Filomat 37:4 (2023), 1123–1131 https://doi.org/10.2298/FIL2304123A

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Deformed intermadiate and complete lifts of 1-forms to the bundle of 2-jets

Seher Aslanci^a

^aDepartment of Mathematics Education, Faculty of Education, Alanya Alaaddin Keykubat University, 07425, Alanya, Turkey

Abstract. Using an algebraic approach to the lift problems, we introduce deformed lifts of 1–forms to the bundle of 2–jets and investigate some properties of these lifts.

1. Introduction

1.1. Problems of lifts in the tangent bundles of 2–jets has been studied by Yano and Ishihara [1],[2] (see also [3],[4]). The purpose of this paper is to study the deformed lift of 1–forms which is a generalization already known lifts and appear in the context of algebraic approach to problems of lifts.

Let $\Pi = \left\{ \begin{pmatrix} J_{i}^{i} \\ \alpha \end{pmatrix} \right\}$, $\alpha = 1, ..., m; i, j = 1, ..., n$ be a Π -structure on a smooth manifold M_n [8]. If there exists a frame $\{\partial_i\}$, i = 1, ..., n such that $\partial_i J_i^k = 0$, then the Π -structure is said to be integrable. Let \mathfrak{A}_m be an

a frame $\{o_i\}, i = 1, ..., n$ such that $o_i j_j = 0$, then the Π -structure is said to be integrable. Let \mathfrak{a}_m be an associative, commutative and Frobenius algebra with the unit element $e_1 = 1$. An algebraic structure on M_n is an integrable Π -structure such that $J_j^m J_m^i = C_{\alpha\beta}^{\gamma} J_j^i$ i.e. if there exists an isomorphism $\mathfrak{A}_m \leftrightarrow \Pi$, where $C_{\alpha\beta}^{\gamma}$

are structure constants of \mathfrak{A}_m . An algebraic structure is said to be an *r*-regular Π -structure if the matrices

 $\begin{pmatrix} f_j^i \\ \alpha \end{pmatrix}$ of order $n \times n$, $\alpha = 1, ..., m$ simultaneously reduce to the form

$$\begin{pmatrix} J_{j}^{i} \\ \alpha \end{pmatrix} = \begin{pmatrix} C_{\alpha} & 0 & \cdots & 0 \\ 0 & C_{\alpha} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & C_{\alpha} \end{pmatrix}, \quad \alpha = 1, \dots, m; \quad i, j = 1, \dots, n$$
 (1)

with respect to the adapted frame $\{\partial_i\}$, where $C_\alpha = (C_{\alpha\beta}^{\gamma})$ is the regular representation of \mathfrak{A}_m and r is a number of C_α -blocks. We note that the r-regular Π -structure is integrable if a structure-preserving connection with free-torsion exists on M_n [5].

²⁰²⁰ Mathematics Subject Classification. Primary 53C07; Secondary 53C15

Keywords. Holomorphic functions, bundle of 2-jets, deformed lift, 1-forms

Received: 31 January 2022; Revised: 09 April 2022; Accepted: 18 Apil 2022

Communicated by Ljubiša D.R. Kočinac

Email address: seher.aslanci@alanya.edu.tr (Seher Aslanci)

From (1) we easily see that n = rm and the structure tensors J_{σ} have the components $J_{j}^{i} = J_{v\beta}^{u\alpha} = \delta_{v}^{u}C_{\sigma\beta}^{\alpha}$, u, v = 1, ..., r, where δ_{v}^{u} is the Kronecker delta and $u\alpha = (u - 1)m + \alpha$, $v\beta = (v - 1)m + \beta$.

An \mathfrak{A} -holomorphic manifold [6] $X_r(\mathfrak{A})$ over algebra \mathfrak{A}_m of dimension r is a Hausdorff space with a fixed complete atlas compatible with a group of \mathfrak{A} -holomorphic transformations of space \mathfrak{A}_m^r , where $\mathfrak{A}_m^r = \mathfrak{A}_m \times \cdots \times \mathfrak{A}_m$ is the space of r-tuples of algebraic numbers (z^1, z^2, \ldots, z^r) with $z^u = x^{u\alpha}e_\alpha \in \mathfrak{A}_m$, $x^{u\alpha} = x^i \in R, i = 1, \ldots, n; u = 1, \ldots, r; \alpha = 1, \ldots, m$. Let now $\Pi = \left\{ \int_{\alpha}^{r} \right\}$ be an integrable r-regular structure on M_{rm} . The transformation $z^{u'} = z^{u'}(z^u)$ of local

Let now $\Pi = \{J_{\sigma}\}$ be an integrable *r*-regular structure on M_{rm} . The transformation $z^{u'} = z^{u'}(z^u)$ of local coordinates on $X_r(\mathfrak{A})$ is \mathfrak{A} -holomorphic if and only if the transformation $x^{i'} = x^{i'}(x^i)$ of local coordinates on M_{rm} is a structure-preserving transformation (an admissible transformation), i.e. [6]

$$J_{\alpha}^{A} = A_{\alpha}^{J}, A = \left(\frac{\partial x^{j}}{\partial x^{j'}}\right), J_{\alpha}^{J} = \left(J_{\alpha}^{j}\right).$$

Thus the real smooth manifold M_{rm} with an integrable *r*-regular Π -structure and with a structurepreserving transformations of local coordinates is a real modeling of an \mathfrak{A} -holomorphic manifold $X_r(\mathfrak{A})$ over algebra \mathfrak{A}_m .

Let now $\Pi = \left\{ \int_{\sigma} \right\}$ be the integrable regular Π -structure on manifold M_{rm} and let $\omega = \omega_i(x^1, ..., x^{rm})dx^i = 0$

 $\omega_{u\alpha}(x^1, ..., x^{rm})dx^{u\alpha}$ be an 1-form on M_{rm} . An \mathfrak{A} - algebraic 1-form $\overset{*}{\omega} = (\overset{*}{\omega}_{u}) = (\overset{*}{\omega}_{u\alpha}e^{\alpha}), u = 1, ..., r, e^{\alpha} = \varphi^{\alpha\beta}e_{\beta}$ (where $\varphi^{\alpha\beta}$ are contravariant coordinates of Frobenius metric) on \mathfrak{A} -holomorphic manifold $X_r(\mathfrak{A})$ corresponding to an 1-form $\omega = (\omega_i) = (\omega_{u\alpha}), i = 1, ..., rm$ on M_{rm} is not \mathfrak{A} -holomorphic, in general. To investigate a holomorphic algebraic 1-form $\overset{*}{\omega}$, we consider the Tachibana Φ_I -operators M_{rm} associated with the Π -structure and applied to ω [7]:

$$(\Phi_J \omega)(X,Y) = (L_{JX} \omega - L_X(\omega \circ J))(Y),$$

where $\Phi_{J}\omega$ is a tensor field of type (0, 2), L_X is the Lie derivations with respect to X. In terms of the coordinate systems, we have

$$(\Phi_{\underline{J}}\omega)_{ji} = J^h_{\underline{j}}\partial_h\omega_i - J^m_{\underline{i}}\partial_j\omega_m - \omega_m(\partial_j J^m_{\underline{i}} - \partial_i J^m_{\underline{j}}).$$

Theorem 1.1. ([8]) An algebraic 1-form $\hat{\omega}$ on \mathfrak{A} -holomorphic manifold $X_r(\mathfrak{A})$ corresponding to an 1-form ω on M_{rm} is an \mathfrak{A} -holomorphic tensor field if and only if

$$J_{j}^{h}\partial_{h}\omega_{i} - J_{i}^{m}\partial_{j}\omega_{m} - \omega_{m}(\partial_{j}J_{i}^{m} - \partial_{i}J_{j}^{m}) = 0, \ \sigma = 1, ..., m.$$

1.2. Let $R(\varepsilon^2)$ be an algebra of order 3 with a canonical basis $\{e_1, e_2, e_3\} = \{1, \varepsilon, \varepsilon^2\}, \varepsilon^3 = 0$. From $e_{\alpha}e_{\beta} = C_{\alpha\beta}^{\gamma}e_{\gamma}$ follows that the (3×3) –matrices $C_{\sigma} = (C_{\sigma\beta}^{\gamma}), \sigma = 1, 2, 3$ of regular representation of $R(\varepsilon^2)$ have the following forms

$$C_1 = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right), C_2 = \left(\begin{array}{rrr} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right), C_3 = \left(\begin{array}{rrr} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array}\right).$$

Let $z = x^1 + \varepsilon x^2 + \varepsilon^2 x^3$. Then the generalized Cauchy-Riemann conditions [8]

$$C^{\alpha}_{\sigma\beta}\frac{\partial y^{\beta}}{\partial x^{\gamma}} = \frac{\partial y^{\alpha}}{\partial x^{\beta}}C^{\beta}_{\sigma\gamma}$$

for $R(\varepsilon^2)$ -holomorphicity of function

$$w = w(z) = y^{1}(x^{1}, x^{2}, x^{3}) + \varepsilon y^{2}(x^{1}, x^{2}, x^{3}) + \varepsilon^{2} y^{3}(x^{1}, x^{2}, x^{3}),$$

reduces to the following equations:

(i)
$$\frac{\partial y^1}{\partial x^2} = \frac{\partial y^1}{\partial x^3} = \frac{\partial y^2}{\partial x^3} = 0,$$

(ii) $\frac{\partial y^2}{\partial x^2} = \frac{\partial y^1}{\partial x^1} = \frac{\partial y^3}{\partial x^3},$
(iii) $\frac{\partial y^3}{\partial x^2} = \frac{\partial y^2}{\partial x^1}.$

From (i), (ii), (iii) we have

$$y^{1} = y^{1}(x^{1}),$$

$$y^{2} = y^{2}(x^{1}, x^{2}),$$

$$y^{2}(x^{1}, x^{2}) = x^{2}\frac{dy^{1}}{dx^{1}} + G(x^{1}),$$

$$y^{3}(x^{1}, x^{2}, x^{3}) = x^{3}\frac{dy^{1}}{dx^{1}} + \frac{1}{2}(x^{2})^{2}\frac{d^{2}y^{1}}{(dx^{1})^{2}} + x^{2}\frac{dG}{dx^{1}} + H(x^{1}).$$

where $G = G(x^1)$ and $H = H(x^1)$ are arbitrary functions. Thus the $R(\varepsilon^2)$ -holomorphic function w = w(z) has the following expression

$$w(z) = y^{1}(x^{1}) + \varepsilon(x^{2}\frac{dy^{1}}{dx^{1}} + G(x^{1})) + \varepsilon^{2}(x^{3}\frac{dy^{1}}{dx^{1}} + \frac{1}{2}(x^{2})^{2}\frac{d^{2}y^{1}}{(dx^{1})^{2}} + x^{2}\frac{dG}{dx^{1}} + H(x^{1}))$$

Similarly, if $w(z^1, ..., z^n) = y^1(x^1, ..., x^n) + \varepsilon y^2(x^1, ..., x^n) + \varepsilon^2 y^3(x^1, ..., x^n)$, where $z^i = x^i + \varepsilon x^{n+i} + \varepsilon^2 x^{2n+i}$, i = 1, ..., n, is a multi-variable $R(\varepsilon^2)$ -holomorphic function, then the function $w = w(z^1, ..., z^n)$ has the following specific form:

$$w(z^{1},...,z^{n}) = y^{1}(x^{1},...,x^{n}) + \varepsilon (x^{n+i}\partial_{i}y^{1} + G(x^{1},...,x^{n})) + \varepsilon^{2} \left(x^{2n+i}\frac{\partial y^{1}}{\partial x^{i}} + \frac{1}{2}x^{n+i}x^{n+j}\frac{\partial^{2}y^{1}}{\partial x^{i}\partial x^{j}} + x^{n+i}\frac{\partial G}{\partial x^{i}} + H(x^{1},...,x^{n})\right).$$
(2)

From here if $G(x^1, ..., x^n) = H(x^1, ..., x^n) = 0$ and $y^1(x^1, ..., x^n) = f(x^1, ..., x^n)$, then the function

$$w(z^1, \dots, z^n) = f(x^1, \dots, x^n) + \varepsilon x^{n+i} \partial_i f + \varepsilon^2 (x^{2n+i} \frac{\partial f}{\partial x^i} + \frac{1}{2} x^{n+i} x^{n+j} \frac{\partial^2 f}{\partial x^i \partial x^j})$$
(3)

is said to be natural extension of the real C^{∞} -functions $f = f(x^1, ..., x^n)$ to $\mathbb{R}(\varepsilon^2)$.

1.3. Let now $T^2(M_r)$ be the bundle of 2-jets, i.e. the tangent bundle of order 2 over C^{∞} -manifold M_r , $dimT^2(M_r) = 3r$ and let

$$(x^{i}, x^{\overline{i}}, x^{\overline{\overline{i}}}) = (x^{i}, x^{r+i}, x^{2r+i}), x^{i} = x^{i}(t), x^{\overline{i}} = \frac{dx^{i}}{dt}, x^{\overline{\overline{i}}} = \frac{1}{2}\frac{d^{2}x^{i}}{dt^{2}}, t \in \mathbb{R}, i = 1, ..., r$$

be an induced local coordinates in $T^2(M_r)$. It is clear that there exists an affinor field (a tensor field of type (1, 1)) γ in $T^2(M_r)$ which has components of the form

$$\gamma = \begin{pmatrix} 0 & 0 & 0 \\ I & 0 & 0 \\ 0 & I & 0 \end{pmatrix}$$
(4)

with respect to the natural frame $\{\partial_i, \partial_{\bar{i}}, \partial_{\bar{i}}\} = \{\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^{\bar{i}}}, \frac{\partial}{\partial x^{\bar{i}}}\}, i = 1, ..., r$, where *I* denotes the $r \times r$ identity matrix. From here, we have

$$\gamma^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ I & 0 & 0 \end{pmatrix}, \gamma^{3} = 0,$$
(5)

i.e. $T^2(V_r)$ has a natural integrable structure $\Pi = \{I, \gamma, \gamma^2\}$, $I = id_{T^2(M_r)}$, which is an isomorphic representation of the algebra $R(\varepsilon^2)$, $\varepsilon^3 = 0$. Using $\gamma \partial_i = \partial_{\overline{i}}, \gamma^2 \partial_i = \gamma \partial_{\overline{i}} = \partial_{\overline{i}}$, we have $\{\partial_i, \partial_{\overline{i}}, \partial_{\overline{i}}\} = \{\partial_i, \gamma \partial_i, \gamma^2 \partial_i\}$. Also, using a frame

$$\{\partial_1, \gamma \partial_1, \gamma^2 \partial_1, \partial_2, \gamma \partial_2, \gamma^2 \partial_2, \dots, \partial_r, \gamma \partial_r, \gamma^2 \partial_r\} = \{\partial_1, \partial_{\overline{1}}, \partial_{\overline{1}}, \partial_2, \partial_{\overline{2}}, \partial_{\overline{2}}, \dots, \partial_r, \partial_{\overline{r}}, \partial_{\overline{r}}\}$$

which is obtained from $\{\partial_i, \partial_{\bar{i}}, \partial_{\bar{i}}\} = \{\partial_i, \gamma \partial_i, \gamma^2 \partial_i\}$ by changing of numbers of frame elements, we see that structure affinors I, γ and γ^2 have the following components

$$I = \begin{pmatrix} C_1 & 0 & \cdots & 0 \\ 0 & C_1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & C_1 \end{pmatrix}, \ \gamma = \begin{pmatrix} C_2 & 0 & \cdots & 0 \\ 0 & C_2 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & C_2 \end{pmatrix}, \ \gamma^2 = \begin{pmatrix} C_3 & 0 & \cdots & 0 \\ 0 & C_3 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & C_3 \end{pmatrix}$$

with respect to the frame $\{\partial_1, \partial_{\overline{1}}, \partial_{\overline{2}}, \partial_{\overline{2}}, \partial_{\overline{2}}, \partial_{\overline{2}}, \partial_{\overline{r}}, \partial_{\overline{r}}, \partial_{\overline{r}}\}$, where the block matrices $C_{\sigma}, \sigma = 1, 2, 3$ of order 3 are the regular representation of algebra $\mathbb{R}(\varepsilon^2)$. Thus the bundle $T^2(M_r)$ has a natural integrable structure $\Pi = \{I, \gamma, \gamma^2\}$, which is an *r*-regular representation of $R(\varepsilon^2)$.

On the other hand, the transformation of induced coordinates $(x^i, x^{\overline{i}}, x^{\overline{i}})$ in $T^2(M_r)$ is given by

$$\begin{aligned} x^{i'} &= x^{i'} \left(x^{i} \right), \\ x^{\bar{i}'} &= \frac{dx^{i'}}{dt} = \frac{\partial x^{i'}}{\partial x^{i}} \frac{dx^{i}}{dt} = \frac{\partial x^{i'}}{\partial x^{i}} x^{\bar{i}}, \\ x^{\bar{i}'} &= \frac{1}{2} \frac{d^{2} x^{i'}}{dt^{2}} = \frac{1}{2} \frac{d}{dt} \left(\frac{\partial x^{i'}}{\partial x^{i}} \frac{dx^{i}}{dt} \right) \\ &= \frac{1}{2} \frac{\partial x^{i'}}{\partial x^{i}} \frac{d^{2} x^{i}}{dt^{2}} + \frac{1}{2} \frac{\partial^{2} x^{i'}}{\partial x^{i} \partial x^{j}} \frac{dx^{i}}{dt} \frac{dx^{j}}{dt} \\ &= \frac{\partial x^{i'}}{\partial x^{i}} x^{\bar{i}} + \frac{1}{2} \frac{\partial^{2} x^{i'}}{\partial x^{i} \partial x^{j}} x^{\bar{i}} x^{\bar{j}} \end{aligned}$$

and its Jacobian matrix by

$$A = \begin{pmatrix} \frac{\partial x^{i'}}{\partial x^{\bar{i}}} & \frac{\partial x^{\bar{i}'}}{\partial x^{\bar{i}}} & \frac{\partial x^{\bar{i}'}}{\partial x^{\bar{i}}} \\ \frac{\partial x^{\bar{i}'}}{\partial x^{\bar{i}}} & \frac{\partial x^{\bar{i}'}}{\partial x^{\bar{i}}} & \frac{\partial x^{\bar{i}}}{\partial x^{\bar{i}}} \\ \frac{\partial x^{\bar{i}'}}{\partial x^{\bar{i}}} & \frac{\partial x^{\bar{i}'}}{\partial x^{\bar{i}}} & \frac{\partial x^{\bar{i}}}{\partial x^{\bar{i}}} \end{pmatrix} = \begin{pmatrix} \frac{\partial x^{i'}}{\partial x^{\bar{i}}} & 0 & 0 \\ \frac{\partial x^{i'}}{\partial x^{\bar{i}}} x^{\bar{s}} & \frac{\partial x^{i'}}{\partial x^{\bar{i}}} & 0 \\ \frac{\partial^2 x^{i'}}{\partial x^{\bar{i}} \partial x^{\bar{s}}} x^{\bar{s}} & \frac{\partial x^{i'}}{\partial x^{\bar{i}} \partial x^{\bar{s}}} x^{\bar{s}} \end{pmatrix}.$$
(6)

From (4), (5) and (6) follows that $A^{-1}\gamma A = \gamma, A^{-1}\gamma^2 A = \gamma^2$, i.e. the transformation of local coordinates $(x^i, x^{\overline{i}}, x^{\overline{i}})$ in $T^2(M_r)$ is a structure-preserving transformation. Then the transition functions

$$z^{i'}(z^i) = x^{i'} + \varepsilon x^{\bar{i}'} + \varepsilon^2 x^{\bar{\bar{i}}'} = x^{i'}(x^i) + \varepsilon \frac{\partial x^{i'}}{\partial x^i} x^{\bar{i}} + \varepsilon^2 (\frac{\partial x^{i'}}{\partial x^i} x^{\bar{\bar{i}}} + \frac{1}{2} \frac{\partial^2 x^{i'}}{\partial x^i \partial x^j} x^{\bar{i}} x^{\bar{j}})$$

of charts on $X_r(R(\varepsilon^2))$ are $R(\varepsilon^2)$ -holomorphic functions by virtue of (3), i.e. we have the bundle $T^2(M_r)$ is a real modeling of $R(\varepsilon^2)$ -holomorphic manifold $X_r(R(\varepsilon^2))$.

1.4. Since the bundle $T^2(M_r)$ is a real modeling of $X_r(R(\varepsilon^2))$ and any holomorphic function

$$w(z^1, ..., z^r) = f^1(x^1, ..., x^r) + \varepsilon f^2(x^1, ..., x^r) + \varepsilon^2 f^3(x^1, ..., x^r),$$

on $X_r(R(\varepsilon^2))$, where $z^i = x^i + \varepsilon x^{r+i} + \varepsilon^2 x^{2r+i}$, i = 1, ..., r, is expressed by (see (2))

$$w(z^{1},...,z^{r}) = f(x^{1},...,x^{r}) + \varepsilon(x^{r+i}\partial_{i}f + g(x^{1},...,x^{r})) + \varepsilon^{2}\left(x^{2r+i}\frac{\partial f}{\partial x^{i}} + \frac{1}{2}x^{r+i}x^{r+j}\frac{\partial^{2}f}{\partial x^{i}\partial x^{j}} + x^{r+i}\frac{\partial g}{\partial x^{i}} + h(x^{1},...,x^{r})\right), f = f^{1},$$

in the bundle of 2-jets we introduce the following three functions:

$$V f = f(x^{1}, ..., x^{r}),$$

$$^{I} f = x^{r+i}\partial_{i}f + g(x^{1}, ..., x^{r}),$$

$$^{C} f = x^{2r+i}\frac{\partial f}{\partial x^{i}} + \frac{1}{2}x^{r+i}x^{r+j}\frac{\partial^{2}f}{\partial x^{i}\partial x^{j}} + x^{r+i}\frac{\partial g}{\partial x^{i}} + h(x^{1}, ..., x^{r}),$$

$$(7)$$

where f, g and h are any functions on M_r . These functions ${}^V f, {}^I f$ and ${}^C f$ are called respectively the *vertical*, *intermediate and complete* lifts of f in M_r to $T^2(M_r)$ [1]. If g = h = 0, then we have the $0-th f^0$, $1-th f^1$ and $2-th f^2$ lifts of f [7], [8], i.e. the lifts ${}^I f$ and ${}^C f$ of f to $T^2(M_r)$ are respectively the *deformed lifts* of 1-th and 2-th lifts of f.

Thus we have

$${}^{V}f = f^{0}, {}^{I}f = f^{1} + g^{0}, {}^{C}f = f^{2} + g^{1} + h^{0}.$$
(8)

2. Deformed complete lifts of 1-forms

Let $\widetilde{\omega} = \widetilde{\omega}_I dx^I = \widetilde{\omega}_i dx^i + \widetilde{\omega}_{r+i} dx^{r+i} + \widetilde{\omega}_{2r+i} dx^{2r+i}$ be an 1-form in $T^2(M_r)$, and $\Pi = \{I, \gamma, \gamma^2\}$, $I = id_{T^2(M_r)}$ be a Π -structure naturally existing in $T^2(M_r)$. We would like to find local expression of $\widetilde{\omega} = (\widetilde{\omega}_I)$ in $T^2(M_r)$ which is corresponding to the $R(\varepsilon^2)$ -holomorphic 1-form $\overset{*}{\omega} = (\overset{*}{\omega}_u) = (\overset{*}{\omega}_{u\alpha}e^{\alpha}), e^{\alpha} = \varphi^{\alpha\beta}e_{\beta}, u = 1, ..., r; \alpha, \beta = 1, 2, 3$ in $X_r(R(\varepsilon^2))$.

Using Theorem 1.1, we obtain

$$(\Phi_{\gamma}\widetilde{\omega})_{JI} = \gamma_{J}^{H}\partial_{H}\widetilde{\omega}_{I} - \gamma_{I}^{H}\partial_{J}\widetilde{\omega}_{H} = 0, (\Phi_{\gamma^{2}}\widetilde{\omega})_{JI} = (\gamma^{2})_{J}^{H}\partial_{H}\widetilde{\omega}_{I} - (\gamma^{2})_{I}^{H}\partial_{J}\widetilde{\omega}_{H} = 0$$

From here, after straightforward calculations (see Section 1), we find the following covector field

$$\widetilde{\omega} = (\widetilde{\omega}_I) = (x^{2r+h}\partial_h\omega_i + \frac{1}{2}x^{r+h}x^{r+m}\partial_{hm}^2\omega_i + x^{h+i}\partial_hG_i + H_i, x^{r+h}\partial_h\omega_i + G_i, \omega_i),$$
(9)

where $G = (G_i(x^1, ..., x^r))$, $H = (H_i(x^1, ..., x^r))$ any covector fields in M_r . In fact, by means of (13), we easily see that $\widetilde{\omega} = (\widetilde{\omega}_l)$ determine 1–form in $T^2(M_r)$ which are called the *deformed complete lifts* of ω from M_r to $T^2(M_r)$ and denoted by ${}^{\mathcal{C}}\omega = ({}^{\mathcal{C}}\omega_l)$.

From (9), we have

$$^{C}\omega = \omega^{2} + G^{1} + H^{0}, \tag{10}$$

where

$$\begin{aligned} H^0 &= (H_i, 0, 0), G^1 &= (x^{r+h} \partial_h G_i, G_i, 0), \\ \omega^2 &= (x^{2r+h} \partial_h \omega_i + \frac{1}{2} x^{r+h} x^{r+m} \partial_{hm}^2 \omega_i, x^{r+h} \partial_h \omega_i, \omega_i) \end{aligned}$$

are respectively the 0–*th* (*vertical*), 1–*th* and 2–*th* (*complete*) *lifts* of *H*, *G* and ω [7]. It is clear that the deformed complete lift ${}^{c}\omega = ({}^{c}\omega_{I})$ is deformation of 2–th lift of ω .

Thus we have

Theorem 2.1. Let $\omega = \omega_i dx^i$ be an 1-form on M_r . The deformed complete lift ${}^C \omega$ of ω to the bundle of 2-jets $T^2(M_r)$ have the following expression

$$^{C}\omega = \omega^{2} + G^{1} + H^{0}$$

where H^0 , G^1 and ω^2 are respectively the 0-th, 1-th and 2-th lifts of any 1-forms H, G and ω .

3. Deformed intermediate lifts of 1-forms

Putting $\omega = G$ in (10), we see that

$$\omega^1 + H^0 = {}^C\omega - \omega^2 = (x^{r+i}\partial_i\omega_h + H_h, \omega_h, 0)$$
⁽¹¹⁾

determine a new 1-form in $T^2(M_r)$, which are called the *deformed intermediate lift* of 1-form ω from M_r to $T^2(M_r)$ and denoted by ${}^{I}\omega = \omega^1 + H^0$. We note that the deformed intermediate lift ${}^{I}\omega$ of ω to $T^2(M_r)$ is deformation of 1-th lift of ω .

Thus we have

$${}^{V}\omega = \omega^{0}, {}^{I}\omega = \omega^{1} + H^{0}, {}^{C}\omega = \omega^{2} + G^{1} + H^{0},$$
(12)

where

$$V\omega = (\omega_h, 0, 0). \tag{13}$$

Thus we have

Theorem 3.1. Let $\omega = \omega_i dx^i$ be an 1-form on M_r . The deformed intermediate lift ${}^{I}\omega$ of ω to the bundle of 2-jets $T^2(M_r)$ have the following expression

 ${}^{I}\omega = \omega^1 + H^0$,

where H^0 is the 0-th lift of 1-form H.

From (9), (11) and (13) we have

Theorem 3.2. Deformed complete lifts satisfies the following matrix formulas

$${}^{C}\omega\gamma = \omega^{1} + G^{0}, {}^{C}\omega\gamma^{2} = \omega^{0} = {}^{V}\omega,$$

where γ and γ^2 are matrices in the form (4) and (5), respectively.

Let now $\omega = dx^{i}$, $G = dx^{j}$, $H = dx^{k}$, i, j, k = 1, ..., r. Then from (11), (12) and (13) we have

Theorem 3.3. Deformed complete, intermediate and vertical lifts of differentials dx^i has the following linear combination of differentials in $T^2(M_r)$:

$$V(dx^{i}) = dx^{i}, \ {}^{I}(dx^{i}) = dx^{r+i} + dx^{k}, \ C(dx^{i}) = dx^{2r+i} + dx^{r+j} + dx^{k}.$$

Let now *X* be a vector field in M_r . It is well known that the vertical and deformed lifts ${}^{I}X, {}^{C}X$ of *X* has the following expressions (see [4])

$${}^{V}X = X^{0} = \begin{pmatrix} 0\\0\\X^{h} \end{pmatrix}, {}^{I}X = X^{1} + Y^{0} = \begin{pmatrix} 0\\X^{h}\\x^{r+i}\partial_{i}X^{h} \end{pmatrix} + \begin{pmatrix} 0\\0\\Y^{h} \end{pmatrix} = \begin{pmatrix} 0\\X^{h}\\x^{r+i}\partial_{i}X^{h} + Y^{h} \end{pmatrix},$$

$${}^{C}X = X^{2} + Y^{1} + Z^{0} = \begin{pmatrix} X^{h} \\ x^{r+i}\partial_{i}X^{h} \\ x^{2r+i}\partial_{i}X^{h} + \frac{1}{2}x^{r+i}x^{r+j}\partial_{ij}^{2}X^{h} \end{pmatrix} + \begin{pmatrix} 0 \\ Y^{h} \\ x^{r+i}\partial_{i}Y^{h} \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ Z^{h} \end{pmatrix}$$
$$= \begin{pmatrix} X^{h} \\ x^{r+i}\partial_{i}X^{h} + Y^{h} \\ x^{2r+i}\partial_{i}X^{h} + \frac{1}{2}x^{r+i}x^{r+j}\partial_{ij}^{2}X^{h} + x^{r+i}\partial_{i}Y^{h} + Z^{h} \end{pmatrix}$$

for any vector fields Y, Z in M_r . Using the last formulas and also (7), (8), (11), (12), (13) we have

Theorem 3.4. Let X, ω and f are respectively any vector field, 1– form and function in M_r . Then

$${}^{V}(f\omega) = f^{0}\omega^{0}, \ {}^{I}(f\omega) = f^{1}\omega^{0} + f^{0}\omega^{1} + G^{0}, \ {}^{C}(f\omega) = (f^{2} + f^{0})\omega^{0} + f^{1}\omega^{1} + G^{1} + H^{0},$$

$${}^{V}\omega({}^{V}X) = 0, \ {}^{V}\omega({}^{I}X) = 0, \ {}^{V}\omega({}^{C}X) = (\omega(X))^{0},$$

$${}^{I}\omega({}^{V}X) = 0, \ {}^{I}\omega({}^{I}X) = (\omega(X))^{0}, \ {}^{I}\omega({}^{C}X) = (\omega(X))^{1} + (\omega(Y))^{0} + (H(X))^{0},$$

$${}^{C}\omega({}^{V}X) = (\omega(X))^{0}, \ {}^{C}\omega({}^{I}X) = (\omega(X))^{1} + (\omega(Y))^{0} + (G(X))^{0},$$

$${}^{C}\omega({}^{C}X) = (\omega(X))^{2} + (\omega(Y))^{1} + (\omega(Z))^{0} + (G(X))^{1} + (G(Y))^{0} + (H(X))^{0}.$$

4. Exterior differentials of deformed complete and intermediate lifts

Let now Ω be a tensor field of type (0, 2) in M_r . We define an 1–form $\gamma_Y \Omega$ by

$$(\gamma_Y \Omega) X = \Omega(X, Y)$$

for any vector fields X and Y. If Ω has local components Ω_{ij} , then $\gamma_Y \Omega$ has local components $\Omega_{ij} Y^j$.

It is well known that the deformed intermediate and complete lifts of Ω has respectively components (see [3])

$${}^{I}\Omega = \left(\begin{array}{ccc} x^{r+s}\partial_{s}\Omega_{ji} + \pi_{ji} & \Omega_{ji} & 0\\ \Omega_{ji} & 0 & 0\\ 0 & 0 & 0 \end{array} \right) = \Omega^{1} + \pi^{0},$$

$${}^{C}\Omega = \begin{pmatrix} x^{2r+s}\partial_{s}\Omega_{ji} + \frac{1}{2}x^{r+t}x^{r+s}\partial_{ts}^{2}\Omega_{ji} + x^{r+s}\partial_{s}\Omega_{ji} + \pi_{ji} & x^{r+s}\partial_{s}\Omega_{ji} + \Omega_{ji} & \Omega_{ji} \\ x^{r+s}\partial_{s}\Omega_{ji} + \Omega_{ji} & \Omega_{ji} & 0 \\ \Omega_{ji} & 0 & 0 \end{pmatrix}$$
$$= \Omega^{2} + \Omega^{1} + \pi^{0},$$

where

$${}^{V}\pi = {}^{0}\pi = \left(\begin{array}{ccc} \pi_{ji} & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array}\right)$$

is the vertical lift of any tensor field π of type (0, 2). Using the expression of lifts ${}^{V}\pi$, ${}^{I}\Omega$, ${}^{C}\Omega$ and (9), (11), (13) we have

$$\begin{split} \gamma_{X^2}{}^V \Omega &= (\Omega_{ij} X^j, 0, 0) = ((\gamma_X \Omega)_i, 0, 0) = {}^V (\gamma_X \Omega), \\ \gamma_{X^2}{}^I \Omega &= ((x^{r+s} \partial_s \Omega_{ij} + \pi_{ij}) X^j + \Omega_{ij} (x^{r+s} \partial_s X^j), \Omega_{ij} X^j, 0) \\ &= (x^{r+s} \partial_s (\gamma_X \Omega)_i + (\gamma_X \pi)_i, (\gamma_X \Omega)_i, 0) \\ &= (\gamma_X \Omega)^1 + (\gamma_X \pi)^0 = {}^I (\gamma_X \Omega), \\ \gamma_{X^2}{}^C \Omega &= ((x^{2r+s} \partial_s \Omega_{ij} + \frac{1}{2} x^{r+s} x^{r+t} \partial_{st}^2 \Omega_{ij} + x^{r+s} \partial_s \Omega_{ij} + \pi_{ij}) X^j \\ &+ (x^{r+s} \partial_s \Omega_{ij} + \Omega_{ij}) x^{r+t} \partial_t X^j \\ &+ \Omega_{ij} (x^{2r+s} \partial_s X^j + \frac{1}{2} x^{r+s} x^{r+t} \partial_{st}^2 X^j, (x^{r+s} \partial_s \Omega_{ij} + \Omega_{ij}) X^j \\ &+ \Omega_{ij} x^{r+t} \partial_t X^j, \Omega_{ij} X^j) \\ &= (x^{2r+s} \partial_s (\gamma_X \Omega)_i + \frac{1}{2} x^{r+s} x^{r+t} \partial_{st}^2 (\gamma_X \Omega)_i + x^{r+s} \partial_s (\gamma_X \Omega)_i \\ &+ (\gamma_X \pi)_i, x^{r+s} \partial_s (\gamma_X \Omega)_i + (\gamma_X \Omega)_i, (\gamma_X \Omega)_i) \\ &= (\gamma_X \Omega)^2 + (\gamma_X \Omega)^1 + (\gamma_X \pi)^0 = {}^C (\gamma_X \Omega). \end{split}$$

Thus we have

Theorem 4.1. Let Ω be a tensor field of type (0, 2) in M_r . Then

$$\begin{aligned} \gamma_{X^2}{}^V \Omega &= (\gamma_X \Omega)^0 = {}^V (\gamma_X \Omega), \\ \gamma_{X^2}{}^I \Omega &= (\gamma_X \Omega)^1 + (\gamma_X \pi)^0 = {}^I (\gamma_X \Omega), \\ \gamma_{X^2}{}^C \Omega &= (\gamma_X \Omega)^2 + (\gamma_X \Omega)^1 + (\gamma_X \pi)^0 = {}^C (\gamma_X \Omega) \end{aligned}$$

We shall now study the deformed lifts of exterior differentials of 1–forms $\omega = \omega_i dx^i$, i = 1, ..., r. Using $[X^2, Y^2] = [X, Y]^2$ and linearity of mappings $X \to X^0$, $X \to X^1$, $X \to X^2$, from Theorem 3.4 and Theorem 4.1 we have

$$\begin{aligned} 2(d^{l}\omega)(X^{2},Y^{2}) &= X^{2}({}^{l}\omega(Y^{2})) - Y^{2}({}^{l}\omega(X^{2})) - {}^{l}\omega([X^{2},Y^{2}]) \\ &= X^{2}((\omega(Y))^{1} + (H(Y))^{0}) - Y^{2}((\omega(X))^{1} \\ &+ (H(X))^{0}) - {}^{l}\omega([X,Y]^{2}) \\ &= (X\omega(Y))^{1} + (XH(Y))^{0} - (Y\omega(X))^{1} - (YH(X))^{0} \\ &- (\omega([X,Y]))^{1} - (H([X,Y]))^{0} \\ &= (X\omega(Y) - Y\omega(X) - \omega([X,Y]))^{1} \\ &+ (XH(Y) - YH(X) - H([X,Y]))^{1} \\ &= 2((d\omega)(X,Y))^{1} + 2((dH)(X,Y))^{0} \\ &= 2(\gamma_{Y}(d\omega)(X))^{1} + 2(\gamma_{Y}(dH)(X))^{0} \\ &= 2(\gamma_{Y}(d\omega))^{1}(X^{2}) + 2(\gamma_{Y2}(dH))^{0}(X^{2}) \\ &= 2((d\omega)^{1} + (dH)^{0})(X^{2},Y^{2}). \end{aligned}$$

By similar devices, we have

$$2(d^{C}\omega)(X^{2}, Y^{2}) = 2((d\omega)^{2} + (dG)^{1} + (dH)^{0})(X^{2}, Y^{2})$$

Since the any tensor field Ω of type (0, 2) in $T^2(M_r)$ is completely determined by its action on lifts X^2 , Y^2 (see [2, p.324]), i.e. if $\Omega(X^2, Y^2) = \widetilde{\Omega}(X^2, Y^2)$ for any *X*, *Y*, then $\Omega = \widetilde{\Omega}$, we have

Theorem 4.2. Let ω , G and H be 1-forms in M_r . Then the exterior differentials of deformed intermediate and complete lifts of ω to $T^2(M_r)$ satisfies the following formulas:

$$\begin{aligned} d^{l}\omega &= (d\omega)^{1} + (dH)^{0}, \\ d^{C}\omega &= (d\omega)^{2} + (dG)^{1} + (dH)^{0}. \end{aligned}$$

References

- [1] K. Yano, S. Ishihara, Differential geometry of tangent bundles of order 2, Kodai Math. Sem. Rep. 20 (1968) 318–354.
- [2] K. Yano, S. Ishihara, Tangent and Cotangent Bundles, New York, Marcel Dekker, 423 pp., 1973.
- [3] T. Sultanova, A. Salimov, On holomorphic metrics of 2-jet bundles, Mediterr. J. Math. 19 (2022) 1-12.
- [4] S. Aslanci, T. Sultanova, Deformed lifts in the bundle of 2–jets, Tbilisi Math. J. 14 (2021) 155–162.
 [5] A. Salimov, On structure-preserving connections, Period. Math. Hungar. 77 (2018) 69–76.
- [6] V.V. Vishnevskii, A.P. Shirokov, V.V. Shurygin, Spaces over Algebras, Kazan, Kazanskii Gosudarstvennyi Universitet., 1985.
- [7] S. Tachibana, Analytic tensor and its generalization, Tohoku Math. J. 12 (1960) 208–221.
- [8] A. Salimov, N. Cengiz, M. B. Asl, On holomorphic hypercomplex connections, Adv. Appl. Clifford Algebr. 23 (2013) 179–207.