preliminaries
Based on [15], we make the following assumptions for the model parameters.
Assumption 2.1.
(i) For each x € Q, A(x) is strictly positive.

(ii) There exist positive constants d; (j = S,i,v) such that d; < D;(-) (j = S,i,0) for all x € Q.

(iii) For ¢ = a, B, p, there exist ay,a, > 0, | € L'(R,) and Yt e L®(Ry) such that Y(a) < P(a,x) < ¢*(a) for
a € [a1,a2], x € Q. We will use the notation

1 := ess sup P (a).

acR,

The total infectivity due to contact with infected population S(t, x) fooo B(a, x)g(i(t, a, x)) da is inspired by
that in [5] and depends on a general nonlinear function g, which satisfies the following assumptions.
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Assumption 2.2. For y € Ry, g(y) = 0 with equality if and only if y = 0; g’(y) = 0 and g’ (y) < 0.

The above assumption implies that g’(y) is bounded above by the constant K := g’(0) > 0 for vy € R,.
Thus, by the Mean Value Theorem, we can see that

9(y1) = 9w < Klyr —yal,  forall y1, > > 0. 3)
Define the functional spaces X = C(Q,R) and Y = LY(R,, X) with the norms

loll =suptowt el = [ @l a

xeQ)

forp € X, p € Y. Let X, and Y, denote the positive cones of X and Y, respectively. Then, by [11, Theorem
1.5], the operator V - [D;(x)V] (j = S,1,v) with the no-flux boundary condition generates the semigroup

(TN = [ renemdy =123

where I'; (j = 1,2, 3) are Green’s functions and ¢ € X. Furthermore, by [12, Corollary 7.2.3], T(t) : X — X
(j = 1,2,3) are strongly positive and compact for any t > 0.

Let B(t,x) := i(t,0,x) for (t,x) € Ry x Q. The second equation of (1) can be solved by the method of
integration along the characteristic lines t —a = constant. The solution is given by

1i(a, x) f Ia(a, x, y)B(t —a,y)dy, a<t xe)

itta,0)=1 1 x)Q 4)
m 5 Do(a,x, y)¢pila—t,y)dy, a>t xe€Q,

where n(a, x) = exp (—y(x)a - fou a(s, x) ds). Then, we can reformulate system (1) as

aS(&tt, x) _ V - [Ds(x)VS(t, x)] + A(x) — u(x)S(t, x) — B(t, x), xeQ:
t
B(t,x) = S(¢, x)f B(a, x) g(n(a, x)f I'2(a, x, y)B(t —a,y) dy) da
0 Q
+ S(t, x)Bo(x)v(t, x) + S(t, X)F(t, x), x e
F(t,x) = f:o pla+t,x) g(% 5 Io(a+t,x, y)pi(a, v) dy) da, x € -
t
avgl: x) =V - [Dy(x)Vo(t, x)] + f p(a, x)m(a, x)f Ta(a,x, y)B(t —a,y)dy da
0 Q
—c(x)o(t, x) + G(t, x), xeQ;
(" mi(a + t,x) 4 ‘
G(t,x) = j(; pla+t, x)—n(a, ) fQ Ta(a +t,x,y)di(a, y) dy da, xeQ;
[Ds(X)VS(t, X)] ‘n= [DD(X)VU(t, X)] n= 0, xe &Q

The existence and uniqueness of positive solutions to system (1) can be obtained via the Banach-Picard
fixed point theorem, as follows.

Theorem 2.3. Let ¢ = (s, ¢i, pp)T € XXYXX. Then, system (1) has a unique solution defined on [0, TIX(XXY x X).

Proof. Define a functional space Yt = C([0, T], X) with the norm

lell,, = sup loct, )y, @ evr
0<t<T
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Solving the first equation of (1), we have

t
S(t,x) = Fs(t,x) + f e W f Ty(t—a,% y)[AQ) - Bl@,y)| dyda, (%) €[0,TIxQ,
0 Q

where Fs(t, x) = e #®! fQ T1(t, x, Y)Pps(y) dy. For (t,x) € [0, T] X Q, by (4) and the definition of B, we get

¢
B(t,x) = S(t, x) [F(t, X) + fo B(a, x) g(n(a, X) er(a, X, ¥)B(t —a,vy) dy) da + o (x)v(t, x)] , (6)

n(a+t,x)

where F(t,x) = fooo Bla+tx)g (n— fQ Fa(a+t,x, y)pi(a, y) dy) da. Using a similar argument, we have

(a,x)

t o)
o(t,a) = Fo(t, x) + f ee(t=a) f T3(t—a,x,y) f p(b,x)i(a,b,y)dbdyda, (tx)€[0,T]xQ,
0 Q 0

where F,(t, x) = e=™! fQ I'3(t, x, v)$o(y) dy. Again, according to (4), it follows that

) t
f p(a,x)i(t,a,x)da = f pa, x)r(a,x) | T2a,x,y)B(t —a,y)dyda + Fy(t, x),
0 0 Q

where Fp(t, x) = fooo pla + t,x) 2@ fQ Ta(t, x, y)io(a, y) dy da. Substituting S and v into (6) leads to

m(a,x)
t
B(t,x) = [Ps(t, X) + j(; e H(E=a) L Ii(t—a,x, y)[A(x) — B(a, y)] dy da]

t
X [F,-(t, x) + Bo(x) f e cMt=0) f [3(t —a,x,y)Fy(a,y)dy da
0 Q

' @)
+ L B(a, x) g(n(a,x) fQFz(a, x,¥)B(t —a,vy) dy) da

t 00
+ Bo(x) f g~c(t=a) f T3t —a,x,vy) f p(b, x)1(b, x) f T2(b, y,2)B(a — b,z) dzdbdy da
0 Q 0 Q
.= F[BI(t, x),

where ¥ : Y7 — Y7 is a nonlinear operator.
Next, we will show that the operator ¥ has a unique fixed point in Y7, which will guarantee the existence
of a unique solution to system (1). For convenience, we define

t
Fip(t, x) = Fi(t, x) + Bo(x) j(; g~ (t-a) fQ [3(t —a,x,y)Fy(a, y) dyda,
t
0(B) = f e @) f Ti(t —a,x, y)[A) - Ba, y)| dy da,
0 Q
t
O,(B) = f B(a, x) g(n(a, x)f Ia(a, x, y)B(t —a,y) dy) da,
0 Q

t 00
@3(B) = Bu(v) f e~ <@t=0) f Ts(t—a,x,y) f p(b, ) (b, x) f T2(b,y,2)B(a —b,z)dzdbdyda
0 Q 0 Q
for each (t,x) € [0, T] X Q. Then

F(B) = (Fs + ©1(B))(Fjy + ©2(B) + Os(B)).
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For any By, By € Y1, we set B = By — B,. Then, (3) implies that ®,(B;) — ©,(B,) < K©,(B). Hence,
F(B1) —F(By) < Fs[K@z(B) + 93(3)] + F;,©1(B)

+ [©:2(B1) + ©5(B1)]©1(B1) — [©:(Ba) + ©5(B,)|©1(B2)
< |(P5 + @1)(1((:‘)2 + @3) + (F,'p + KO, + ©3)0, B,

where
6, = f e H@(E=) f I'i(t—a,x,y)dyda,
= f (a,x)m(a, x)fl"z(a x,y)dyda,
= Bolx )f —c(x)(t-a) f T3(t—a,x, y)f p(b,x)n(b,x)f I'»(b,y,z)dzdbdy da.
Q 0 Q
Denote

m(T) = |[Fs(T, ) + @1(T, )] (K, + 6s) + [Fi(T, ) + Keu(T,

Then
IF (B1) — F (B)lly, <m(T)[IB1 — Bally, -

Clearly, we can choose T small enough such that m(T) < 1. Hence, applying the contraction operator
theorem [18], we conclude that # has a fixed point and that it is unique. This completes the proof. [

Next, we will prove the positiveness of the solutions.

Theorem 2.4. Let (S,1,v) be a solution of (1) corresponding to ¢s, di, Ppp € X4 X Y, X X,. Then, S5(t,x) > 0,
B(t,x) > 0 and v(t,x) > 0 for all (t,x) € [0, T] X Q.

Proof. From the first equation of (1), we have
t t
S(t,x) = Fs(t, x) + f ¢ J [HEBONIAL A () f Ty(t —a,x,y)dyda,
0 Q

where Fs(t, x) = ftm ¢~ S luG+BUy1db fQ T'1(t, x, y)ps(y) dy da. The positivity of A and ¢g ensures S(t,x) > 0
for each (t,x) € [0, T] X Q.

The positivity of B is established by constructing Picard sequences as follows.

It is clear that By(t,x) := S(t,x)F(t,x) > 0, where F is defined in the proof of Theorem 2.3. Now, we
assume that B,(t,x) > 0 (n € IN) for ¢; > 0 and (¢, x) € [0, T] X Q. Then

t
Bn+1(t1x) = BO(tr x) + S(tr x)[j(; ﬁ(t -4, x) g(ﬂ(t - a/x) L FZ(t —4a,x, ]/)Bn(ﬂr ]/) d]/ da

t 00
—c(x)(t—a) _ _ _
+ﬁv(x)f0 e LR(t a,x,y)jo‘ pla—b,x)m(a—b,x)

f To(a - b, y,2)Bu(b,2) dzdbdy da].
Q

From the nonnegativity of , m and p, together with the positivity of I'; and I's, it follows that B, is positive.
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Next, applying the contraction mapping principle, we show that the sequence {B,};
for any (t, x) € [0, T] X Q as n approaches infinity. For this, we define a variable

B,(t,x) = e MB,(t,a), AeR,, (tx)e[0,T]xQ.

converges to B(t, x)

By the definition of B,, we have
t
Busi(t, x) = e MBo(t, x) + S(t, x)[f B(a, x) g(n(a, x) f Ta(a, x, y)e B, (t — a,y) dy) da
0 o)

t t—a
+ o) f et f By [ oo,
0 Q 0
f To(b, v, 2)e DB, (t —a — b,2) dz dbdy da].
Q
Define B(t, ¥) = maxyeq B(t, x). For any n € N,

||Bn+1 - B"Hoo < §[ foo B(a, x)mt(a, x)Ke ™ f T2(a,x,y)dy da
0 Q

+ Bo(x) fo e~c@m fQ T3(a,x,v) fo p(b, x)1(b, x)

f Ta(b,y, e 0 dzdbdydal [B, - Bt

ﬁKA + .BvP -
B T

where § = maxgeqo,17 [1S(¢, -)||X and ﬁv = maXyeq Po(x). Repeating this process, we have
B = Bl = M0 By - Buc, = 251 - B
where M, = § (EK/\ + ﬁ_v;?) /A%. Therefore, for any m,n € N,

o M S
IBos = Bull, < 757 1B = Boll. -
If we choose A sufficiently large such that M, < 1, then ||Bm - Bn”oo — 0 as n — oo, which implies that
B, — B(t)asn — oo.

By (4), together with the positivity of iy and B, we conclude that i(¢, 4, x) is positive. For the positivity of
v, we will proceed by contradiction.

Suppose that there exists a t, = inf{t € R, : v(t,x;) = 0 for some x; € Q} such that v(t,,x1) = 0. Then

av(t“ olox) < () and u(t,x1) > 0 for t € [0, t,). By the third equation of (1), we can easily obtain

@ = Fy(to, x1) + fvp(a, xl)f fFZ(b’ x1,Y)B(a — b, y)m(b, x1) dbdy da > 0.
0 Q Jo

This leads to a contradiction. Hence, v(t,x) > 0 for all (t,x) € [0, T] X Q. O

3. Basic reproduction number

Lemma 2.2 in [8] ensures that system (1) admits a unique disease-free steady state Ey = (S°(x), 0, 0).
Linearizing (1) at Ey, we obtain

t
B’(t, X) = SO(x)[F(t, x) + Bo(x)Fo(t, x) + f B(a, x)r(a, x) f Ia(a, x, y)g’(O)B(t —a,y)dyda
t 0 Q ®)
+ Bo(x) fo ec(t=a) fo T3t —a,x,vy) f: p(b, x)1(b, x) fQ Ta2(b, y,z)B(a — b,z) dzdbdy da],
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where F(t, x) is defined in system (5) and

t 00
Fo(t,x) = f emet=0) f Ts(t —a,x,v) f p(b,x)—“(f’x) f Ta2(b,y,2)pi(b — a,z) dz dbdy da.
0 Q a n(@—-"b,x) Jo

Note that (8) is a renewal equation, so the next generation operator R is calculated as follows:

RIpI) = ') fo B(a, )e(a, ) fQ Ta(a, %, y)9(y) dy da

- t—C(X)(t—a) _
By(0) fo fo e fg Ta(t—a,%,1) j: p(b, X)e(b, %)

f To(b, v, 2)9(z) dz db dy da dt]
Q

=So(x)[g’(0)j; ﬁ(a,x)n(a,x)fQFz(u,x,y)z/J(y)dyda

w0 [ [ e [ [ 7yt m(b,

f I'2(b, y, 2)Y(z) dzdb dy dt da]
Q
_ q0 ’ *
=05/ [ po0m(,) [ Tatax, 9 dyds
+ Bo(x) fo e fQ Ts(a,x,y) fo p(b, x)1(b, x) fQ Fz(b,y,z)lp(z)dzdbdyda].

Hence, following the definition in [6, 13], the basic reproduction number Rj is given by
Ro = r(R),

where r(-) is the spectral radius of R. Then, we can obtain the following results.

Lemma 3.1. Let R be defined by (9). Then R is strictly positive and compact.

Proof. The positivity of the operator R follows immediately from Assumption 2.1. Now, choose a bounded

sequence {{nlyen in X such that |¢,| < M, n € N, for some M > 0. Denote A = maxeen A(x), E =
maXyeq Po(X), 4 = Minyeq p(X), ¢ = mineeq c(x). For each x € (),

R, 102) < M]3/ 0) f B, x)e(a, %) f Fa(a, %) dy da
0 Q
+ Bo(x) foo e—c(x)afl“3(a,x,y) foo p(b,x)n(b,x)fl"z(b,y,z) dzdbdyda]
0 Q 0 Q

< KTM[M» fo @ fQ Fa(a, %, y) dy da

+B f o f Ta(a,%, 1) f P () f Fz(b,y,z)dzdbdyda].
0 Q 0 Q

Therefore, R is uniformly bounded.
Now, we will show that R is equicontinuous. For any x, £ € (), we have

RIYu13) — RIpal(d) < %[g’«n fo @) fQ IT2(a, %, v) - T2(a,2, )| dy da

+Ef e‘”’f|1"3(a,x,y)—l"3(a,3?,y)|f p+(b)fl"g(b,y,z)dzdbdyda].
0 Q 0 o)
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Define p* = fooo Bt(a)da, p* = fooo pt(@)daand c* = fooo e %" da. From the compactness of the operator A, we
conclude that for any € > 0 there exists a positive constant 0 such that
€ uc'e
I2(a,x,y) —T2(a, %, y)| < ———— and |[3(a,x,y) - T304, % y)| £ ——
2AMg'(0)p* 2AMB.p*

for all x — £ < 6 and y € Q. For such 6 and €, we get R[1,](x) — R[Y,](%) < €. Hence R is equicontinuous,
and its compactness follows from the Arzela—Ascoli theorem. [

Lemma 3.1, together with the Krein-Rutman theorem [2] indicate that Ry is the only positive eigenvalue
associated with a positive eigenvector.
4. Threshold dynamics

In this section, we will study the threshold dynamics of system (1) in terms of the basic reproduction
number Ry.

4.1. Stability of the disease-free equilibrium
Theorem 4.1. If Ry < 1, then the disease-free equilibrium Eg of system (1) is globally attractive.

Proof. By the positivity of the solutions, it follows from the first equation of (1) that, for each € > 0, there
exists a ts > 0 such that S(t, x) < S°(x) + € for all t > ts. From this and using that g(y) < g’(0)y, we get

B(t,x) < [S°(x) + €]7'(0) fo t Bla, x)ni(a, x) fQ Ta(a,x, y)B(t — a,y) dy da
+[S°@) + €][uit, 1) + Ft,w)],  VE>ts, x€Q.
Let B* := limsup,_, . B(t, ). Taking the lim sup on both sides of the above inequality, we obtain
B%(x) < R[B™](x), Yx e Q.

Therefore, if Ry < 1, then B®(x) — 0 as t — oo for every fixed x € Q. Hence, lim; B(t,-) = 0.
Substituting B(f, x) = 0 into the first equation of (5), we get

B0 v 1DsvS 0 + AW - pSE D, xeQ; w0
[Ds(x)VS(t, x)] -n =0, x € 0Q.

By [8, Lemma 2.2], we know that (10) has a unique positive steady state S°(x), which is globally attractive.
Therefore, the DFE E’ is globally attractive for system (1) when Ry < 1. [

4.2. Uniform persistence

In the following, we will prove the uniform persistence of system (1).
Define

Dy = {(¢s,¢i,¢v) € Xy XYy x Xyt ps(x) [f B(a, x) g(d),v(a, x)) da + ﬁv(x)qbv(x)] > 0 for some x € Q}.
0
The (strong) uniform persistence in Dy means that there exists a positive constant € > 0 such that
litminfllB(t, Nx > €
—+0c0

for any initial condition ¢ € Dy. To stablish the uniform persistence of system (1), we first need to prove
the following lemma.



E. Avila-Vales, A.G.C. Pérez / Filomat 37:4 (2023), 9891000 997

Lemma 4.2. Suppose that Ry > 1. Then there exists a positive constant € > 0 such that

limsup [|B(t, -)llx > € (11)

t—>+o0
for any initial condition ¢ € Dy.
Proof. Since Ry > 1, we can choose a constant € > 0 such that, for a sufficiently large T1,

Bo(x)

% [ e‘u(x)ﬂ] [fm B(a, x) g(n(a, x)) da + ) foo p(b, x)r(b,x)db| > 1, Yx € Q. (12)
0 0

)

Suppose by contradiction that (11) does not hold. Then, we can take T; > 0 such that B(t,x) < eforallt > T4
and x € Q. By the first equation of system (5), we have

9S(t,%)
ot

for all t > T;. Integrating equation (13) yields

> V- [Ds(x)VS(t, x)] + A(x) — € — u(x)S(¢, x) (13)

S(t,x) > f te-W)ﬂ f Fl(a,x,y)[/\(x)—e]dyda

A(x) [1 —H(X)t] > % [1 - e‘“(xm]-
p(x

By (4) and the fourth equation of (5), we have

t
o(t, x) > f —e)(t-a) f Is(t—a,x, y)f p(b, x)i(a, b, y) dbdy da

f —c(x)a f I's(a,x,y) f p(b, x)1(b, x)f I'2(b,y,z)B(t —a—b,z)dzdbdy da.
Q
Then, by the second equation of (5), we obtain

Alx) — t
B(t, x) > % [1 - e-y(xm] [j(; B(a, x) g(n(a, X) L Ia(a,x, y)B(t —a,y) dy) da

t t—a (14)
—c(x)a —g—
+‘Bv(x)f0 e fQF3(a,x,y)f0 p(b,x)n(b,x)forz(b,y,z)B(t a b,z)dzdbdyda].

Taking the Laplace transform on both sides of (14), we have

0o t
B(//\7c) > A(x [1 ‘”(")Tl] [f e"”f B(a, x) g(n(a, X) f Ia(a, x, y)B(t —a,y) dy) dadt
0 0 Q

t t—a
Bo®) f et f et f Ty(a, %, 1) f p(b, 2B, )
0 0 Q 0

f Ta(b,y,2)B(t —a — b,z) dzdbdy da dt]

_ _ A - —L(Y)Tl ( —“AMps )
e [1 H f Bla,x) g|n(a, x)fl}ax y)f B(t—a,y)dtdy| da

+ Bo(x) fo ecn fQ T3(a,x,y) f eM fo p(b, x)1(b, x)

f Ta(b, v, 2)B(t —a—b,z) dzdbdt dy da].
Q
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After some algebraic manipulations, we get

€ [1-ewoms]

pi(x)
” —Aa * —At
X[ fo ﬁ(a,x)g(n(u,x) fQ T2, x, y)e fo e B(t,y)dtdy) da
0 00 t
+ o) fo e fQ T3(a,x,y) fo e fo p(b, x)mi(b, x)

f Ta(b, v,2)B(t — b, z) dz db dt dy da]

B3 » 20

(15)

S A(x(x) [1 _p(x)Tl]

X f ﬁ(a,x)g(n(u,x)fFz(a,x,y)e_A” foo e_MB(t,y)dtdy) da
0 Q 0
#fulo) [ " getom [ @ x e [ " pb, ), e | e
0 Q 0 0

f To(b, v,2)B(t, 2) dzdt dbdy da].
Q

Similarly to [16, Section 5], we can define #(a, x) = 7t(a, x)e~Pi@)%a

, where (; is an eigenvalue of —A on Q
with the homogeneous Neumann boundary conditions. Let P(A,x) and K(A, x) be the Laplace transforms

of p(-, x)7t(-, x) and (-, x)g(ﬁ(-, x)), respectively. Then, letting B(A, £) = minyeq Bm) and

R Ax) — Bo(x) —
== [1 ()P()\ )]

we obtain from (15) that B(A, 2) > RB(A, £), contradicting (12). This completes the proof. [

“HET [K(A X) +

The following theorem establishes the strong ||||x persistence of the disease for system (1). The proof of
the theorem can be obtained analogously to [16], replacing only

fQ Ty(a,x,)B(, y) dy n(a)

with
g( f To(a,x,y)B(t, y) dy m(a, x)
Q

in the proof of [16, Lemma 6.3].
Theorem 4.3. If Ry > 1, then there exists a positive constant € > 0 such that

litminfllB(t, Ny > € (16)
—+00

for any initial condition ¢ € D.
Finally, we obtain the following corollary.

Corollary 4.4. If Ry > 1, then system (1) is uniformly strongly persistent, i.e., there exists a positive value € such
that for any solution with initial conditions in D,

liminf S(t,x) >e¢, liminf i(f,a,x) > en(a), liminf o(t,x) > € 17)
t—+00, xeQ) t—+00, x€Q) - t—+00, xeQ)

forall x € Q, a € Ry, where ni(a) = minyeq 7(a, x).
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Proof. By Theorem 4.3, we know that for any (4,x) € R, X Q there exist ¢; > 0 and T; > 0 such that
i(t,a,x) > e;m(a,x) > e;m(a) for all t > Ty. Therefore, there exist T, > T7 > 0 and a sufficiently small e >0
such that i(t,a, x) > e;ni(a) — € for all t > T, x € Q.

Let P(x) = fooo p(a, x)r(a, x) da and define P = min,eq P(X), ¢ = maxyeq c(x). By the third equation of (1),
we have

av((;t/ ) =V - [Dy(x)Vo(t, x)] + [e;P(x) — (—:i] —c(x)v(t, x), xeQ.

Integrating the above equation yields

i

ot eP-¢ -
u(t,x) > (P — el)f e f I's(a,x,y)dyda = T(l —e™).
0 Q

Hence, there exists a positive constant T3 > T such that v(¢, x) > %_el —€’ =1 ¢, forall t > T3, x € Q. By the
positivity of 5(t, x), we readily have S(t, x) > €.

Therefore, € = min{e, €;€,} satisfies (17). O

5. Conclusion

In this paper, we considered an age-since-infection brucellosis model which includes spacial diffusion
with the Neumann (no-flux) boundary condition. We computed the location-dependent next generation
operator R(x), given by the explicit formula (9), by means of a renewal process instead of the abstract
method used in [8]. This allowed us to determine the basic reproduction number R as the spectral radius
of R(x) and prove that the system exhibits a threshold phenomenon in terms of Ry.

The model studied in this work can be considered as a generalization of the model proposed by Yang
et al. [16], since we incorporate heterogeneous, space-dependent coefficients (Ds(x), D;(a, x) and D,(x)) and
assume that the incidence rate by contact with infected animals depends on a nonlinear function g(i(¢, 4, x)),
which is more general than the linear incidence rate considered in [16].
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