Deformed intermadiate and complete lifts of 1-forms to the bundle of 2 -jets

Seher Aslanci ${ }^{a}$
${ }^{a}$ Department of Mathematics Education, Faculty of Education, Alanya Alaaddin Keykubat University, 07425, Alanya, Turkey

Abstract

Using an algebraic approach to the lift problems, we introduce deformed lifts of 1-forms to the bundle of 2-jets and investigate some properties of these lifts.

1. Introduction

1.1. Problems of lifts in the tangent bundles of 2 -jets has been studied by Yano and Ishihara [1],[2] (see also [3],[4]). The purpose of this paper is to study the deformed lift of 1 -forms which is a generalization already known lifts and appear in the context of algebraic approach to problems of lifts.

Let $\Pi=\left\{\binom{J_{j}^{i}}{\alpha}\right\}, \alpha=1, \ldots, m ; i, j=1, \ldots, n$ be a Π-structure on a smooth manifold M_{n} [8]. If there exists a frame $\left\{\partial_{i}\right\}, i=1, \ldots, n$ such that $\left.\partial_{i}\right\}_{j}^{k}=0$, then the Π-structure is said to be integrable. Let \mathfrak{A}_{m} be an associative, commutative and Frobenius algebra with the unit element $e_{1}=1$. An algebraic structure on M_{n} is an integrable Π-structure such that $J_{j}^{m} j_{j}^{i}=C_{\alpha \beta}^{\gamma} j_{j}^{j}$ i.e. if there exists an isomorphism $\mathfrak{A}_{m} \leftrightarrow \Pi$, where $C_{\alpha \beta}^{v}$ are structure constants of \mathfrak{I}_{m}. An algebraic structure is said to be an r-regular Π-structure if the matrices $\binom{J_{j}^{i}}{\alpha}$ of order $n \times n, \alpha=1, \ldots, m$ simultaneously reduce to the form

$$
\binom{j_{j}^{i}}{\alpha}=\left(\begin{array}{cccc}
C_{\alpha} & 0 & \cdots & 0 \tag{1}\\
0 & C_{\alpha} & \cdots & 0 \\
\cdots & \cdots & \cdots & \ldots \\
0 & 0 & 0 & C_{\alpha}
\end{array}\right), \alpha=1, \ldots, m ; \quad i, j=1, \ldots, n
$$

with respect to the adapted frame $\left\{\partial_{i}\right\}$, where $C_{\alpha}=\left(C_{\alpha \beta}^{\gamma}\right)$ is the regular representation of \mathfrak{I}_{m} and r is a number of C_{α}-blocks. We note that the r-regular Π-structure is integrable if a structure-preserving connection with free-torsion exists on M_{n} [5].

[^0]From (1) we easily see that $n=r m$ and the structure tensors J_{σ} have the components $J_{j}^{i}=J_{v \beta}^{u \alpha}=\delta_{v}^{u} C_{\sigma \beta}^{\alpha}, u, v=$ $1, \ldots, r$, where δ_{v}^{u} is the Kronecker delta and $u \alpha=(u-1) m+\alpha, v \beta=(v-1) m+\beta$.

An \mathfrak{A}-holomorphic manifold [6] $X_{r}(\mathfrak{H})$ over algebra \mathfrak{U}_{m} of dimension r is a Hausdorff space with a fixed complete atlas compatible with a group of \mathfrak{A}-holomorphic transformations of space \mathfrak{U}_{m}^{r}, where $\mathfrak{U}_{m}^{r}=\mathfrak{A}_{m} \times \cdots \times \mathfrak{A}_{m}$ is the space of r-tuples of algebraic numbers $\left(z^{1}, z^{2}, \ldots, z^{r}\right)$ with $z^{u}=x^{u \alpha} e_{\alpha} \in \mathfrak{A}_{m}, x^{u \alpha}=$ $x^{i} \in R, i=1, \ldots, n ; u=1, \ldots, r ; \alpha=1, \ldots, m$.

Let now $\Pi=\left\{\begin{array}{c}J \\ J\end{array}\right\}$ be an integrable r-regular structure on $M_{r m}$. The transformation $z^{u^{\prime}}=z^{u^{\prime}}\left(z^{u}\right)$ of local coordinates on $X_{r}(\mathfrak{H})$ is \mathfrak{A}-holomorphic if and only if the transformation $x^{i^{\prime}}=x^{i^{\prime}}\left(x^{i}\right)$ of local coordinates on $M_{r m}$ is a structure-preserving transformation (an admissible transformation), i.e. [6]

$$
J_{\alpha}^{J} A=A J_{\alpha}, A=\left(\frac{\partial x^{j}}{\partial x^{j^{\prime}}}\right), J_{\alpha}^{J}=\binom{J_{j}^{i}}{\alpha} .
$$

Thus the real smooth manifold $M_{r m}$ with an integrable r-regular Π-structure and with a structurepreserving transformations of local coordinates is a real modeling of an \mathfrak{H}-holomorphic manifold $X_{r}(\mathfrak{H})$ over algebra \mathfrak{A}_{m}.

Let now $\Pi=\left\{\begin{array}{l}J \\ J\end{array}\right\}$ be the integrable regular Π-structure on manifold $M_{r m}$ and let $\omega=\omega_{i}\left(x^{1}, \ldots, x^{r m}\right) d x^{i}=$ $\omega_{u \alpha}\left(x^{1}, \ldots, x^{r m}\right) d x^{u \alpha \alpha}$ be an 1 -form on $M_{r m}$. An \mathfrak{A} - algebraic 1 -form $\stackrel{*}{\omega}=\left(\stackrel{*}{\omega}_{u}\right)=\left(\stackrel{*}{\omega} u \alpha e^{\alpha}\right), u=1, \ldots, r, e^{\alpha}=$ $\varphi^{\alpha \beta} e_{\beta}$ (where $\varphi^{\alpha \beta}$ are contravariant coordinates of Frobenius metric) on \mathfrak{A}-holomorphic manifold $X_{r}(\mathfrak{H})$ corresponding to an 1 -form $\omega=\left(\omega_{i}\right)=\left(\omega_{u \alpha}\right), i=1, \ldots, r m$ on $M_{r m}$ is not \mathfrak{A}-holomorphic, in general. To investigate a holomorphic algebraic 1 -form $\stackrel{*}{\omega}$, we consider the Tachibana Φ_{σ}-operators $M_{r m}$ associated with the Π-structure and applied to ω [7]:

$$
\left(\Phi_{\sigma} \omega\right)(X, Y)=\left(\underset{\sigma}{L_{J}} \omega-L_{X}\left(\omega \circ J_{\sigma}\right)\right)(Y),
$$

where $\Phi_{J} \omega$ is a tensor field of type $(0,2), L_{X}$ is the Lie derivations with respect to X. In terms of the coordinate systems, we have

$$
\left(\Phi_{\sigma} \omega\right)_{j i}=\underset{\sigma}{J} J_{j}^{h} \partial_{h} \omega_{i}-\underset{\sigma}{J_{\sigma}^{m}} \partial_{j} \omega_{m}-\omega_{m}\left(\partial_{j} J_{\dot{\sigma}}^{m}-\partial_{i} J_{j}^{m}\right) .
$$

Theorem 1.1. ([8]) An algebraic 1 -form $\stackrel{*}{\omega}$ on \mathfrak{A}-holomorphic manifold $X_{r}(\mathfrak{H})$ corresponding to an 1 -form ω on $M_{r m}$ is an \mathfrak{U}-holomorphic tensor field if and only if

$$
\underset{\sigma}{J_{j}^{h}} \partial_{h} \omega_{i}-J_{\sigma}^{m} \partial_{j} \omega_{m}-\omega_{m}\left(\partial_{j} J_{\sigma}^{m}-\partial_{i} J_{\dot{\sigma}}^{m}\right)=0, \sigma=1, \ldots, m .
$$

1.2. Let $R\left(\varepsilon^{2}\right)$ be an algebra of order 3 with a canonical basis $\left\{e_{1}, e_{2}, e_{3}\right\}=\left\{1, \varepsilon, \varepsilon^{2}\right\}, \varepsilon^{3}=0$. From $e_{\alpha} e_{\beta}=C_{\alpha \beta}^{\gamma} e_{\gamma}$ follows that the (3×3)-matrices $C_{\sigma}=\left(C_{\sigma \beta}^{\gamma}\right), \sigma=1,2,3$ of regular representation of $R\left(\varepsilon^{2}\right)$ have the following forms

$$
C_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), C_{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), C_{3}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) .
$$

Let $z=x^{1}+\varepsilon x^{2}+\varepsilon^{2} x^{3}$. Then the generalized Cauchy-Riemann conditions [8]

$$
C_{\sigma \beta}^{\alpha} \frac{\partial y^{\beta}}{\partial x^{\gamma}}=\frac{\partial y^{\alpha}}{\partial x^{\beta}} C_{\sigma \gamma}^{\beta}
$$

for $R\left(\varepsilon^{2}\right)$-holomorphicity of function

$$
w=w(z)=y^{1}\left(x^{1}, x^{2}, x^{3}\right)+\varepsilon y^{2}\left(x^{1}, x^{2}, x^{3}\right)+\varepsilon^{2} y^{3}\left(x^{1}, x^{2}, x^{3}\right),
$$

reduces to the following equations:
(i) $\frac{\partial y^{1}}{\partial x^{2}}=\frac{\partial y^{1}}{\partial x^{3}}=\frac{\partial y^{2}}{\partial x^{3}}=0$,
(ii) $\frac{\partial y^{2}}{\partial x^{2}}=\frac{\partial y^{1}}{\partial x^{1}}=\frac{\partial y^{3}}{\partial x^{3}}$,
(iii) $\frac{\partial y^{3}}{\partial x^{2}}=\frac{\partial y^{2}}{\partial x^{1}}$.

From (i), (ii), (iii) we have

$$
\begin{aligned}
y^{1} & =y^{1}\left(x^{1}\right) \\
y^{2} & =y^{2}\left(x^{1}, x^{2}\right), \\
y^{2}\left(x^{1}, x^{2}\right) & =x^{2} \frac{d y^{1}}{d x^{1}}+G\left(x^{1}\right), \\
y^{3}\left(x^{1}, x^{2}, x^{3}\right) & =x^{3} \frac{d y^{1}}{d x^{1}}+\frac{1}{2}\left(x^{2}\right)^{2} \frac{d^{2} y^{1}}{\left(d x^{1}\right)^{1}}+x^{2} \frac{d G}{d x^{1}}+H\left(x^{1}\right),
\end{aligned}
$$

where $G=G\left(x^{1}\right)$ and $H=H\left(x^{1}\right)$ are arbitrary functions. Thus the $R\left(\varepsilon^{2}\right)$-holomorphic function $w=w(z)$ has the following expression

$$
w(z)=y^{1}\left(x^{1}\right)+\varepsilon\left(x^{2} \frac{d y^{1}}{d x^{1}}+G\left(x^{1}\right)\right)+\varepsilon^{2}\left(x^{3} \frac{d y^{1}}{d x^{1}}+\frac{1}{2}\left(x^{2}\right)^{2} \frac{d^{2} y^{1}}{\left(d x^{1}\right)^{2}}+x^{2} \frac{d G}{d x^{1}}+H\left(x^{1}\right)\right) .
$$

Similarly, if $w\left(z^{1}, \ldots, z^{n}\right)=y^{1}\left(x^{1}, \ldots, x^{n}\right)+\varepsilon y^{2}\left(x^{1}, \ldots, x^{n}\right)+\varepsilon^{2} y^{3}\left(x^{1}, \ldots, x^{n}\right)$, where $z^{i}=x^{i}+\varepsilon x^{n+i}+\varepsilon^{2} x^{2 n+i}, i=1, \ldots, n$, is a multi-variable $R\left(\varepsilon^{2}\right)$-holomorphic function, then the function $w=w\left(z^{1}, \ldots, z^{n}\right)$ has the following specific form:

$$
\begin{align*}
w\left(z^{1}, \ldots, z^{n}\right)= & y^{1}\left(x^{1}, \ldots, x^{n}\right)+\varepsilon\left(x^{n+i} \partial_{i} y^{1}+G\left(x^{1}, \ldots, x^{n}\right)\right) \tag{2}\\
& +\varepsilon^{2}\left(x^{2 n+i} \frac{\partial y^{1}}{\partial x^{i}}+\frac{1}{2} x^{n+i} x^{n+j} \frac{\partial^{2} y^{1}}{\partial x^{i} \partial x^{j}}+x^{n+i} \frac{\partial G}{\partial x^{i}}+H\left(x^{1}, \ldots, x^{n}\right)\right) .
\end{align*}
$$

From here if $G\left(x^{1}, \ldots, x^{n}\right)=H\left(x^{1}, \ldots, x^{n}\right)=0$ and $y^{1}\left(x^{1}, \ldots, x^{n}\right)=f\left(x^{1}, \ldots, x^{n}\right)$, then the function

$$
\begin{equation*}
w\left(z^{1}, \ldots, z^{n}\right)=f\left(x^{1}, \ldots, x^{n}\right)+\varepsilon x^{n+i} \partial_{i} f+\varepsilon^{2}\left(x^{2 n+i} \frac{\partial f}{\partial x^{i}}+\frac{1}{2} x^{n+i} x^{n+j} \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}\right) \tag{3}
\end{equation*}
$$

is said to be natural extension of the real C^{∞} - functions $f=f\left(x^{1}, \ldots, x^{n}\right)$ to $\mathbb{R}\left(\varepsilon^{2}\right)$.
1.3. Let now $T^{2}\left(M_{r}\right)$ be the bundle of 2-jets, i.e. the tangent bundle of order 2 over C^{∞}-manifold $M_{r}, \operatorname{dim} T^{2}\left(M_{r}\right)=3 r$ and let

$$
\left(x^{i}, x^{\bar{i}}, x^{\bar{i}}\right)=\left(x^{i}, x^{r+i}, x^{2 r+i}\right), x^{i}=x^{i}(t), x^{\bar{i}}=\frac{d x^{i}}{d t}, x^{\bar{i}}=\frac{1}{2} \frac{d^{2} x^{i}}{d t^{2}}, t \in \mathbb{R}, i=1, \ldots, r
$$

be an induced local coordinates in $T^{2}\left(M_{r}\right)$. It is clear that there exists an affinor field (a tensor field of type $(1,1)) \gamma$ in $T^{2}\left(M_{r}\right)$ which has components of the form

$$
\gamma=\left(\begin{array}{lll}
0 & 0 & 0 \tag{4}\\
I & 0 & 0 \\
0 & I & 0
\end{array}\right)
$$

with respect to the natural frame $\left\{\partial_{i}, \partial_{\bar{i}}, \partial_{\bar{i}}\right\}=\left\{\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{i}} \frac{\partial}{\partial x^{i}}\right\}, i=1, \ldots, r$, where I denotes the $r \times r$ identity matrix. From here, we have

$$
\gamma^{2}=\left(\begin{array}{lll}
0 & 0 & 0 \tag{5}\\
0 & 0 & 0 \\
I & 0 & 0
\end{array}\right), \gamma^{3}=0
$$

i.e. $T^{2}\left(V_{r}\right)$ has a natural integrable structure $\Pi=\left\{I, \gamma, \gamma^{2}\right\}, I=i d_{T^{2}\left(M_{r}\right)}$, which is an isomorphic representation of the algebra $R\left(\varepsilon^{2}\right), \varepsilon^{3}=0$. Using $\gamma \partial_{i}=\partial_{\overline{i^{\prime}}}, \gamma^{2} \partial_{i}=\gamma \partial_{\bar{i}}=\partial_{\overline{\bar{B}^{\prime}}}$, we have $\left\{\partial_{i}, \partial_{\bar{i}^{\prime}}, \partial_{\bar{i}}\right\}=\left\{\partial_{i}, \gamma \partial_{i}, \gamma^{2} \partial_{i}\right\}$. Also, using a frame

$$
\left\{\partial_{1}, \gamma \partial_{1}, \gamma^{2} \partial_{1}, \partial_{2}, \gamma \partial_{2}, \gamma^{2} \partial_{2}, \ldots, \partial_{r}, \gamma \partial_{r}, \gamma^{2} \partial_{r}\right\}=\left\{\partial_{1}, \partial_{\overline{1}}, \partial_{\overline{\overline{1}}}, \partial_{2}, \partial_{\overline{2}}, \partial_{\overline{\overline{2}}}, \ldots, \partial_{r}, \partial_{\bar{r}}, \partial_{\overline{\bar{r}}}\right\}
$$

which is obtained from $\left\{\partial_{i}, \partial_{\bar{i}}, \partial_{\bar{i}}\right\}=\left\{\partial_{i}, \gamma \partial_{i}, \gamma^{2} \partial_{i}\right\}$ by changing of numbers of frame elements, we see that structure affinors I, γ and γ^{2} have the following components

$$
I=\left(\begin{array}{cccc}
C_{1} & 0 & \cdots & 0 \\
0 & C_{1} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & C_{1}
\end{array}\right), \gamma=\left(\begin{array}{cccc}
C_{2} & 0 & \cdots & 0 \\
0 & C_{2} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & C_{2}
\end{array}\right), \gamma^{2}=\left(\begin{array}{cccc}
C_{3} & 0 & \cdots & 0 \\
0 & C_{3} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & C_{3}
\end{array}\right)
$$

with respect to the frame $\left\{\partial_{1}, \partial_{\overline{1}}, \partial_{\overline{\overline{1}}}, \partial_{2}, \partial_{\overline{2}}, \partial_{\overline{\overline{2}}}, \ldots, \partial_{r}, \partial_{\bar{r}}, \partial_{\overline{\bar{r}}}\right\}$, where the block matrices $C_{\sigma}, \sigma=1,2,3$ of order 3 are the regular representation of algebra $\mathbb{R}\left(\varepsilon^{2}\right)$. Thus the bundle $T^{2}\left(M_{r}\right)$ has a natural integrable structure $\Pi=\left\{I, \gamma, \gamma^{2}\right\}$, which is an r-regular representation of $R\left(\varepsilon^{2}\right)$.

On the other hand, the transformation of induced coordinates $\left(x^{i}, x^{\bar{i}}, x^{\bar{i}}\right)$ in $T^{2}\left(M_{r}\right)$ is given by

$$
\begin{aligned}
x^{i^{\prime}} & =x^{i^{\prime}}\left(x^{i}\right) \\
x^{\bar{i}^{\prime}} & =\frac{d x^{i^{\prime}}}{d t}=\frac{\partial x^{i^{\prime}}}{\partial x^{i}} \frac{d x^{i}}{d t}=\frac{\partial x^{i^{\prime}}}{\partial x^{i}} x^{\bar{i}} \\
x^{\overline{\bar{i}}^{\prime}} & =\frac{1}{2} \frac{d^{2} x^{i^{\prime}}}{d t^{2}}=\frac{1}{2} \frac{d}{d t}\left(\frac{\partial x^{i^{\prime}}}{\partial x^{i}} \frac{d x^{i}}{d t}\right) \\
& =\frac{1}{2} \frac{\partial x^{i^{\prime}}}{\partial x^{i}} \frac{d^{2} x^{i}}{d t^{2}}+\frac{1}{2} \frac{\partial^{2} x^{i^{\prime}}}{\partial x^{i} \partial x^{j}} \frac{d x^{i}}{d t} \frac{d x^{j}}{d t} \\
& =\frac{\partial x^{i^{\prime}}}{\partial x^{i}} x^{\bar{i}}+\frac{1}{2} \frac{\partial^{2} x^{i^{\prime}}}{\partial x^{i} \partial x^{j}} x^{\bar{i}} x^{\bar{j}}
\end{aligned}
$$

and its Jacobian matrix by

$$
A=\left(\begin{array}{ccc}
\frac{\partial x^{\prime}}{\partial x^{i}} & \frac{\partial x^{\prime}}{\partial x^{i}} & \frac{\partial x^{\prime}}{\partial x^{i}} \tag{6}\\
\frac{\partial x^{\prime}}{\partial x^{i}} & \frac{\partial x^{i}}{\partial x^{i}} & \frac{\partial x^{i}}{\partial x^{i}} \\
\frac{\partial x^{i} i^{i}}{\partial x^{i}} & \frac{\partial x^{i}}{\partial x^{i}} & \frac{\partial x^{i}}{\partial x^{i}}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{\partial x^{\prime}}{\partial x^{i}} & 0 & 0 \\
\frac{\partial^{i} x^{i}}{\partial x^{i} \partial x^{s}} x^{\bar{s}} & \frac{\partial x^{\prime}}{\partial x^{i}} & 0 \\
\frac{\partial^{2} x^{\prime}}{\partial x^{i} \partial x^{s}} x^{\bar{s}}+\frac{\partial^{3} x^{\prime}}{\partial x^{i} \partial x^{s} \partial x^{\prime}} x^{\bar{s}} x^{\bar{t}} & \frac{\partial^{2} x^{i^{\prime}}}{\partial x^{i} \partial x^{s}} x^{\bar{s}} & \frac{\partial x^{\prime}}{\partial x^{i}}
\end{array}\right) .
$$

From (4), (5) and (6) follows that $A^{-1} \gamma A=\gamma, A^{-1} \gamma^{2} A=\gamma^{2}$, i.e. the transformation of local coordinates $\left(x^{i}, x^{\bar{i}}, x^{\bar{i}}\right)$ in $T^{2}\left(M_{r}\right)$ is a structure-preserving transformation. Then the transition functions

$$
z^{i^{\prime}}\left(z^{i}\right)=x^{i^{\prime}}+\varepsilon x^{i^{\prime}}+\varepsilon^{2} x^{\bar{y}^{i}}=x^{i^{\prime}}\left(x^{i}\right)+\varepsilon \frac{\partial x^{i^{\prime}}}{\partial x^{i}} x^{\bar{i}}+\varepsilon^{2}\left(\frac{\partial x^{i^{\prime}}}{\partial x^{i}} x^{\bar{i}}+\frac{1}{2} \frac{\partial^{2} x^{i^{\prime}}}{\partial x^{i} \partial x^{j}} x^{\bar{i}} x^{\bar{j}}\right)
$$

of charts on $X_{r}\left(R\left(\varepsilon^{2}\right)\right)$ are $R\left(\varepsilon^{2}\right)$-holomorphic functions by virtue of (3), i.e. we have the bundle $T^{2}\left(M_{r}\right)$ is a real modeling of $R\left(\varepsilon^{2}\right)$-holomorphic manifold $X_{r}\left(R\left(\varepsilon^{2}\right)\right)$.
1.4. Since the bundle $T^{2}\left(M_{r}\right)$ is a real modeling of $X_{r}\left(R\left(\varepsilon^{2}\right)\right)$ and any holomorphic function

$$
w\left(z^{1}, \ldots, z^{r}\right)=f^{1}\left(x^{1}, \ldots, x^{r}\right)+\varepsilon f^{2}\left(x^{1}, \ldots, x^{r}\right)+\varepsilon^{2} f^{3}\left(x^{1}, \ldots, x^{r}\right),
$$

on $X_{r}\left(R\left(\varepsilon^{2}\right)\right)$, where $z^{i}=x^{i}+\varepsilon x^{r+i}+\varepsilon^{2} x^{2 r+i}, i=1, \ldots, r$, is expressed by (see (2))

$$
\begin{aligned}
w\left(z^{1}, \ldots, z^{r}\right)= & f\left(x^{1}, \ldots, x^{r}\right)+\varepsilon\left(x^{r+i} \partial_{i} f+g\left(x^{1}, \ldots, x^{r}\right)\right) \\
& +\varepsilon^{2}\left(x^{2 r+i} \frac{\partial f}{\partial x^{i}}+\frac{1}{2} x^{r+i} x^{r+j} \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}+x^{r+i} \frac{\partial g}{\partial x^{i}}+h\left(x^{1}, \ldots, x^{r}\right)\right), \\
f= & f^{1},
\end{aligned}
$$

in the bundle of 2 -jets we introduce the following three functions:

$$
\begin{align*}
& { }^{{ }^{V}} f=f\left(x^{1}, \ldots, x^{r}\right), \\
& { }^{I} f=x^{r+i} \partial_{i} f+g\left(x^{1}, \ldots, x^{r}\right), \tag{7}\\
& { }^{{ }^{C}} f=x^{2 r+i} \frac{\partial f}{\partial x^{i}}+\frac{1}{2} x^{r+i} x^{r+j} \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}+x^{r+i} \frac{\partial g}{\partial x^{i}}+h\left(x^{1}, \ldots, x^{r}\right),
\end{align*}
$$

where f, g and h are any functions on M_{r}. These functions ${ }^{V} f,{ }^{I} f$ and ${ }^{C} f$ are called respectively the vertical, intermediate and complete lifts of f in M_{r} to $T^{2}\left(M_{r}\right)[1]$. If $g=h=0$, then we have the $0-$ th $f^{0}, 1$-th f^{1} and 2-th f^{2} lifts of $f[7]$, [8], i.e. the lifts ${ }^{I} f$ and ${ }^{C} f$ of f to $T^{2}\left(M_{r}\right)$ are respectively the deformed lifts of 1 -th and 2-th lifts of f.

Thus we have

$$
\begin{equation*}
{ }^{V_{f}}=f^{0},{ }^{I} f=f^{1}+g^{0},{ }^{C} f=f^{2}+g^{1}+h^{0} . \tag{8}
\end{equation*}
$$

2. Deformed complete lifts of $\mathbf{1}$-forms

Let $\widetilde{\omega}=\widetilde{\omega}_{I} d x^{I}=\widetilde{\omega}_{i} d x^{i}+\widetilde{\omega}_{r+i} d x^{r+i}+\widetilde{\omega}_{2 r+i} d x^{2 r+i}$ be an 1-form in $T^{2}\left(M_{r}\right)$, and $\Pi=\left\{I, \gamma, \gamma^{2}\right\}, I=i d_{T^{2}\left(M_{r}\right)}$ be a Π-structure naturally existing in $T^{2}\left(M_{r}\right)$. We would like to find local expression of $\widetilde{\omega}=\left(\widetilde{\omega_{I}}\right)$ in $T^{2}\left(M_{r}\right)$ which is corresponding to the $R\left(\varepsilon^{2}\right)$-holomorphic 1 -form $\stackrel{*}{\omega}=\left(\stackrel{*}{\omega}_{u}\right)=\left(\stackrel{*}{\omega}_{u \alpha} e^{\alpha}\right), e^{\alpha}=\varphi^{\alpha \beta} e_{\beta}, u=1, \ldots, r ; \alpha, \beta=1,2,3$ in $X_{r}\left(R\left(\varepsilon^{2}\right)\right)$.

Using Theorem 1.1, we obtain

$$
\left(\Phi_{\gamma} \widetilde{\omega}\right)_{I I}=\gamma_{J}^{H} \partial_{H} \widetilde{\omega}_{I}-\gamma_{I}^{H} \partial_{J} \widetilde{\omega}_{H}=0,\left(\Phi_{\gamma^{2}} \widetilde{\omega}\right)_{J I}=\left(\gamma^{2}\right)_{J}^{H} \partial_{H} \widetilde{\omega}_{I}-\left(\gamma^{2}\right)_{I}^{H} \partial_{J} \widetilde{\omega}_{H}=0 .
$$

From here, after straightforward calculations (see Section 1), we find the following covector field

$$
\begin{equation*}
\widetilde{\omega}=\left(\widetilde{\omega}_{I}\right)=\left(x^{2 r+h} \partial_{h} \omega_{i}+\frac{1}{2} x^{r+h} x^{r+m} \partial_{h m}^{2} \omega_{i}+x^{h+i} \partial_{h} G_{i}+H_{i}, x^{r+h} \partial_{h} \omega_{i}+G_{i}, \omega_{i}\right), \tag{9}
\end{equation*}
$$

where $G=\left(G_{i}\left(x^{1}, \ldots, x^{r}\right)\right), H=\left(H_{i}\left(x^{1}, \ldots, x^{r}\right)\right)$ any covector fields in M_{r}. In fact, by means of (13), we easily see that $\widetilde{\omega}=\left(\widetilde{\omega}_{I}\right)$ determine 1 -form in $T^{2}\left(M_{r}\right)$ which are called the deformed complete lifts of ω from M_{r} to $T^{2}\left(M_{r}\right)$ and denoted by ${ }^{c} \omega=\left({ }^{C} \omega_{I}\right)$.

From (9), we have

$$
\begin{equation*}
c_{\omega}=\omega^{2}+G^{1}+H^{0} \tag{10}
\end{equation*}
$$

where

$$
\begin{aligned}
H^{0} & =\left(H_{i}, 0,0\right), G^{1}=\left(x^{r+h} \partial_{h} G_{i}, G_{i}, 0\right) \\
\omega^{2} & =\left(x^{2 r+h} \partial_{h} \omega_{i}+\frac{1}{2} x^{r+h} x^{r+m} \partial_{h m}^{2} \omega_{i}, x^{r+h} \partial_{h} \omega_{i}, \omega_{i}\right)
\end{aligned}
$$

are respectively the $0-$ th (vertical) , 1 -th and 2 -th (complete) lifts of H, G and ω [7]. It is clear that the deformed complete lift ${ }^{C} \omega=\left({ }^{\mathrm{C}} \omega_{I}\right)$ is deformation of 2-th lift of ω.

Thus we have

Theorem 2.1. Let $\omega=\omega_{i} d x^{i}$ be an 1 -form on M_{r}. The deformed complete lift ${ }^{C} \omega$ of ω to the bundle of $2-j e t s T^{2}\left(M_{r}\right)$ have the following expression

$$
{ }^{c} \omega=\omega^{2}+G^{1}+H^{0}
$$

where H^{0}, G^{1} and ω^{2} are respectively the 0 -th , 1-th and $2-$ th lifts of any 1 -forms H, G and ω.

3. Deformed intermediate lifts of 1 -forms

Putting $\omega=G$ in (10), we see that

$$
\begin{equation*}
\omega^{1}+H^{0}={ }^{C} \omega-\omega^{2}=\left(x^{r+i} \partial_{i} \omega_{h}+H_{h}, \omega_{h}, 0\right) \tag{11}
\end{equation*}
$$

determine a new 1-form in $T^{2}\left(M_{r}\right)$, which are called the deformed intermediate lift of 1-form ω from M_{r} to $T^{2}\left(M_{r}\right)$ and denoted by ${ }^{I} \omega=\omega^{1}+H^{0}$. We note that the deformed intermediate lift ${ }^{I} \omega$ of ω to $T^{2}\left(M_{r}\right)$ is deformation of 1 -th lift of ω.

Thus we have

$$
\begin{equation*}
{ }^{V} \omega=\omega^{0},{ }^{I} \omega=\omega^{1}+H^{0},{ }^{C} \omega=\omega^{2}+G^{1}+H^{0} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
{ }^{V_{\omega}}=\left(\omega_{h}, 0,0\right) . \tag{13}
\end{equation*}
$$

Thus we have
Theorem 3.1. Let $\omega=\omega_{i} d x^{i}$ be an 1-form on M_{r}. The deformed intermediate lift ${ }^{I} \omega$ of ω to the bundle of $2-j e t s$ $T^{2}\left(M_{r}\right)$ have the following expression

$$
{ }^{I} \omega=\omega^{1}+H^{0}
$$

where H^{0} is the 0 -th lift of 1 -form H.
From (9), (11) and (13) we have
Theorem 3.2. Deformed complete lifts satisfies the following matrix formulas

$$
{ }^{C} \omega \gamma=\omega^{1}+G^{0},{ }^{C} \omega \gamma^{2}=\omega^{0}={ }^{V} \omega
$$

where γ and γ^{2} are matrices in the form (4) and (5), respectively.
Let now $\omega=d x^{i}, \quad G=d x^{j}, \quad H=d x^{k}, i, j, k=1, \ldots, r$. Then from (11), (12) and (13) we have
Theorem 3.3. Deformed complete, intermediate and vertical lifts of differentials $d x^{i}$ has the following linear combination of differentials in $T^{2}\left(M_{r}\right)$:

$$
V\left(d x^{i}\right)=d x^{i},{ }^{I}\left(d x^{i}\right)=d x^{r+i}+d x^{k}, C^{C}\left(d x^{i}\right)=d x^{2 r+i}+d x^{r+j}+d x^{k} .
$$

Let now X be a vector field in M_{r}. It is well known that the vertical and deformed lifts ${ }^{I} X,{ }^{C} X$ of X has the following expressions (see [4])

$$
{ }^{V} X=X^{0}=\left(\begin{array}{c}
0 \\
0 \\
X^{h}
\end{array}\right),{ }^{I} X=X^{1}+Y^{0}=\left(\begin{array}{c}
0 \\
X^{h} \\
x^{r+i} \partial_{i} X^{h}
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
Y^{h}
\end{array}\right)=\left(\begin{array}{c}
0 \\
X^{h} \\
x^{r+i} \partial_{i} X^{h}+Y^{h}
\end{array}\right),
$$

$$
\begin{aligned}
{ }^{c} X & =X^{2}+Y^{1}+Z^{0}=\left(\begin{array}{c}
X^{h} \\
x^{r+i} \partial_{i} X^{h} \\
x^{2 r+i} \partial_{i} X^{h}+\frac{1}{2} x^{r+i} x^{r+j} \partial_{i j}^{2} X^{h}
\end{array}\right)+\left(\begin{array}{c}
0 \\
Y^{h} \\
x^{r+i} \partial_{i} Y^{h}
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
Z^{h}
\end{array}\right) \\
& =\left(\begin{array}{c}
X^{h} \\
x^{r+i} \partial_{i} X^{h}+Y^{h} \\
x^{2 r+i} \partial_{i} X^{h}+\frac{1}{2} x^{r+i} x^{r+j} \partial_{i j}^{2} X^{h}+x^{r+i} \partial_{i} Y^{h}+Z^{h}
\end{array}\right)
\end{aligned}
$$

for any vector fields Y, Z in M_{r}. Using the last formulas and also (7), (8), (11), (12), (13) we have
Theorem 3.4. Let X, ω and f are respectively any vector field, $1-$ form and function in M_{r}. Then

$$
\begin{aligned}
& { }^{V}(f \omega)=f^{0} \omega^{0},{ }^{I}(f \omega)=f^{1} \omega^{0}+f^{0} \omega^{1}+G^{0},{ }^{C}(f \omega)=\left(f^{2}+f^{0}\right) \omega^{0}+f^{1} \omega^{1}+G^{1}+H^{0}, \\
& { }^{V} \omega\left({ }^{V} X\right)=0,{ }^{V} \omega\left({ }^{I} X\right)=0,{ }^{V} \omega\left({ }^{C} X\right)=(\omega(X))^{0}, \\
& { }^{I} \omega\left({ }^{V} X\right)=0,{ }^{I} \omega\left({ }^{I} X\right)=(\omega(X))^{0},{ }^{I} \omega\left({ }^{C} X\right)=(\omega(X))^{1}+(\omega(Y))^{0}+(H(X))^{0}, \\
& { }^{C} \omega\left({ }^{V} X\right)=(\omega(X))^{0},{ }^{C} \omega\left({ }^{I} X\right)=(\omega(X))^{1}+(\omega(Y))^{0}+(G(X))^{0}, \\
& { }^{C} \omega\left({ }^{C} X\right)=(\omega(X))^{2}+(\omega(Y))^{1}+(\omega(Z))^{0}+(G(X))^{1}+(G(Y))^{0}+(H(X))^{0} .
\end{aligned}
$$

4. Exterior differentials of deformed complete and intermediate lifts

Let now Ω be a tensor field of type $(0,2)$ in M_{r}. We define an 1-form $\gamma_{Y} \Omega$ by

$$
\left(\gamma_{Y} \Omega\right) X=\Omega(X, Y)
$$

for any vector fields X and Y. If Ω has local components $\Omega_{i j}$, then $\gamma_{Y} \Omega$ has local components $\Omega_{i j} Y^{j}$.
It is well known that the deformed intermediate and complete lifts of Ω has respectively components (see [3])

$$
\begin{aligned}
{ }^{I} \Omega & =\left(\begin{array}{ccc}
x^{r+s} \partial_{s} \Omega_{j i}+\pi_{j i} & \Omega_{j i} & 0 \\
\Omega_{j i} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\Omega^{1}+\pi^{0}, \\
{ }^{c} \Omega & =\left(\begin{array}{ccc}
x^{2 r+s} \partial_{s} \Omega_{j i}+\frac{1}{2} x^{r+t} x^{r+s} \partial_{t s}^{2} \Omega_{j i}+x^{r+s} \partial_{s} \Omega_{j i}+\pi_{j i} & x^{r+s} \partial_{s} \Omega_{j i}+\Omega_{j i} & \Omega_{j i} \\
x^{r+s} \partial_{s} \Omega_{j i}+\Omega_{j i} & \Omega_{j i} & 0 \\
\Omega_{j i} & 0 & 0
\end{array}\right) \\
& =\Omega^{2}+\Omega^{1}+\pi^{0},
\end{aligned}
$$

where

$$
V \pi={ }^{0} \pi=\left(\begin{array}{ccc}
\pi_{j i} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

is the vertical lift of any tensor field π of type (0,2). Using the expression of lifts ${ }^{V} \pi,{ }^{I} \Omega,{ }^{C} \Omega$ and (9), (11), (13) we have

$$
\begin{aligned}
\gamma_{X^{2}}{ }^{V} \Omega= & \left(\Omega_{i j} X^{j}, 0,0\right)=\left(\left(\gamma_{X} \Omega\right)_{i}, 0,0\right)={ }^{V}\left(\gamma_{X} \Omega\right), \\
\gamma_{X^{2}}{ }^{I} \Omega= & \left(\left(x^{r+s} \partial_{s} \Omega_{i j}+\pi_{i j}\right) X^{j}+\Omega_{i j}\left(x^{r+s} \partial_{s} X^{j}\right), \Omega_{i j} X^{j}, 0\right) \\
= & \left(x^{r+s} \partial_{s}\left(\gamma_{X} \Omega\right)_{i}+\left(\gamma_{X} \pi\right)_{i},\left(\gamma_{X} \Omega\right)_{i}, 0\right) \\
= & \left(\gamma_{X} \Omega\right)^{1}+\left(\gamma_{X} \pi\right)^{0}=^{I}\left(\gamma_{X} \Omega\right), \\
\gamma_{X^{2}}{ }^{C} \Omega= & \left(\left(x^{2 r+s} \partial_{s} \Omega_{i j}+\frac{1}{2} x^{r+s} x^{r+t} \partial_{s t}^{2} \Omega_{i j}+x^{r+s} \partial_{s} \Omega_{i j}+\pi_{i j}\right) X^{j}\right. \\
& +\left(x^{r+s} \partial_{s} \Omega_{i j}+\Omega_{i j}\right) x^{r+t} \partial_{t} X^{j} \\
& +\Omega_{i j}\left(x^{2 r+s} \partial_{s} X^{j}+\frac{1}{2} x^{r+s} x^{r+t} \partial_{s t}^{2} X^{j},\left(x^{r+s} \partial_{s} \Omega_{i j}+\Omega_{i j}\right) X^{j}\right. \\
& \left.+\Omega_{i j} x^{r+t} \partial_{t} X^{j}, \Omega_{i j} X^{j}\right) \\
= & \left(x^{2 r+s} \partial_{s}\left(\gamma_{X} \Omega\right)_{i}+\frac{1}{2} x^{r+s} x^{r+t} \partial_{s t}^{2}\left(\gamma_{X} \Omega\right)_{i}+x^{r+s} \partial_{s}\left(\gamma_{X} \Omega\right)_{i}\right. \\
& \left.+\left(\gamma_{X} \pi\right)_{i}, x^{r+s} \partial_{s}\left(\gamma_{X} \Omega\right)_{i}+\left(\gamma_{X} \Omega\right)_{i},\left(\gamma_{X} \Omega\right)_{i}\right) \\
= & \left(\gamma_{X} \Omega\right)^{2}+\left(\gamma_{X} \Omega\right)^{1}+\left(\gamma_{X} \pi\right)^{0}={ }^{C}\left(\gamma_{X} \Omega\right) .
\end{aligned}
$$

Thus we have
Theorem 4.1. Let Ω be a tensor field of type $(0,2)$ in M_{r}. Then

$$
\begin{aligned}
\gamma_{X^{2}}{ }^{V} \Omega & =\left(\gamma_{X} \Omega\right)^{0}={ }^{V}\left(\gamma_{X} \Omega\right) \\
\gamma_{X^{2}}{ }^{I} \Omega & =\left(\gamma_{X} \Omega\right)^{1}+\left(\gamma_{X} \pi\right)^{0}={ }^{I}\left(\gamma_{X} \Omega\right) \\
\gamma_{X^{2}}{ }^{C} \Omega & =\left(\gamma_{X} \Omega\right)^{2}+\left(\gamma_{X} \Omega\right)^{1}+\left(\gamma_{X} \pi\right)^{0}={ }^{C}\left(\gamma_{X} \Omega\right)
\end{aligned}
$$

We shall now study the deformed lifts of exterior differentials of 1 -forms $\omega=\omega_{i} d x^{i}, i=1, \ldots, r$. Using $\left[X^{2}, Y^{2}\right]=[X, Y]^{2}$ and linearity of mappings $X \rightarrow X^{0}, X \rightarrow X^{1}, X \rightarrow X^{2}$, from Theorem 3.4 and Theorem 4.1 we have

$$
\begin{aligned}
2\left(d^{I} \omega\right)\left(X^{2}, Y^{2}\right)= & X^{2}\left({ }^{I} \omega\left(Y^{2}\right)\right)-Y^{2}\left({ }^{I} \omega\left(X^{2}\right)\right)-{ }^{I} \omega\left(\left[X^{2}, Y^{2}\right]\right) \\
= & X^{2}\left((\omega(Y))^{1}+(H(Y))^{0}\right)-Y^{2}\left(\left((\omega(X))^{1}\right.\right. \\
& \left.+(H(X))^{0}\right)-{ }^{I} \omega\left([X, Y]^{2}\right) \\
= & (X \omega(Y))^{1}+(X H(Y))^{0}-(Y \omega(X))^{1}-(Y H(X))^{0} \\
& -(\omega([X, Y]))^{1}-(H([X, Y]))^{0} \\
= & (X \omega(Y)-Y \omega(X)-\omega([X, Y]))^{1} \\
& +(X H(Y)-Y H(X)-H([X, Y]))^{1} \\
= & 2((d \omega)(X, Y))^{1}+2((d H)(X, Y))^{0} \\
== & 2\left(\gamma_{Y}(d \omega)(X)\right)^{1}+2\left(\gamma_{Y}(d H)(X)\right)^{0} \\
= & 2\left(\gamma_{Y}(d \omega)\right)^{1}\left(X^{2}\right)+2\left(\gamma_{Y}(d H)\right)^{0}\left(X^{2}\right) \\
= & 2\left(\gamma_{\gamma^{2}}(d \omega)^{1}\right)\left(X^{2}\right)+2\left(\gamma_{Y^{2}}(d H)^{0}\right)\left(X^{2}\right) \\
= & 2\left((d \omega)^{2}+(d H)^{0}\right)\left(X^{2}, Y^{2}\right) .
\end{aligned}
$$

By similar devices, we have

$$
2\left(d^{C} \omega\right)\left(X^{2}, Y^{2}\right)=2\left((d \omega)^{2}+(d G)^{1}+(d H)^{0}\right)\left(X^{2}, Y^{2}\right)
$$

Since the any tensor field Ω of type $(0,2)$ in $T^{2}\left(M_{r}\right)$ is completely determined by its action on lifts X^{2}, Y^{2} (see [2, p.324]), i.e. if $\Omega\left(X^{2}, Y^{2}\right)=\widetilde{\Omega}\left(X^{2}, Y^{2}\right)$ for any X, Y, then $\Omega=\widetilde{\Omega}$, we have

Theorem 4.2. Let ω, G and H be 1-forms in M_{r}. Then the exterior differentials of deformed intermediate and complete lifts of ω to $T^{2}\left(M_{r}\right)$ satisfies the following formulas:

$$
\begin{aligned}
d^{I} \omega & =(d \omega)^{1}+(d H)^{0} \\
d^{C} \omega & =(d \omega)^{2}+(d G)^{1}+(d H)^{0}
\end{aligned}
$$

References

[1] K. Yano, S. Ishihara, Differential geometry of tangent bundles of order 2, Kodai Math. Sem. Rep. 20 (1968) 318-354.
[2] K. Yano, S. Ishihara, Tangent and Cotangent Bundles, New York, Marcel Dekker, 423 pp., 1973.
[3] T. Sultanova, A. Salimov, On holomorphic metrics of 2-jet bundles, Mediterr. J. Math. 19 (2022) 1-12.
[4] S. Aslanci, T. Sultanova, Deformed lifts in the bundle of 2-jets, Tbilisi Math. J. 14 (2021) 155-162.
[5] A. Salimov, On structure-preserving connections, Period. Math. Hungar. 77 (2018) 69-76.
[6] V.V. Vishnevskii, A.P. Shirokov, V.V. Shurygin, Spaces over Algebras, Kazan, Kazanskii Gosudarstvennyi Universitet., 1985.
[7] S. Tachibana, Analytic tensor and its generalization, Tohoku Math. J. 12 (1960) 208-221.
[8] A. Salimov, N. Cengiz, M. B. Asl, On holomorphic hypercomplex connections, Adv. Appl. Clifford Algebr. 23 (2013) 179-207.

[^0]: 2020 Mathematics Subject Classification. Primary 53C07; Secondary 53C15
 Keywords. Holomorphic functions, bundle of 2-jets, deformed lift, 1-forms
 Received: 31 January 2022; Revised: 09 April 2022; Accepted: 18 Apil 2022
 Communicated by Ljubiša D.R. Kočinac
 Email address: seher.aslanci@alanya.edu.tr (Seher Aslanci)

