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Abstract. In this manuscript, we introduce the (Ψ,Φ)-orthogonal interpolative contraction as a generaliza-
tion of an orthogonal interpolative contraction. We prove several fixed point theorems stating conditions
under which (Ψ,Φ)-orthogonal interpolative contraction admits a fixed point. Our fixed point results are
improvements of several known results in literature. As an application, we resolve a fractional differential
equation.

1. Introduction

The interpolative contraction principles consist of product of distances having exponents satisfying some
conditions. The term “interpoltive contraction” was introduced by the renowned mathematician Erdal
Karapinar in his paper [33] published in 2018. The interpoltive contraction is defined as follows:

A self-mapping S defined on a metric space (A, d) is said to be an interpolative contraction, if there exist
ν ∈ (0, 1] and K ∈ [0, 1) such that

d(Sx,Sy) ≤ K
(
d(x, y)

)ν ,∀x, y ∈ A.

Note that for ν = 1, S is a Banach contraction. If the mapping S defined on a metric space (A, d) satisfies the
following inequalities:

d(Sx,Sy) ≤ K (d(x,Sx))ν
(
d(y,Sy)

)1−ν ,

d(Sx,Sy) ≤ K
(
d(x,Sy)

)ν (d(x,Sy)
)1−ν ,

d(Sx,Sy) ≤ K
(
d(x, y)

)η (d(x,Sx))ν
(
d(y,Sy)

)1−ν−η , ν + η < 1
d(Sx,Sy) ≤ K

(
d(x, y)

)ν (d(x,Sx))η
(
d(y,Sy)

)γ(1
2

(d(x,Sy) + d(y,Sx))
)1−η−ν−γ

, ν + η + γ < 1.

for all x, y ∈ A, then S is called interpolative Kannan type contraction, interpolative Chatterjea type
contraction, interpolative Ćirić-Reich-Rus type contraction and interpolative Hardy Rogers type contraction
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respectively. Recently, many classical and advanced contractions have been revisited via interpolation (see
[8, 9, 19, 20, 26–32, 34–36, 42]).
Boyd-Wong [14] contraction principle generalizes the contraction principle introduced by Rakotch [45].
Moreover, the Boyd-Wong idea has been generalized by Matkowski [39], Samet et al. [48], Karapinar et al.
[25], Pasicki [43]. The F-contraction [52] is another remarkable generalization of the Banach contraction
principle (BCP) and during the last decade many research papers have been published addressing fixed
points (common fixed points) of F-contractions (see [12, 13, 47, 49, 51] and references there in). Proinov
[44](2020), presented some fixed point theorems that extended the earlier results in [14, 25, 39, 43, 48, 52]
Gordji et al. [22] (2017) introduced the notion of orthogonal set (a non-empty set whose elements obey a
special relation called orthogonal relation) to present a new generalization of the Banach fixed point theorem
(BFPT). Gordji et al. [22] (2017) explained the notion of orthogonal set by presenting many examples (see
[22, Example 2.2-Example 2.11]). The metric defined on the orthogonal set is called orthogonal metric space.
The orthogonal metric space contains partially ordered metric space and graphical metric space. Baghani et
al.[12] extended the work in [22] to F-contractions, moreover, the investigation done in [12] was generalized
by Nazam et al. [41](2021).
In this paper, motivated by the contraction principles presented in [22, 44], we introduce (Ψ,Φ)-orthogonal
interpolative contractions which generalize interpolative contractions and unify several interpolative con-
tractions in the orthogonal metric spaces. We show that every interpolative contraction is an orthogonal
interpolative contraction but not conversely. We investigate different conditions on the functions Ψ,Φ to
show the existence of fixed-points of (Ψ,Φ)-orthogonal interpolative Kannan type contractions, (Ψ,Φ)-
orthogonal interpolative Chatterjea type contractions, (Ψ,Φ)-orthogonal interpolative Ćirić-Reich-Rus type
contractions and (Ψ,Φ)-orthogonal interpolative Hardy-Rogers type contractions. We also present an ap-
plication to resolve a fractional differential type equation and some examples in support of the obtained
results.

2. Preliminaries

In this section, we define orthogonal set, ⊥-regular space and O-sequence (a sequence whose terms are
pair wise orthogonal). The binary relation ⊥ (orthogonal relation) is a generalization of the partial order,
α-admissible function and directed graph. It also contains the notion of orthogonality in the inner product
spaces. The following definition is one of the key notions of this paper.

Definition 2.1. [22] Let ⊥ be a binary relation defined on a non-empty set A (i.e., ⊥ ⊂ A ×A). If ⊥ satisfies the
property (P), then we call it orthogonal relation and the pair (A,⊥) is called orthogonal set.

(P): ∃ x0 ∈ A : either (∀y, x0⊥ y) or (∀y, y⊥ x0).

To illustrate the orthogonal set, we have the following examples.

Example 2.2. [22] LetA be a inner product space with the inner product ⟨·, ·⟩. Define x⊥ y if
〈
x, y

〉
= 0. It is easy

to see that 0⊥ y for all y ∈ A. Hence (A,⊥) is an O-set.

Example 2.3. [22] In graph theory, a wheel graph Wn is a graph with n vertices for each n ≥ 4, formed by connecting
a single vertex to all vertices of an (n − 1)-cycle. LetA be the set of all vertices of Wn for each n ≥ 4. Define x⊥ y if
there is a connection from x to y. Then (A,⊥) is an orthogonal set.

Example 2.4. LetA be the set of integers. Consider, a⊥θ if and only if a ≡ 1( mod θ). Then (A,⊥) is an O-set.
Indeed, 1⊥θ for each θ.

Example 2.5. Let A be the set of all persons in the word. Define x⊥ y if x can give blood to y. According to the
blood transfusion protocol, if x0 is a person such that his (her) blood type is O−, then we have x0⊥ y for all y ∈ A.
This means that (A,⊥) is an O-set (orthogonal set). In this O-set, x0 is not unique. Note that, x0 may be a person
with blood type AB+. In this case, we have y⊥ x0 for all y ∈ A.
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Definition 2.6. [22]

(a) A sequence {ℏn : n ∈N} is said to be an O-sequence if either xn⊥ xn+1 or xn+1⊥ xn for all n.

(b) The O-set (A,⊥) endowed with a metric d is called an O-metric space (in short, OMS) denoted by (A,⊥, d).

(c) The O-sequence {xn} ⊂ A is said to be O-Cauchy if lim
n,m→∞

d(xn, xm) = 0. If each O-Cauchy sequence converges

inA, then (A,⊥, d) is called O-complete.

(d) Let (A,⊥, d) be an orthogonal metric space. A mapping f : A → A is said to be an orthogonal contraction if
there exists k ∈ [0, 1) such that

d( f x, f y) ≤ kd(x, y) ∀x, y ∈ A with x⊥ y.

In the following, we give some comparisons between fundamental notions.

1. The continuity implies orthogonal continuity but converse is not true. If f : R → R is defined by
f (x) = [x], ∀x ∈ R and the relation ⊥ ⊆ R ×R is defined by

x⊥ y if x, y ∈
(
i +

1
3
, i +

2
3

)
, i ∈ Z or x = 0.

Then f is ⊥-continuous while f is discontinuous on R.

2. The completeness of the metric space implies O-completeness but the converse is not true. We know
thatA = [0, 1) with Euclidean metric d is not complete metric space. If we define the relation⊥ ⊆ A×A
by

x⊥ y ⇐⇒ x ≤ y ≤
1
2

or x = 0.

Then (A,⊥, d) is an O-complete.

3. The Banach contraction implies orthogonal contraction but converse is not true. LetA = [0, 10) with
Euclidean metric d so that (A, d) is a metric space. If we define the relation ⊥ ⊆ A×A by

x⊥ y if xy ≤ x ∨ y.

Then (A,⊥, d) is an O-metric space. Define f : A → A by f (x) = x
2 (if x ≤ 2) and f (x) = 0 (if x > 2).

Since d( f (3), f (2)) > kd(3, 2), so, f is not a contraction while it is an orthogonal contraction.

We will use the following lemma to support the proofs.

Lemma 2.7. [44] Let (X, d) be a metric space and {xn} ⊂ X be a sequence verifying limn→∞ d(xn, xn+1) = 0. If the
sequence {xn} is not Cauchy, then there are {xnk }, {xmk } and ξ > 0 such that

lim
k→∞

d(xnk+1, xmk+1) = ξ + . (1)

lim
k→∞

d(xnk , xmk ) = d(xnk+1, xmk ) = d(xnk , xmk+1) = ξ. (2)

Definition 2.8. [15] A mapping T : A→A is said to be asymptotically regular at a point υ ofA if

lim
n→∞

d(Tnυ,Tn+1υ) = 0.

If T is asymptotically regular at each point inA, then it is named as an asymptotically regular mapping.
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3. Orthogonal interpolative contractions and related fixed-point results

The orthogonal interpolative contractions are more general than interpolative contractions. The fol-
lowing example shows that the orthogonal interpolative Kannan contraction (OIKC) implies interpolative
Kannan contraction (IKC) but not conversely.

Example 3.1. LetA = {1, 2, 3, 4, 5, 6, 7, 8, · · · } with Euclidean metric d so that (A, d) is a metric space. If we define
the relation ⊥ ⊆ A×A by

x⊥ y if xy ≤ x ∨ y for all x , y.

Then (A,⊥, d) is an O-metric space. Define S : A → A by S (x) = x
2 (if x ≤ 2) and S (x) = 0 (if x > 2). Since,

there exist ν = 3
4 and k = 0.99 such that d(S(3),S(2)) > k[d(3,S(3))]ν · [d(2,S(2)]1−ν, so, S is not an IKC while the

following calculations show that S is an OIKC.
For if x = 2 and y = 1, then x⊥ y and

d(S(2),S(1)) ≤ k[d(2,S(2))]ν · [d(1,S(1)]1−ν for some k ∈ [0, 1) and ν ∈ (0, 1).

For if x = 3 and y = 1, then x⊥ y and

d(S(3),S(1)) ≤ k[d(3,S(3))]ν · [d(1,S(1)]1−νfor some k ∈ [0, 1) and ν ∈ (0, 1).

Similarly, for all other cases, S is an OIKC. Thus, joining [33, Example 2.3] and Example 3.1, we have

Kannan contraction → IKC → OIKC.

Kannan contraction ↚ IKC ↚ OIKC.

In the following we define⊥-regular and⊥-preserving mapping and illustrate them with examples. Let
Λ = {(x, y) ∈ A ×A : x⊥ y}.

Definition 3.2. Let (A,⊥, d) be an OMS and⊥ ⊂ A×A be a binary relation. The space (A,⊥, d) is called⊥-regular
if for each sequence {xn} ⊂ A so that xn⊥ xn+1 for each n ≥ 0 and xn → x as n→∞, we have either xn⊥ x, or x⊥ xn
for all n ≥ 0.

Definition 3.3. Let S : A → A and ⊥ ⊂ A ×A be an orthogonal relation. The mapping S is called ⊥-preserving
if, whenever, x⊥ y, we have Sx⊥Sy for all x, y ∈ A.

Example 3.4. LetA = [0, 1) and define the relation ⊥ ⊂ A×A by

x⊥ y if xy ≤ x ∨ y.

ThenA is an O-set. Define S : A→A by

S(x) =
{

x
5 if x ∈ Q ∩A,
0 if x ∈ Qc

∩A.

Then S is a⊥-preserving mapping. Indeed, for x = 1
3 , y = 1

2 , we have x⊥ y and since S
(

1
3

)
S
(

1
2

)
= 1

150 < S
(

1
3

)
∨S

(
1
2

)
,

so, S
(

1
3

)
⊥S

(
1
2

)
. Similarly for all the other cases, it is evident that S is a ⊥-preserving mapping.
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3.1. (Ψ,Φ)-orthogonal interpolative Kannan type contraction
Let (A,⊥, d) be an OMS and Φ,Ψ : (0,∞)→ (−∞,∞) be two functions. A mapping S : A→A is said to

be a (Ψ,Φ)-orthogonal interpolative Kannan type contraction if there exists ν ∈ (0, 1) such that

Ψ(d(Sx,Sy)) ≤ Φ
(
(d(x,Sx))ν(d(y,Sy))1−ν

)
, (3)

for all (x, y) ∈ Λ, and min{d(Sx,Sy), d(y,Sy), d(x,Sx)} > 0.
The following example explains (3).

Example 3.5. LetA = [1, 7) and define the relation ⊥ onA by

x⊥ y if xy ∈ {x, y}.

Then ⊥ is an orthogonal relation and so (A,⊥) is an O-set. Let d be the Euclidean metric on A, then, (A, d) is an
incomplete metric space. DefineΨ,Φ : R+ → R by

Ψ (x) =


x + 1 if x ∈ {3.5, 5} ,

x
2 if x ∈ R+ − {3.5, 5} .

Φ (x) =


x2 + 1 if x ∈ {3.5, 5} ,

x + 10 if x ∈ R+ − {3.5, 5} .

Let S : A→A be defined by

S (x) =


6 if 1 ≤ x < 2,

2.5 if 2 ≤ x < 3,

1.5 if 3 ≤ x < 7.

Our calculations show that d(Sx,Sy) = 3.5, d(x,Sx) = 5 and d(y,Sy) = 0.5 if x = 1, y = 2 (1⊥ 2). This information
shows that

d(Sx,Sy) > λ[d(x,Sx)]ν[d(y,Sy)]1−ν for some λ =
1
2
, ν = 0.9.

Thus, S is not an orthogonal interpolative Kannan type contraction. However, S is a (Ψ,Φ)-orthogonal interpolative
Kannan type contraction. Indeed,

Ψ
(
d(Sx,Sy)

)
≤ Φ

(
[d(x,Sx)]ν[d(y,Sy)]1−ν

)
.

We obtain the same conclusions for x = 1, y = 3 (1⊥ 3); x = 1, y = 4 (1⊥ 4); x = 1, y = 5 (1⊥ 5) and x = 1, y = 6
(1⊥ 6).

Remark 3.6. Example 3.1 and 3.5 show that interpolative contraction implies orthogonal interpolative contraction
and orthogonal interpolative contraction implies (Ψ,Φ)-orthogonal interpolative contraction but converse is not true.

Remark 3.7. For the particular definitions of the mappingsΨ,Φ, we have the following observations which show the
generality of (Ψ,Φ)-orthogonal interpolative Kannan type contraction.

1. DefiningΦ(x) = Ψ(x)−τ for all x ∈ (0,∞) in (3) we have orthogonal interpolative Kannan type F-contractions.

2. Defining Φ(x) = Ψ(x) − τ(x) for all x ∈ (0,∞) in (3), we have orthogonal interpolative Kannan type (τ,FT)-
contraction.
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3. DefiningΨ(x) = x andΦ(y) = λy for all x, y ∈ (0,∞) in (3), then we obtain the contraction introduced in [33].

For the orthogonal relation⊥, self-mapping S and functionsΨ,Φ : (0,∞)→ (−∞,∞), we state the following
conditions:

(i) for each ℏ0 ∈ A, there is ℏ1 = S(ℏ0) such that ℏ1⊥ℏ0 or ℏ0⊥ℏ1.

(ii) Ψ is non-decreasing and Φ(x) < Ψ(x) for all x > 0.

(iii) lim sup
x→δ+

Φ(x) < Ψ(δ+) for all δ > 0.

(iv) lim sup
a→0

Φ(a) ≤ lim inf
a→ξ+

Ψ(a).

(v) Ψ(aνbη) ≤ Ψ(a) and Φ(x) < Ψ(x) for all x > 0.

(vi) infa>ξΨ(a) > −∞.

(vii) if {Ψ(ℏn)} and {Φ(ℏn)} are converging to same limit and {Ψ(ℏn)} is strictly decreasing, then limn→∞ ℏn = 0.

(viii) lim supa→0Φ(a) < lim inf
a→ξ

Ψ(a) for all ξ > 0.

The following is one of the main theorems that states the conditions for the existence of the fixed points of
a self-mapping S satisfying (3).

Theorem 3.8. Let⊥ be a transitive orthogonal relation, then, every⊥-preserving self-mapping defined on a⊥-regular
O-complete metric space (A,⊥, d) (in short, OCMS) verifying (3) and (i)-(iv), admits a fixed point inA.

Proof. By (i), as ℏ0 ∈ A is such that ℏ0⊥ ℏ1 or ℏ1⊥ ℏ0 for each ℏ1 ∈ A, then by using the ⊥-preserving nature
of S, we construct an orthogonal sequence {ℏn} such that ℏn = S(ℏn−1) = Sn(ℏ0) and ℏn−1⊥ℏn for each n ∈ N.
Note that, if ℏn = S(ℏn), then ℏn is a fixed point of S for all n ≥ 0. We assume that ℏn , ℏn+1 for all n ∈N∪{0}.
Let dn = d(ℏn, ℏn+1) for all n ≥ 0. By the first part of (ii) and (3), we have

Ψ(dn) ≤ Ψ(d(S(ℏn−1),S(ℏn))) ≤ Φ
(
(d(ℏn−1,Sℏn−1))ν(d(ℏn,Sℏn))1−ν

)
= Φ

(
(dn−1)ν(dn)1−ν

)
.

In view of second part of (ii), we have

Ψ(dn) ≤ Φ
(
(dn−1)ν(dn)1−ν

)
< Ψ

(
(dn−1)ν(dn)1−ν

)
. (4)

SinceΨ is non-decreasing, one gets dn < dn−1 for each n ≥ 1. This shows that the sequence {dn} is decreasing,
so there is L ≥ 0 so that limn→∞ dn = L+. If L > 0, by (4), one gets

Ψ(L+) = lim
n→∞
Ψ(dn) ≤ lim

n→∞
supΦ((dn−1)ν(dn)1−ν) ≤ lim

a→L+
supΦ(a).

This contradicts (iii), so L = 0, that is, S is asymptotically regular.
We claim that {ℏn} is Cauchy. Suppose on the contrary that {ℏn} is not a Cauchy sequence. Then, by

Lemma 2.7, there are subsequences {ℏnk }, {ℏmk } of {ℏn} and ξ > 0 such that (1) and (2) hold. By (1), we infer
that d(ℏnk+1, ℏmk+1) > ξ. Since ℏn⊥ ℏn+1 for all n ≥ 0, by transitivity of ⊥, we have ℏnk ⊥ ℏmk for all k ≥ 1.
Letting ℓ = ℏnk and ȷ = ℏmk in (3), we have for each k ≥ 1,

Ψ(d(ℏnk+1, ℏmk+1)) ≤ Ψ(d(Sℏnk ,Sℏmk ))

≤ Φ
(
(d(ℏnk ,Sℏnk ))

ν(d(ℏmk ,Sℏmk ))
1−ν

)
= Φ

(
(d(ℏnk , ℏnk+1))ν(d(ℏmk , ℏmk+1))1−ν

)
.
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If ℏk = d(ℏnk+1, ℏmk+1), bk = d(ℏnk , ℏnk+1) and ck = d(ℏmk , ℏmk+1), we have

Ψ(ℏk) ≤ Φ
(
(bk)ν(ck)1−ν

)
, for all k ≥ 1. (5)

By (1), we have lim
k→∞
ℏk = ξ+ and (5) implies

lim inf
a→ξ+

Ψ(a) ≤ lim inf
k→∞

Ψ(ℏk) ≤ lim sup
k→∞

Φ
(
(bk)ν(ck)1−ν

)
≤ lim sup

a→0
Φ(a).

It is a contradiction to (iv), so {ℏn} is Cauchy sequence in the OCMS (A,⊥, d), hence there is a∗ ∈ A so that
ℏn → a∗ as n→∞, and the⊥-regularity of (A,⊥, d) yields that ℏn⊥ a∗ or a∗⊥ ℏn. We claim that d(a∗,S(a∗)) = 0.
Assume on contrary that d(ℏn+1,S(a∗)) > 0 for infinitely many values of n. By (3),

Ψ(d(ℏn+1,S(a∗))) ≤ Ψ(d(S(ℏn),S(a∗))) ≤ Φ
(
(d(ℏn,Sℏn))ν(d(a∗,Sa∗))1−ν

)
< Ψ

(
(d(ℏn,Sℏn))ν(d(a∗,Sa∗))1−ν

)
= Ψ

(
(dn)ν(d(a∗,Sa∗))1−ν

)
.

By the first part of (ii), we get d(ℏn+1,S(a∗)) < (d(ℏn, ℏn+1))ν(d(a∗,Sa∗))1−ν. Letting n → ∞, we obtain
d(a∗,S(a∗)) < (d(a∗,Sa∗))1−ν, which is a false statement. Thus, d(a∗,S(a∗)) = 0, and hence, a∗ = S(a∗).

The next result is the second main theorem stating some conditions for the existence of fixed points of
S verifying (3).

Theorem 3.9. Let⊥ be a transitive orthogonal relation, then, every⊥-preserving self-mapping defined on a⊥-regular
OCMS (A,⊥, d) verifying (3) and (i),(iv)-(viii), admits a fixed point inA.

Proof. Let ℏ0 ∈ A be such that ℏ0⊥ ℏ1 or ℏ1⊥ ℏ0 for each ℏ1 ∈ A, then by using the ⊥-preserving nature of S,
we construct an orthogonal sequence {ℏn} such that ℏn = S(ℏn−1) = Sn(ℏ0) and ℏn−1⊥ℏn for each n ∈N. Note
that, if ℏn = S(ℏn) then ℏn is a fixed point of S for all n ≥ 0. We assume that ℏn , ℏn+1 for all n ∈N ∪ {0}. Let
dn = d(ℏn, ℏn+1) for all n ≥ 0. By (v) and (3), we have

Ψ(d(ℏn, ℏn+1)) ≤ Ψ(d(S(ℏn−1),S(ℏn))) = Φ((d(ℏn−1,Sℏn−1))ν(d(ℏn,Sℏn))1−ν)

≤ Φ((dn−1)ν(dn)1−ν) < Ψ
(
(dn−1)ν(dn)1−ν

)
≤ Ψ(dn−1). (6)

The inequality (6) shows that {Ψ(d(ℏn−1, ℏn))} is strictly decreasing. If it is not bounded below, in view of
(vi), we get infd(ℏn−1,ℏn)>ξΨ(d(ℏn−1, ℏn)) > −∞. This implies that

lim inf
dn−1→ξ+

Ψ(dn−1) > −∞.

Thus, limn→∞ d(ℏn−1, ℏn) = 0, otherwise we have

lim inf
dn−1→ξ+

Ψ(dn−1) = −∞, (a contradiction to (vi)).

If it is bounded below, then {Ψ(d(ℏn−1, ℏn))} is a convergent sequence and by (6), {Φ(d(ℏn−1, ℏn))} also converges
and both have same limit. Thus, by (vii), one gets lim

n→∞
d(ℏn−1, ℏn) = 0. Hence, S is asymptotically regular.

Now, we claim that {ℏn} is a Cauchy sequence. If {ℏn} is not a Cauchy sequence, so by Lemma 2.7, there
exist {ℏnk }, {ℏmk } and ξ > 0 such that (1) and (2) hold. By (1), we infer that d(ℏnk+1, ℏmk+1) > ξ. Since ℏn⊥ ℏn+1
for all n ≥ 0 so by transitivity of ⊥, we have ℏnk ⊥ ℏmk . Letting x = ℏnk and y = ℏmk in (3), we have, for all
k ≥ 1,

Ψ(d(ℏnk+1, ℏmk+1)) ≤ Ψ(d(Sℏnk ,Sℏmk ))

≤ Φ
(
(d(ℏnk ,Sℏnk ))

ν(d(ℏmk ,Sℏmk ))
1−ν

)
= Φ

(
(d(ℏnk , ℏnk+1))ν(d(ℏmk , ℏmk+1))1−ν

)
.
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If ℏk = d(ℏnk+1, ℏmk+1), bk = d(ℏnk , ℏnk+1) and ck = d(ℏmk , ℏmk+1), we have

Ψ(ℏk) ≤ Φ
(
(bk)ν(ck)1−ν

)
, for all k ≥ 1. (7)

By (1), we have lim
k→∞
ℏk = ξ+ and (7) implies

lim inf
a→ξ+

Ψ(a) ≤ lim inf
k→∞

Ψ(ℏk) ≤ lim sup
k→∞

Φ
(
(bk)ν(ck)1−ν

)
≤ lim sup

a→0
Φ(a).

It contradicts (vi), so {ℏn} is a Cauchy sequence in the OCMSA. Hence, there is a∗ ∈ A in order that ℏn → a∗

as n→∞.
To show that Sa∗ = a∗, we have two cases:

Case 1. If d(ℏn+1,Sa∗) = 0 for some n ≥ 0, then we have the following information:

d(a∗,Sa∗) ≤ d(a∗, ℏn+1) + d(ℏn+1,Sa∗) = d(a∗, ℏn+1).

Letting n→∞ on both sides, we have d(a∗,Sa∗) ≤ 0. This implies d(a∗,S(a∗)) = 0. Hence, a∗ = Sa∗.
Case 2. If for all n ≥ 0, d(ℏn+1,Sa∗) > 0, then by ⊥-regularity ofA, we find ℏn⊥ a∗ or a∗⊥ ℏn. By (3), we have

Ψ(d(ℏn+1,Sa∗)) ≤ Ψ(d(Sℏn,Sa∗)) ≤ Φ
(
(d(ℏn,Sℏn))ν(d(a∗,Sa∗)1−ν

)
for all n ≥ 0.

By taking ℓn = d(ℏn+1,Sa∗), we have

Ψ(ℓn) ≤ Φ
(
(dn)ν(d(a∗,Sa∗)1−ν

)
for all n ≥ 0. (8)

Take ξ = d(a∗,Sa∗). Note that ℓn → ξ and dn → 0 as n→∞. Applying limits on (8), we have

lim inf
a→ξ
Ψ(a) ≤ lim inf

n→∞
Ψ(ℏn) ≤ lim sup

n→∞
Φ((bn)νξ1−ν) ≤ lim inf

a→0
Φ(a).

This contradicts (viii) if ξ > 0. Thus, we have d(a∗,Sa∗) = 0, that is, a∗ is a fixed point of S.

3.2. (Ψ,Φ)-orthogonal modified interpolative Chatterjea contraction
Let (A,⊥, d) be an OMS andΨ,Φ : (0,∞)→ (−∞,∞) be two functions. The mapping S : A→A is said

to be a (Ψ,Φ)-orthogonal modified interpolative Chatterjea contraction if there exists ν ∈ (0, 1] such that

Ψ(d(Sx,Sy)) ≤ Φ


(d(x,Sy)

2

) 1
ν

+

(
d(y,Sx)

2

) 1
ν


ν , (9)

for all (x, y) ∈ Λ, and min{d(Sx,Sy), d(x,Sy)} > 0.
The following example explains (9).

Example 3.10. LetA = [1, 7) and define the relation ⊥ onA by

x⊥ y if xy ∈ {x, y}.

Then ⊥ is an orthogonal relation and so (A,⊥) is an O-set. Let d be the Euclidean metric on A, then, (A, d) is an
incomplete metric space. DefineΨ,Φ : R+ → R by

Ψ (x) =


x + 1 if x ∈ {3.5, 4.5} ,

x
2 if x ∈ R+ − {3.5, 4.5} .

Φ (x) =


x2 + 1 if x ∈ {3.5, 4.5} ,

x + 10 if x ∈ R+ − {3.5, 4.5} .
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Let S : A→A be defined by

S (x) =


6 if 1 ≤ x < 2,

2.5 if 2 ≤ x < 3,

1.5 if 3 ≤ x < 7.

Our calculations show that d(Sx,Sy) = 3.5, d(x,Sy) = 1.5 and d(y,Sx) = 4 if x = 1, y = 2 (1⊥ 2). This information
shows that

d(Sx,Sy) > λ

(d(x,Sy)
2

) 1
ν

+

(
d(y,Sx)

2

) 1
ν


ν

for some λ =
1
2
, ν = 0.9.

Thus, S is not an orthogonal modified interpolative Chatterjea contraction. However, S is a (Ψ,Φ)-orthogonal modified
interpolative Chatterjea contraction. Indeed,

Ψ
(
d(Sx,Sy)

)
≤ Φ


(d(x,Sy)

2

) 1
ν

+

(
d(y,Sx)

2

) 1
ν


ν .

We obtain the same conclusion for x = 1, y = 3 (1⊥ 3); x = 1, y = 4 (1⊥ 4); x = 1, y = 5 (1⊥ 5); x = 1, y = 6
(1⊥ 6).

Remark 3.11. For the particular definitions of the mappings Ψ,Φ, we have the following observations which show
the generality of (Ψ,Φ)-orthogonal modified interpolative Chatterjea contraction.

1. Defining Φ(x) = Ψ(x) − τ for all x ∈ (0,∞) in (9), we have the orthogonal interpolative modified Chatterjea
F-contractions.

2. Defining Φ(x) = Ψ(x) − τ(x) for all x ∈ (0,∞) in (9), we have the orthogonal interpolative modified Chatterjea
(τ,FT)-contraction.

3. DefiningΨ(x) = x andΦ(y) = λy for all x, y ∈ (0,∞) in (9), then we obtain the contraction introduced in [20].

4. Defining Φ(x) = β(x)x and Ψ(x) = x for all x > 0 and β : (0,∞)→ (0, 1) verifying lim sup
x→ξ+

β(x) < 1 for each

ξ > 0, we obtain orthogonal interpolative modified Chatterjea type Geraghty contractions.

5. For ν = 1, we have

Ψ
(
d(Sx,Sy)

)
≤ Φ

(1
2

(d(x,Sy) + d(y,Sx))
)
,

a classical (Ψ,Φ)-orthogonal Chatterjea contraction.

For the (Ψ,Φ)- orthogonal interpolative Chatterjea type contractions, we have the following theorem.

Theorem 3.12. Let ⊥ be a transitive orthogonal relation, then, every ⊥-preserving self-mapping defined on a ⊥-
regular O-complete metric space (A,⊥, d) (in short, OCMS) verifying (9) and (i)-(iv), admits a fixed point in
A.

Proof. Proceeding as in proof of Theorem 3.8, we have

Ψ(dn) ≤ Ψ(d(S(ℏn−1),S(ℏn)))

≤ Φ


(d(ℏn−1,Sℏn)

2

) 1
ν

+

(
d(ℏn,Sℏn−1)

2

) 1
ν


ν

= Φ

(
d(ℏn−1, ℏn+1)

2

)
≤ Φ ((dn−1 + dn)/2) . (10)
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Suppose that dn−1 < dn for some n ≥ 1, then by (10) and the second part of (ii), we have

Ψ(dn) ≤ Φ(dn) < Ψ(dn).

This is a contradiction to the definition ofΨ. Consequently, we have

Ψ(dn) ≤ Φ ((dn−1)) < Ψ ((dn−1)) ∀n ≥ 1.

Continuing as in the proof of Theorem 3.8, we have ℏn → a∗ as n → ∞, and the ⊥-regularity of the space
(A,⊥, d) implies ℏn⊥ a∗ or a∗⊥ ℏn. We claim that d(a∗,S(a∗)) = 0. Assume on contrary that d(ℏn+1,S(a∗)) > 0
for infinitely many values of n. By (9),

Ψ(d(ℏn+1,S(a∗))) ≤ Ψ(d(S(ℏn),S(a∗)))

≤ Φ


(d(ℏn,Sa∗)

2

) 1
ν

+

(
d(a∗,Sℏn)

2

) 1
ν


ν

= Φ


(d(ℏn,Sa∗)

2

) 1
ν

+

(
d(a∗, ℏn+1)

2

) 1
ν


ν

< Ψ


(d(ℏn,Sa∗)

2

) 1
ν

+

(
d(a∗, ℏn+1)

2

) 1
ν


ν .

Due to (ii), we get

d(ℏn+1,S(a∗)) <

(d(ℏn,Sa∗)
2

) 1
ν

+

(
d(a∗, ℏn+1)

2

) 1
ν


ν

.

Applying limit n → ∞, we obtain d(a∗,S(a∗)) < d(a∗,Sa∗)
2 , that is an absurdity. Thus, d(a∗,S(a∗)) = 0. We get,

a∗ = S(a∗).

Theorem 3.13. Let ⊥ be a transitive orthogonal relation, then, every ⊥-preserving self-mapping defined on a ⊥-
regular OCMS (A,⊥, d) verifying (9) with Φ( ȷ) < Ψ( ȷ) for each ȷ > 0 and (i),(iv),(vi)-(viii), admits a fixed point in
A.

Proof. Proceeding as in the proof of Theorem 3.9 and then following the arguments used in the proof of
Theorem 3.12, we have the required result.

3.3. (Ψ,Φ)-orthogonal interpolative Ćirić-Reich-Rus type contraction
Let (A,⊥, d) be an OMS and Ψ,Φ : (0,∞) → (−∞,∞) be two functions. The mapping S : A → A is

said to be (Ψ,Φ)-orthogonal interpolative Ćirić-Reich-Rus type contraction if there exist ν, η ∈ [0, 1) with
ν + η < 1 such that

Ψ(d(Sx,Sy)) ≤ Φ
(
d(x, y)νd(x,Sx)ηd(y,Sy)1−η−ν

)
, (11)

for all (x, y) ∈ Λ, and min{d(Sx,Sy), d(x, y), d(y,Sy), d(x,Sx)} > 0.

Remark 3.14. For the particular definitions of the mappings Ψ,Φ, we have the following observations which show
the generality of (Ψ,Φ)-orthogonal interpolative Ćirić-Reich-Rus type contraction.

1. Defining Φ(x) = Ψ(x)− τ for all x ∈ (0,∞) in (11), we have the orthogonal interpolative Ćirić-Reich-Rus type
F-contractions.

2. Defining Φ(x) = Ψ(x) − τ(x) for all x ∈ (0,∞) in (11), we have the orthogonal interpolative Ćirić-Reich-Rus
type (τ,FT)-contraction.
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3. Defining Ψ(x) = x and Φ(y) = λy for all x, y ∈ (0,∞) in (11), then we obtain the contraction introduced in
[3].

4. Defining Φ(x) = β(x)x and Ψ(x) = x for all x > 0 and β : (0,∞)→ (0, 1) verifying lim sup
x→ξ+

β(x) < 1 for each

ξ > 0, we obtain orthogonal interpolative Ćirić-Reich-Rus type Geraghty’s contractions.

5. Letting ν = 0 in (11), we obtain (Ψ,Φ)-orthogonal interpolative Kannan type contraction.

The following two theorems state the conditions for the existence of fixed-point of (Ψ,Φ)-orthogonal
interpolative Ćirić-Reich-Rus type contraction.

Theorem 3.15. Let ⊥ be a transitive orthogonal relation, then, every ⊥-preserving self-mapping defined on a ⊥-
regular O-complete metric space (A,⊥, d) (in short, OCMS) verifying (11) and (i)-(iv), admits a fixed point in
A.

Proof. Proceeding as in the proof of Theorem 3.8, we have

Ψ(dn) ≤ Ψ(d(S(ℏn−1),S(ℏn)))

≤ Φ
(
(d(ℏn−1, ℏn))ν (d(ℏn−1,Sℏn−1))η (d(ℏn,Sℏn))1−η−ν

)
= Φ

(
(dn−1)ν (dn−1)η (dn)1−η−ν

)
= Φ

(
(dn−1)ν+η (dn)1−η−ν

)
< Ψ

(
(dn−1)ν+η (dn)1−η−ν

)
. (12)

By (12) and the first part of (ii), we have

(dn)ν+η < (dn−1)ν+η, for all n ≥ 1.

Continuing as in the proof of Theorem 3.8, we have ℏn → a∗ as n→∞, and ⊥-regularity of (A,⊥, d) implies
ℏn⊥ a∗ or a∗⊥ ℏn. We claim that d(a∗,S(a∗)) = 0. Assume on contrary that d(ℏn+1,S(a∗)) > 0 for infinitely many
values of n. By (11),

Ψ(d(ℏn+1,S(a∗))) ≤ Ψ(d(S(ℏn),S(a∗)))

≤ Φ
(
(d(ℏn, a∗))ν (d(ℏn,Sℏn))η (d(a∗,Sa∗))1−η−ν

)
= Φ

(
(d(ℏn, a∗))ν (dn)η (d(a∗,Sa∗))1−η−ν

)
< Ψ

(
(d(ℏn, a∗))ν (dn)η (d(a∗,Sa∗))1−η−ν

)
.

Using (ii), we get

d(ℏn+1,S(a∗)) < (d(ℏn, a∗))ν (dn)η (d(a∗,Sa∗))1−η−ν .

Letting n→∞, we find d(a∗,S(a∗)) < 0. A contradiction, thus, d(a∗,S(a∗)) = 0. So, a∗ = S(a∗).

The following example explains Theorem 3.15.

Example 3.16. LetA = [1, 7) and define the relation ⊥ onA by

x⊥ y if xy ∈ {x, y}.

Then ⊥ is an orthogonal relation and so (A,⊥) is an O-set. Let d be the Euclidean metric on A, then, (A, d) is an
incomplete metric space but (A,⊥, d) is an O-complete metric space. DefineΨ,Φ : R+ → R by

Ψ (x) =


x if x ∈ {4} ,

x + 7 if x ∈ R+ − {4} ,
Φ (x) =


x
3 if x ∈ {4} ,

x + 5 if x ∈ R+ − {4} .
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Let S : A→A be defined by

S (x) =


5 if 1 ≤ x < 2,

1 if 2 ≤ x < 7.

Our calculations show that d(Sx,Sy) = 4, d(x, y) = 1, d(x,Sx) = 4 and d(y,Sy) = 1 if x = 1, y = 2 (1⊥ 2). This
information shows that

d(Sx,Sy) > λd(x, y)νd(x,Sx)ηd(y,Sy)1−η−ν for some λ =
1
2
, ν = 0.5, η = 0.4.

Thus, S is not an orthogonal interpolative Ćirić-Reich-Rus type contraction. However, S is a (Ψ,Φ)-orthogonal
interpolative Ćirić-Reich-Rus type contraction. Indeed,

Ψ
(
d(Sx,Sy)

)
≤ Φd(x, y)νd(x,Sx)ηd(y,Sy)1−η−ν.

We obtain the same conclusions for x = 1, y = 3 (1⊥ 3); x = 1, y = 4 (1⊥ 4) ; x = 1, y = 5 (1⊥ 5); x = 1, y = 6
(1⊥ 6) . The mappingsΨ,Φ satisfy other conditions of Theorem 3.15. The point x = 2.5 is a fixed point of the mapping
S.

Theorem 3.17. Let ⊥ be a transitive orthogonal relation, then, every ⊥-preserving self-mapping defined on a ⊥-
regular O-complete metric space (A,⊥, d) (in short, OCMS) verifying (11) and (i),(iv)-(viii), admits a fixed point in
A.

Proof. Proceeding as in the proof of Theorem 3.9 and following the arguments used in the proof of Theorem
3.15, we have the required result.

3.4. (Ψ,Φ)-orthogonal interpolative Hardy-Rogers type contraction
Let (A,⊥, d) be an OMS and Ψ,Φ : (0,∞) → (−∞,∞). The mapping S : A → A is said to be a (Ψ,Φ)-

orthogonal interpolative Hardy-Rogers type contraction if there exist ν, η, γ ∈ [0, 1) with ν + η + γ < 1 such
that

Ψ(d(Sx,Sy))

≤ Φ

(
d(x, y)νd(x,Sx)ηd(y,Sy)γ

(1
2

(d(x,Sy) + d(y,Sx))
)1−η−ν−γ)

, (13)

for all (x, y) ∈ Λ, and min{d(Sx,Sy), d(x, y), d(y,Sy), d(x,Sx), d(x,Sy)} > 0.

Remark 3.18. For the particular definitions of the mappings Ψ,Φ, we have the following observations which show
the generality of (Ψ,Φ)-orthogonal interpolative Hardy-Rogers type contraction.

1. Defining Φ(x) = Ψ(x) − τ for all x ∈ (0,∞) in (13) we have orthogonal interpolative Hardy-Rogers type
F-contractions.

2. Defining Φ(x) = Ψ(x) − τ(x) for all x ∈ (0,∞) in (13), we have orthogonal interpolative Hardy-Rogers type
(τ,FT)-contraction.

3. Defining Ψ(x) = x and Φ(y) = λy for all x, y ∈ (0,∞) in (13), then we obtain the contraction introduced in
[29].

The following two theorems state the conditions for the existence of fixed-point of (Ψ,Φ)-orthogonal
interpolative Hardy-Rogers type contraction.

Theorem 3.19. Let ⊥ be a transitive orthogonal relation, then, every ⊥-preserving self-mapping defined on a ⊥-
regular O-complete metric space (A,⊥, d) (in short, OCMS) verifying (13) and (i)-(iv), admits a fixed point in
A.
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Proof. Proceeding as in the proof of Theorem 3.8, we have

Ψ(dn) ≤ Ψ(d(S(ℏn−1),S(ℏn)))

≤ Φ

 d(ℏn−1, ℏn)νd(ℏn−1,S(ℏn−1))ηd(ℏn,S(ℏn))γ(
1
2 (d(ℏn−1,S(ℏn)) + d(ℏn,S(ℏn−1)))

)1−η−ν−γ


= Φ

(
(dn−1)ν+η(dn)γ

(1
2

d(ℏn−1, ℏn+1)
)1−η−ν−γ)

< Ψ

(
(dn−1)ν+η(dn)γ

(1
2

(dn−1 + dn)
)1−η−ν−γ)

. (14)

Suppose that dn−1 < dn for some n ≥ 1. Since Ψ is non-decreasing, by (14), we have (dn)ν+η < (dn)ν+η. This
is not possible. Consequently, we have dn < dn−1 for all n ≥ 1. Continuing as in the proof of Theorem 3.8,
we have ℏn → a∗ as n→ ∞, and ⊥-regularity of the space (A,⊥, d) implies ℏn⊥ a∗ or a∗⊥ ℏn. We claim that
d(a∗,S(a∗)) = 0. Assume on contrary that d(ℏn+1,S(a∗)) > 0 for infinitely many values of n. By (13),

Ψ(d(ℏn+1,S(a∗))) ≤ Ψ(d(S(ℏn),S(a∗)))

≤ Φ

(
d(ℏn, a∗)νd(ℏn,S(ℏn))ηd(a∗,S(a∗))γ

(1
2

(d(ℏn,S(a∗)) + d(a∗,S(ℏn)))
)1−η−ν−γ)

= Φ

(
d(ℏn, a∗)ν(dn)ηd(a∗,S(a∗))γ

(1
2

(d(ℏn,S(a∗)) + d(a∗, ℏn+1))
)1−η−ν−γ)

< Ψ

(
d(ℏn, a∗)ν(dn)ηd(a∗,S(a∗))γ

(1
2

(d(ℏn,S(a∗)) + d(a∗, ℏn+1))
)1−η−ν−γ)

.

By (ii), we get

d(ℏn+1,S(a∗)) < d(ℏn, a∗)νd(ℏn, ℏn+1)ηd(a∗,S(a∗))γ
(1

2
(d(ℏn,S(a∗)) + d(a∗, ℏn+1))

)1−η−ν−γ

.

Applying limit n → ∞ on both sides of the last inequality, we have d(a∗,S(a∗)) ≤ 0. This implies that
d(a∗,S(a∗)) = 0. Hence, we get a∗ = S(a∗).

Theorem 3.20. Let ⊥ be a transitive orthogonal relation, then, every ⊥-preserving self-mapping defined on a ⊥-
regular O-complete metric space (A,⊥, d) (in short, OCMS) verifying (13) and (i),(iv)-(viii), admits a fixed point in
A.

Proof. Proceeding as in the proof of Theorem 3.9 and following the arguments used in the proof of Theorem
3.19, we have the required result.

Definition 3.21. Let (A,⊥, d) be an OMS. A mapping S : A → A is said to be a (Ψ,Φ)-orthogonal interpolative
Banach contraction if there exist ν ∈ (0, 1] such that

Ψ(d(Sx,Sy)) ≤ Φ
(
d(x, y)ν

)
, (15)

for all (x, y) ∈ Λ, and min{d(Sx,Sy), d(x, y)} > 0.

The following two theorems state the conditions for the existence of fixed-point of (Ψ,Φ)-orthogonal
interpolative Banach contraction.

Theorem 3.22. Let ⊥ be a transitive orthogonal relation, then, every ⊥-preserving self-mapping defined on a ⊥-
regular O-complete metric space (A,⊥, d) (in short, OCMS) verifying (15) and (i)-(iv), admits a fixed point in
A.
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Theorem 3.23. Let ⊥ be a transitive orthogonal relation, then, every ⊥-preserving self-mapping defined on a ⊥-
regular OCMS (A,⊥, d) verifying (15) with Φ( ȷ) < Ψ( ȷ) for each ȷ > 0 and (i),(iv),(vi)-(viii), admits a fixed point
inA.

Remark 3.24. If ν = 1, the proofs of Theorem 3.22 and Theorem 3.23 are directly followed by [41]. If 0 < ν < 1, the
proofs of Theorem 3.22 and Theorem 3.23 are similar to precedent ones.

Remark 3.25. For Φ(y) = Ψ(y) − τ and orthogonal relation ⊥ as follows:

x⊥ y if and only if α(x, y) ≥ 1.

The Theorem 3.22 with ν = 1 reduces to the main result presented in [18].
For Φ(y) = Ψ(y) = y, S : A→A and orthogonal relation ⊥ as follows:

x⊥ y if and only if x ⪯ y.

The Theorem 3.22 with ν = 1 reduces to the main result presented in [46].

4. Consequences

It is noted that for Ψ(y) = y for all y > 0, the Theorem 3.19 improves and generalizes the multivalued
version of the interpolative Boyd-Wong fixed point theorem [35]. By defining Φ(y) = Ψ(y) − τ in Theorem
3.22 and Theorem 3.23, we obtain the interpolative versions of the fixed point theorems established in
[12, 18] and the main results of Secelean [49] and Lukacs and Kajanto [38] as follow:

Corollary 4.1. Let (A, d) be a complete metric space. Let S : A→A be a mapping so that

Ψ(d(Sx,Sy)) ≤ Ψ(d(x, y))) − τ ∀ x, y ∈ A, provided d(Sx,Sy) > 0,

whereΨ : (0,∞)→ R is non-decreasing and τ > 0. Then there exists a fixed point of S inA.

By defining Φ(y) = Ψ(y) − τ(y) in Theorem 3.22 and Theorem 3.23, we get an improvement of the fixed
point theorem [51] as follow:

Corollary 4.2. Let (A,⊥, d) be an ⊥-regular OCMS. Let S : A→A be an ⊥-preserving mapping so that

τ(d(x, y)) +Ψ(d(Sx,Sy)) ≤ Ψ(d(x, y))) for all (x, y) ∈ Λ , provided d(Sx,Sy) > 0,

whereΨ : (0,∞)→ R is non-decreasing and lim inf
a→t+

τ(a) > 0, ∀ t ≥ 0,. If for each ℏ0 ∈ A, there is ℏ1 = S(ℏ0) so that
ℏ0⊥ ℏ1 or ℏ1⊥ ℏ0. Then S has a fixed point inA.

LettingΨ to be a lower semicontinuous function andΦ to be an upper semicontinuous function, Theorem
3.9 is an extension of the Amini-Harandi-Petrusel fixed point theorem [6]. By defining Φ(y) = h(Ψ(y)) in
Theorem 3.8, we get the following improvement and generalization of Moradi theorem [40] as follow:

Corollary 4.3. Let (A,⊥, d) be an ⊥-regular OCMS. Let S : A→A be an ⊥-preserving mapping so that

Ψ(d(Sx,Sy)) ≤ h(Ψ(d(x, y))) for all (x, y) ∈ Λ , provided d(Sx,Sy) > 0,

where

(i) h : I→ [0,∞) is an upper semi-continuous function with h(y) < y for all y ∈ I ⊂ R;

(ii) Ψ : (0,∞)→ I is non-decreasing.
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Assume that for each ℏ0 ∈ A there is ℏ1 = S(ℏ0) such that ℏ0⊥ ℏ1 or ℏ1⊥ ℏ0. Then S has a unique fixed point in
A.

Defining h(y) = yδ; δ ∈ (0, 1) in Corollary 4.3, we have the next result.

Corollary 4.4. Let (A,⊥, d) be an ⊥-regular and OCMS. Let S : A→A be an ⊥-preserving mapping so that

Ψ(d(Sx,Sy)) ≤ (Ψ(d(x, y)))r for all (x, y) ∈ Λ , provided d(Sx,Sy) > 0,

where, Ψ : (0,∞) → (0, 1) is a non-decreasing function. Assume that for each ℏ0 ∈ A there is ℏ1 = S(ℏ0) such that
ℏ0⊥ ℏ1 or ℏ1⊥ ℏ0. Then S has a fixed point inA.

Corollary 4.4 is an improvement of Jleli-Samet fixed point theorem [24] and the results of Li and Jiang
[37] and Ahmad et al. [4].

An improvement of Skof fixed point theorem [50] may be stated by defining Φ(y) = λΨ(y) in Theorem
3.22 and Theorem 3.23.

Corollary 4.5. Let (A,⊥, d) be an ⊥-regular OCMS. Let S : A→A be an ⊥-preserving mapping so that

Ψ(d(Sx,Sy)) ≤ λΨ(d(x, y)) for all (x, y) ∈ Λ , provided d(Sx,Sy) > 0,

where Ψ : (0,∞) → (0,∞) is a non-decreasing function and λ ∈ (0, 1). Assume that for each ℏ0 ∈ A there is
ℏ1 = S(ℏ0) so that ℏ0⊥ ℏ1 or ℏ1⊥ ℏ0. Then S has a unique fixed point inA.

For a non-decreasingΨ : (0,∞)→ (0,∞) and β : (0,∞)→ (0, 1) verifying lim sup
y→ξ+

β(y) < 1 for each ξ > 0,

and defining Φ(y) = β(y)Ψ(y), Ψ(y) = y for all y > 0 in Theorem 3.22, an improvement of the Geraghty
fixed point theorem [21] is obtained.

5. An application to resolve a fractional differential equation

Lacroix (1819) proposed and studied a number of useful fractional differential properties. In 2015, Caputo
and Fabrizio introduced a new fractional approach [16]. The interest for this definition was due to the
necessity to describe a class of non-local systems, which cannot be well described by classical local theories or
by fractional models with singular kernel [16]. The fundamental differences among the fractional derivatives
are their different kernels which can be selected to meet the requirements of different applications. For
example, the main differences between the Caputo fractional derivative [17], the Caputo-Fabrizio derivative
[16], and the Atangana-Baleanu fractional derivative [7] are that the Caputo derivative is defined using a
power law, the Caputo-Fabrizio derivative is defined using an exponential decay law, and the Atangana-
Baleanu derivative is defined using a Mittag-Leffler law. Authors in [1, 2, 5, 10, 11] have recently studied
a number of new Caputo-Fabrizio derivative (CFD) models. We will look at one of these models in metric
spaces. For this reason, we add the following notations:

Let I = [0,L] ; L > 0 and C(I,R) = {u|u : I→ R and u is continuous}. Define the metric d : C(I,R) ×
C(I,R)→ [0,∞) by

d(u, v) = ∥u − v∥∞ = max
l∈[0,L]

|u(l) − v(l)| , for all u, v ∈ C(I,R).

Then (C(I,R), d) is a complete metric space. Define an orthogonal relation ⊥ on C(I,R) by

u⊥ v if and only if u(l)v(l) ≥ u(l) ∨ v(l), for all u, v ∈ C(I,R).

Then (C(I,R),⊥, d) is an OCMS. Let K1 : I×R→ R be a mapping such that K1(l, x) ≥ 0 for all l ∈ I and x ≥ 0.
We will investigate the following CFDE:

CDυ1 (l) = K1(l, 1(l)); 1 ∈ C(I,R), (16)
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with boundary conditions

1 (0) = 0, I1 (1) = 1
′

(0) .

Here, CDυ represents the CFD of order υ given as

CDυ1 (l) =
1

Γ (n − υ)

∫ l

0

(
l − y

)n−υ−1
1(y)) dy,

where

n − 1 < υ < n and n = [υ] + 1,

and Iυ1 is defined by

Iυ1 (l) =
1
Γ (υ)

∫ l

0

(
l − y

)υ−1
1(y) dy, with υ > 0.

Then the equation (16) can be modified to

1 (l) =
1
Γ (υ)

∫ l

0

(
l − y

)υ−1 K1(y, 1(y)) dy +
2l
Γ (υ)

∫ L

0

∫ y

0

(
y − z

)υ−1 K1(z, 1(z)) dzdy.

The mapping K1 : I ×R→ R satisfies the following conditions:

(A) there exists τ > 0 and M = min{ f (u, v)| u, v ∈ C(I,R)} so that,∣∣∣K1 (l, x) − K1
(
l, y

)∣∣∣ ≤ e−τΓ (υ + 1)
4M

∣∣∣x − y
∣∣∣ , for all x, y ≥ 0 with xy ≥ x ∨ y.

(B) there exists u0 ∈ C(I,R) so that for any l ∈ I,

u0 (l) ≤
1
Γ (υ)

∫ l

0

(
l − y

)υ−1 K1(y,u0(y)) dy +
2l
Γ (υ)

∫ L

0

∫ y

0

(
y − z

)υ−1 K1(z,u0(z)) dzdy.

It is remarked that the mapping K1 : I × R → R is not necessarily Lipschitz from the given condition
(A). For example, the function

K1(l, x) =
{

lx if x ≤ 1
2 ,

0 if x > 1
2 .

verifies the condition (A) while K1 is not continuous and monotone. Also, for l = e−τΓ(υ+1)
4M ,∣∣∣∣∣K1

(
l,

1
2

)
− K1

(
l,

2
3

)∣∣∣∣∣ = l
2
>

l
6
= l

∣∣∣∣∣12 − 2
3

∣∣∣∣∣ .
Theorem 5.1. The equation (16) admits a solution in C(I,R) if the conditions (A)-(B) are satisfied.

Proof. Let X = {u ∈ C(I,R) : u(l) ≥ 0 for all l ∈ I} and define the mapping R : X → X in accordance with the
above-mentioned notations by

R
(
q
)

(l) =
1
Γ (υ)

∫ l

0

(
l − y

)υ−1 K1(y, q(y)) dy +
2l
Γ (υ)

∫ L

0

∫ y

0

(
y − z

)υ−1 K1(z, q(z)) dzdy.
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We define an orthogonal relation ⊥ in X by

u⊥ v if and only if u(l)v(l) ≥ u(l) ∨ v(l), for all u, v ∈ X.

Obviously, R is ⊥-preserving with respect to ⊥. By (B), there is u0 ∈ C(I,R) such that un = Rn(u0)) with
un⊥un+1 or un+1⊥un for all n ≥ 0. We will check the contractive condition (15) of Theorem 3.22 in the next
lines.

∣∣∣R (
q
)

(l) − R (u) (l)
∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
Γ(υ)

∫ l

0

(
l − y

)υ−1 K1(y, q(y)) dy

−
1
Γ(υ)

∫ l

0

(
l − y

)υ−1 K1(y,u(y)) dy

+ 2l
Γ(υ)

∫ L

0

∫ z

0
(z − w)υ−1 K1(w, q(w)) dwdz

−
2l
Γ(υ)

∫ L

0

∫ z

0
(z − w)υ−1 K1(w,u(w)) dwdz

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
implies∣∣∣R (

q
)

(l) − R (u) (l)
∣∣∣ ≤ ∣∣∣∣∣∣

∫ l

0

(
1
Γ (υ)

(
l − y

)υ−1 K1(y, q(y)) −
1
Γ (υ)

(
l − y

)υ−1 K1(y,u(y))
)

dy

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫ L

0

∫ z

0

(
2
Γ (υ)

(z − w)υ−1 K1(w, q(w)) −
2
Γ (υ)

(z − w)υ−1 K1(w,u(w))
)

dwdz

∣∣∣∣∣∣
≤

1
Γ (υ)

e−τΓ (υ + 1)
4M

·

∫ l

0

(
l − y

)υ−1 (q(y) − u(y)) dy

+
2
Γ (υ)

e−τΓ (υ + 1)
4M

·

∫ L

0

∫ z

0
(z − w)υ−1 (

u(w) − q(w)
)

dwdz

≤
1
Γ (υ)

e−τΓ (υ + 1)
4M

· d(q,u) ·
∫ l

0

(
l − y

)υ−1 dy

+
2
Γ (υ)

e−τΓ (υ) · Γ (υ + 1)
4MΓ (υ) · Γ (υ + 1)

· d(q,u) ·
∫ L

0

∫ z

0
(z − w)υ−1 dwdz

≤

(
e−τΓ (υ) · Γ (υ + 1)
4MΓ (υ) · Γ (υ + 1)

)
· d(q,u) + 2e−τB (υ + 1, 1)

Γ (υ) · Γ (υ + 1)
4MΓ (υ) · Γ (υ + 1)

d(q,u)

≤
e−τ

4M
d(q,u) +

e−τ

2M
d(q,u) <

e−τ

M
d(q,u),

where B is the beta function. The final inequality is written as:

Md
(
R

(
q
)
,R (u)

)
≤ d

(
R

(
q
)
,R (u)

)
≤ e−τd(q,u). (17)

DefineΨ(q(l)) = ln(q(l)) for all q,u ∈ C(I,R+), then the inequality (17) can be written as

τ +Ψ
(
d(R

(
q
)
,R (u))

)
≤ Ψ

(
d(q,u)

)
.

By Theorem 3.22, the equation (16) has a solution since the self-mapping R admits a fixed point.

6. Conclusion and future work

The (Ψ,Φ)-orthogonal interpolative contractions generalize many well-known contractions. The pre-
sented theorems provide a general criterion for the existence of a unique fixed point of (Ψ,Φ)-orthogonal
interpolative contraction. The research work done in this paper can be revisited to show the existence of
PPF dependent fixed points of self-mappings (see [23] and references therein for details).
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