
Filomat 37:4 (2023), 1207–1222
https://doi.org/10.2298/FIL2304207B

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. This paper’s objective is to put forward a new kind of E−type contraction, which includes rational
expression, by considering Proinov type functions andCG−simulation functions. This type of contraction is
termed as a Suzuki-Proinov type generalized

(
α,Z∗E

)
− contraction mapping. Further, some common fixed

point theorems using these new mappings, which are triangular α−admissible pairs, are demonstrated in
the setting of modular b−metric space. Besides, the given example indicates the applicability and validity
of the outcomes of this study.

1. Introduction

Throughout the study, the symbolN represents the set of all positive natural numbers, and R+ is used
to represent the set of all non-negative real numbers.

Let X be a non-void set and S,T : X → X be self-mappings. Thereby, the following ones represent the
set of fixed points of S and the set of common fixed points of S and T, respectively:

• Fix (S) = {x ∈ X : Sx = x }

• CFix (S,T) = {x ∈ X : Sx = Tx = x } .

The studies [2]-[5] by Chistyakov constitute the basis of the studies on modular metrics, which is a very
new and attractive concept.

Let X be a non-empty set and ρ : (0,∞) × X × X → [0,∞] be a function. For simplicity, we will write:

ρµ
(
x , y

)
= ρ

(
µ, x , y

)
for all µ > 0 and x , y ∈ X.

Definition 1.1. [3] LetX be a non-empty set. A function ρ : (0,∞)×X×X → [0,∞] is said to be a metric modular
on X if the following axioms are satisfied, for all x , y , z ∈ X,
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ρ1

)
ρµ

(
x , y

)
= 0 for all µ > 0 if and only if x = y ,(

ρ2
)
ρµ

(
x , y

)
= ρµ

(
y , x

)
for all µ > 0,(

ρ3
)
ρµ+λ

(
x , y

)
≤ ρµ (x , z) + ρλ

(
z, y

)
for all µ, λ > 0.

If instead of
(
ρ1

)
, we have only the condition(

ρ1
′
)
ρµ (x , x ) = 0 for all µ > 0, then ρ is said to be a (metric) pseudomodular on X.

One of the most important and popular generalizations of the metric function is the b-metric function,
which first appeared in Bakhtin’s work [7] in 1989, but attracted the attention of researchers with Czerwik’s
studies ([8],[9]) in 1993 and 1998.

Definition 1.2. [8] Let X be a non−empty set and s ≥ 1 be a given real number. A function b : X × X → R+ is a
b−metric on X if, for all x , y , z ∈ X, the following conditions hold:

(b1) b
(
x , y

)
= 0⇔ x = y ,

(b2) b
(
x , y

)
= b

(
y , x

)
,

(b3) b
(
x , y

)
≤ s

[
b (x , z) + b

(
z, y

)]
.

In this case, the pair (X,b) is called a b−metric space.

If we consider s = 1, then the definitions of b−metric and ordinary metric coincide.
Furthermore, b−metric is not always a continuous function of its variables, unlike the metric. Therefore,

the following lemma is of considerable importance for the b−metric.

Lemma 1.3. [10] Let (X,b) be a b−metric space with s ≥ 1 and {xn},
{
yn

}
be two convergent sequences, to x and y ,

respectively. Then

1
s2 b

(
x , y

)
≤ lim inf

n→∞
b
(
xn, yn

)
≤ lim sup

n→∞
b
(
xn, yn

)
≤ s2b

(
x , y

)
.

Especially, if x = y , then lim
n→∞

b
(
xn, yn

)
= 0. Also, for z ∈ X, we have

1
s

b (x , z) ≤ lim inf
n→∞

b (xn, z) ≤ lim sup
n→∞

b (xn, z) ≤ sb (x , z) .

In 2018, the modular b−metric function, by combining the above descriptions, has been acquainted by
M.E. Ege and C. Alaca [14], and some fixed point results have been established in the setting of the space
endowed with modular b−metric function.

Definition 1.4. [14] Let X be a non-empty set and let s ≥ 1 be a real number. A map ω : (0,∞) × X × X → [0,∞]
is called a modular b−metric, if the following axioms are provided, for all x , y , z ∈ X,

(ω1) ωµ
(
x , y

)
= 0 for all µ > 0 if and only if x = y ,

(ω2) ωµ
(
x , y

)
= ωµ

(
y , x

)
for all µ > 0,

(ω3) ωµ+λ
(
x , y

)
≤ s

[
ωµ (x , z) + ωλ

(
z, y

)]
for all µ, λ > 0.

Also, the pair (X, ω) is named a modular b−metric space.
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In the above definition, if s = 1, then it is a natural extension of a modular metric.
If ω is a modular b−metric on a set X, then a modular set is identified by

Xω =
{
y ∈ X : y ω

∼ x
}
,

where ω
∼ is a binary relation on X defined by x ∼ y ⇔ lim

µ→∞
ωµ

(
x , y

)
= 0 for x , y ∈ X.

Also, note that the set

X
∗

ω =
{
x ∈ X : ∃µ = µ (x ) > 0 such that ωµ (x , x0) < ∞

}
(x0 ∈ X)

are mentioned as modular metric space (around x0).
Now, we hold forth some examples of modular b−metric functions and modular b−metric spaces.

Example 1.5. [14] Let us regard the space

ℓp =

{x j

}
⊂ R :

∞∑
j=1

∣∣∣x j

∣∣∣p < ∞
 0 < p < 1.

For µ ∈ (0,∞) if we specify ωµ
(
x , y

)
=

d(x ,y)
µ such that

d
(
x , y

)
=

 ∞∑
j=1

∣∣∣x j − y j

∣∣∣p
1
p

,
{
x j

}
,
{
y j

}
∈ ℓp

then, it could be easily seen that (X, ω) is a modular b−metric space.

Example 1.6. [15] Let
(
X, ρ

)
be a modular metric space and let k ≥ 1 be a real number. Take ωµ

(
x , y

)
=

(
ρµ

(
x , y

))k
.

Using the convexity of the function f (ι) = ιk for ι ≥ 0, also from Jensen inequality, we achieve(
α + β

)k
≤ 2k−1

(
αk + βk

)
for α, β ≥ 0. Thus, (X, ω) is a modular b−metric space with the constant s = 2k−1.

Some fundamental topological properties of a modular b−metric space such asω−convergence,ω−Cauchy
sequences, and ω−completeness are characterized as below.

Definition 1.7. Let X∗ω be a modular b−metric space and
{
x j

}
j∈N
∈ X

∗
ω be a sequence.

(i)
{
x j

}
j∈N

isω−convergent to x ∈ X∗ω if and only if ωµ
(
x j, x

)
→ 0, as j→∞ for all µ > 0 and x is calledω−limit

of
{
x j

}
j∈N

.

(ii) If lim
j,m→∞

ωµ
(
x j, xm

)
= 0, for all µ > 0, the sequence

{
x j

}
j∈N

in X∗ω is named an ω−Cauchy sequence.

(iii) If any ω−Cauchy sequence in X∗ω is ω−convergent to the point of X∗ω then X∗ω is called ω−complete space.

Definition 1.8. Let X∗ω be a modular b−metric space. S : X∗ω → X∗ω is ω−continuous if ωµ
(
x j, x

)
→ 0, provided to

ωµ
(
Sx j,Sx

)
→ 0 as j→∞.

Khojasteh et al. [16] asserted a novel auxiliary function called simulation function in 2015.
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Definition 1.9. [16] Let χ : [0,∞) × [0,∞)→ R be a mapping. Presume that the following axioms are provided:

(χ1) χ (0, 0) = 0,

(χ2) χ
(
η, ν

)
< ν − η for all η, ν > 0,

(χ3) if
{
η j

}
,
{
ν j

}
are sequences in the interval (0,∞) such that lim

j→∞
η j = lim

j→∞
ν j > 0

then, lim sup
j→∞

χ
(
η j, ν j

)
< 0.

The function χ is entitled a simulation function, andZ stands for the set of all simulation functions. By virtue
of the axiom (χ2), we have χ

(
η, η

)
< 0 for all η > 0.

Definition 1.10. [16] Let S : X → X be a map on metric space (X,d) and χ ∈ Z. If

χ
(
d
(
Sx ,Sy

)
,d

(
x , y

))
≥ 0 for all x , y ∈ X,

is satisfied, then S is called aZ-contraction in respect of χ.

Also, if we agree onχ
(
η, ν

)
= λν−η for all η, ν ∈ [0,∞) andλ ∈ [0, 1), then we achieve the Banach contraction.

In 2018, A. Fulga and E. Karapınar [18] acquainted a new consequence regarding simulation function
and E -type contraction.

Definition 1.11. [18] A self-mapping S defined on a complete metric space (X,d) is aZ−contraction of E -type with
respect to χ if there exists χ ∈ Z such that for all x , y ∈ X

χ
(
d
(
Sx ,Sy

)
,E

(
x , y

))
≥ 0,

where

E
(
x , y

)
= d

(
x , y

)
+

∣∣∣∣d (x ,Sx ) − d
(
y ,Sy

)∣∣∣∣ .
Theorem 1.12. [18] If S is aZ−contraction of E−type with respect to χ on X, then S admits a fixed point in X.

Besides, in [19], A.H. Ansari demonstrated a new class of functions named C−class functions, as
indicated below.

Definition 1.13. [19] A function G : [0,∞) × [0,∞) → R is named as a C−class function provided that it is
continuous and it satisfies the circumstances below.

(G1) G
(
η, ν

)
≤ η;

(G2) G
(
η, ν

)
= η implies that either η = 0 or ν = 0;

for all η, ν ∈ [0,∞).
Let the set of C−class functions be symbolised as C.

Considering the C−class functions and the simulation functions, Radenović et al. [20] introduced the
concept of CG−simulation functions.

Definition 1.14. [20] A CG−simulation function is a mapping ς : [0,∞)2
→ R satisfying the following conditions:

(ς1) ς
(
η, ν

)
< G

(
ν, η

)
for all η, ν > 0, where G : [0,∞) × [0,∞)→ R is a C−class function,

(ς2) if
{
ηn

}
, {νn} are sequences in (0,∞) such that lim

n→∞
ηn = lim

n→∞
νn > 0 and νn < ηn, then, there exists CG ≥ 0

such that lim sup
n→∞

ς
(
ηn, νn

)
< CG.
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The family of all CG−simulation functions is denoted byZ∗.

Definition 1.15. [20] A mapping G : [0,∞) × [0,∞)→ R has the property CG, if there exists CG ≥ 0 such that

(i) G
(
η, ν

)
> CG implies η > ν,

(ii) G
(
η, η

)
≤ CG for all η ∈ [0,∞).

Moreover, Suzuki [21] attached a new precondition to contractive mapping, accepted as the Suzuki type
contraction, and demonstrated a fixed point theorem, as indicated below.

Theorem 1.16. [21] Let (X,d) be a compact metric space and S : X → X be a mapping. Presume that for all distinct
x , y ∈ X, the following statement holds:

1
2

d (x ,Sx ) < d
(
x , y

)
⇒ d

(
Sx ,Sy

)
< d

(
x , y

)
.

Then, S has a unique fixed point in X.

In the recent two decades, the conclusion of Proinov [22] made a significant impact on the fixed point the-
ory. Considering some auxiliary functions, Proinov put forth exciting fixed point theorems that generalize
and extend diverse comparable results in the existing literature.

Definition 1.17. [22] Let (X,d) be a metric space. A mapping S : X → X is said to be a Proinov type contraction if
for all x , y ∈ X

Φ
(
d
(
Sx ,Sy

))
≤ Ψ

(
d
(
x , y

))
,

where Φ,Ψ : (0,∞)→ R are two functions and d
(
Sx ,Sy

)
> 0.

Theorem 1.18. [22] Let (X,d) be a complete metric space and S : X → X be a Proinov type contraction, where the
functions Φ,Ψ : (0,∞)→ R are such that the following conditions are satisfied:

(p1) Φ is non-decreasing,

(p2) Ψ (s) < Φ (s) for all s > 0,

(p3) lim sup
s→s0+

Ψ (s) < Φ (s0+) for any s0 > 0.

Then S admits a unique fixed point in X.

Definition 1.19. Let S,T : X → X be two self-mappings and α : X × X → R be a function. We contemplate the
following circumstances.

(α1) α
(
x , y

)
≥ 1 implies α

(
Sx ,Sy

)
≥ 1;

(α2) α (x ,Sx ) ≥ 1 implies α
(
Sx ,S2y

)
≥ 1;

(α3) α
(
x , y

)
≥ 1 and α

(
y ,Sy

)
≥ 1 implies α

(
x ,Sy

)
≥ 1;

(α4) α
(
x , y

)
≥ 1 implies α

(
Sx ,Ty

)
≥ 1 and α

(
TSx ,STy

)
≥ 1;

(α5) α (x , z) ≥ 1 and α
(
z, y

)
≥ 1 implies α

(
x , y

)
≥ 1.

Taking into account the function (αi), we assert that
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• i = 1, S is an α−admissible mapping in [23].

• i = 2, S is an α−orbital admissible mapping [24].

• i = 2, 3, S is a triangular α−orbital admissible mapping [24].

• i = 1, 5, S is a triangular α− admissible mapping in [25]

• i = 4, 5, the pair (S,T) is a triangular α−admissible pair in [28].

Lemma 1.20. [24] Let S,T : X → X be two self-mappings and the pair (S,T) be a triangular α−admissible pair.
Assume that there exists x0 ∈ X such that α (x0,Sx0) ≥ 1. Define a sequence

{
x j

}
by x j+1 = Sx j. Then we have

α
(
x j, xm

)
≥ 1 for all j,m ∈N with j < m.

(For more details and examples see e.g.[29]-[34].)

2. Main Results

As a beginning, it is essential to indicate that the concept of metric modular does not have to be finite.
Because of this, it is necessary to consult the following additional conditions to guarantee the existence
and uniqueness of fixed points of contraction mappings on modular metric spaces and modular b−metric
spaces.

(S1) ωµ (x ,Sx ) < ∞ for all µ > 0 and x ∈ X∗ω,

(S2) ωµ
(
x , y

)
< ∞ for all µ > 0 and x , y ∈ X∗ω.

Subsequently, some fixed point theorems have been established by defining generalized Suzuki-Proinov
type

(
α,Z∗E

)
−contractions with respect to ς and extending E−type contractions utilizing from rational

expressions, which is represented by E in the framework of modular b−metric space.

Definition 2.1. Let X∗ω be a modular b−metric space with constant s ≥ 1 and let S,T : X∗ω → X∗ω be two self-
mappings, and α : X∗ω × X∗ω → R be a function. The pair (S,T) is called a generalized Suzuki-Proinov type(
α,Z∗E

)
−contraction if there exists a CG−simulation function ς ∈ Z∗ such that

1
2s

min
{
ωµ(x ,Sx ), ωµ(y ,Ty)

}
≤ ωµ(x , y)

implies

ς
(
α
(
x , y

)
Φ

(
s3ωµ(Sx ,Ty)

)
,Ψ

(
E

(
x , y

)))
≥ CG, (1)

where Φ,Ψ : (0,∞)→ R are two functions satisfying

(c1) Φ is a lower semi-continuous and non-decreasing function;

(c2) Ψ (s) < Φ (s) for all s > 0;

(c3) lim sup
s→s0+

Ψ (s) < Φ (s0+) for any s0 > 0,

and also,

E
(
x , y

)
= ωµ

(
x , y

)
+

∣∣∣∣∣∣∣ωµ (x ,Sx ) − ωµ
(
y ,Ty

)
1 + ωµ

(
x , y

) ∣∣∣∣∣∣∣ ,
for all distinct x , y ∈ X∗x , ωµ(Sx ,Ty) > 0 and for all µ > 0.
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Theorem 2.2. LetX∗ω be anω−complete modular b−metric space with the constant s ≥ 1 and S and T be a generalized
Suzuki-Proinov type

(
α,Z∗E

)
−contraction with respect to ς. Presume that the subsequent circumstances are provided:

(1) (S,T) is a triangular α−admissible pair,

(2) there is a point x0 ∈ X
∗
ω that has the property α (x0,Sx0) ≥ 1,

(3) S,T are ω−continuous mappings, or

(3′) if {xn} is a sequence satisfying

i. α (xn, xn+1) ≥ 1 for all n,
ii. xn → x ∗ ∈ X∗ω as n→∞,

then we find a subsequence
{
xnk

}
of {xn} such that α

(
xnk , x

∗
)
≥ 1,

(4) there exist x , y ∈ CFix(S,T) such that α
(
x , y

)
≥ 1.

If the condition (S1) is satisfied, then there exists x ∗ ∈ X∗ω such that x ∗ ∈ CFix (S,T). If, in addition, the condition (S2)
is satisfied, then CFix (S,T) = {x ∗}.

Proof. Let x0 ∈ X
∗
ω be a given arbitrary point such that α (x0,Sx0) ≥ 1. Construct a sequence

{
x j

}
in Xω∗ such

that

x2 j+1 = Sx2 j and x2 j+2 = Tx2 j+1, for all j ∈N.

Also, given the fact that (S,T) is a triangular α−admissible pair, we derive

α (x0, x1) = α (x0,Sx0) ≥ 1 ⇒


α (Sx0,Tx1) = α (x1, x2) ≥ 1
and
α (TSx0,STx1) = α (Tx1,Sx2) = α (x2, x3) ≥ 1.

Likewise, we get

α (x2, x3) ≥ 1 ⇒


α (Sx2,Tx3) = α (x3, x4) ≥ 1
and
α (TSx2,STx3) = α (Tx3,Sx4) = α (x4, x5) ≥ 1.

Thereby, recursively, we conclude that

α
(
x2 j, x2 j+1

)
≥ 1. (2)

Next, if there exists some j0 ∈N such that x j0 = x j0+1, then j0 becomes a common fixed point of S and T.
Consequently, we assume that xk , xk+1 for all k ∈N. Therefore, we have ωµ (xk, xk+1) > 0 for all µ > 0.

We presume that k = 2 j for some j ∈N. So, because

1
2s min

{
ωµ(x2 j,Sx2 j), ωµ(x2 j+1,Tx2 j+1)

}
= 1

2s min
{
ωµ(x2 j, x2 j+1), ωµ(x2 j+1, x2 j+2)

}
≤ ωµ(x2 j, x2 j+1),

from (1) and (ς1), we have

CG ≤ ς
(
α
(
x2 j, x2 j+1

)
Φ

(
s3ωµ

(
Sx2 j,Tx2 j+1

))
,Ψ

(
E

(
x2 j, x2 j+1

)))
= ς

(
α
(
x2 j, x2 j+1

)
Φ

(
s3ωµ

(
x2 j+1, x2 j+2

))
,Ψ

(
E

(
x2 j, x2 j+1

)))
< G

(
Ψ

(
E

(
x2 j, x2 j+1

))
, α

(
x2 j, x2 j+1

)
Φ

(
s3ωµ

(
x2 j+1, x2 j+2

)))
,
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and by using (c2), (2) and the properties of CG, we procure

Φ
(
s3ωµ

(
x2 j+1, x2 j+2

))
≤ Φ

(
α
(
x2 j, x2 j+1

)
s3ωµ

(
x2 j+1, x2 j+2

))
< Ψ

(
E

(
x2 j, x2 j+1

))
< Φ

(
E

(
x2 j, x2 j+1

))
,

(3)

where

E
(
x2 j, x2 j+1

)
= ωµ

(
x2 j, x2 j+1

)
+

∣∣∣∣∣ωµ(x2 j,Sx2 j)−ωµ(x2 j+1,Tx2 j+1)
1+ωµ(x2 j,x2 j+1)

∣∣∣∣∣
= ωµ

(
x2 j, x2 j+1

)
+

∣∣∣∣∣ωµ(x2 j,x2 j+1)−ωµ(x2 j+1,x2 j+2)
1+ωµ(x2 j,x2 j+1)

∣∣∣∣∣ .
Let us denote ωµ

(
x j, x j+1

)
by σ j. Now, if we presume max

{
σ2 j, σ2 j+1

}
= σ2 j+1, then, we get

E
(
x2 j, x2 j+1

)
= σ2 j +

σ2 j+1 − σ2 j

1 + σ2 j
=
σ2

2 j + σ2 j+1

1 + σ2 j
,

and considering the features of the function Φ and (3), we deduce

σ2 j+1 <
σ2

2 j + σ2 j+1

1 + σ2 j
⇒ σ2 j+1 < σ2 j

such that this is in contradiction with our assumption. Thereby, we achieve max
{
σ2 j, σ2 j+1

}
= σ2 j, which

indicates that

E
(
x2 j, x2 j+1

)
= σ2 j +

σ2 j − σ2 j+1

1 + σ2 j
.

Thereupon, the inequality (3) gives

Φ
(
σ2 j+1

)
≤ Φ

(
s3σ2 j+1

)
≤ Ψ

(
σ2 j +

σ2 j − σ2 j+1

1 + σ2 j

)
< Φ

(
σ2 j +

σ2 j − σ2 j+1

1 + σ2 j

)
. (4)

Therefore, by (c1), we get that

σ2 j+1 < σ2 j +
σ2 j − σ2 j+1

1 + σ2 j
⇒ σ2 j+1 < σ2 j.

Also, by similar steps, one concludes that σ2 j < σ2 j−1. So, it guarantees that
{
σ j

}
=

{
ωµ

(
x j, x j+1

)}
is a non-

increasing sequence. On the other hand, a similar consequence can be obtained when k is an odd number.
Thus, the equality lim

j→∞
σ j = p is provided for p ≥ 0. Now, we will present that p = 0. Conversely, we

suppose that p > 0. Then, by (4), we have

Φ
(
p
)
= lim

j→∞
Φ

(
σ2 j+1

)
≤ lim sup

j→∞
Ψ

(
σ2 j +

σ2 j − σ2 j+1

1 + σ2 j

)
< lim sup

s→p
Φ (s)

such that this contradicts the assumption (c3). Then, we notice that our assumption is false, that is, for all
µ > 0

lim
j→∞

ωµ
(
x j, x j+1

)
= 0. (5)
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Now, we need to indicate that
{
x j

}
is an ω−Cauchy sequence. For this, it is sufficient to verify that

{
x2 j

}
is a

ω−Cauchy sequence. Unlike our assertion, consider that
{
x2 j

}
is not a ω−Cauchy sequence, then for ε > 0,

we can constitute two subsequences
{
x2mq

}
and

{
x2 jq

}
of positive integers satisfying jq > mq > q such that jq

is the smallest index for which

ωµ
(
x2mq , x2 jq

)
≥ ε and ωµ

(
x2mq , x2 jq−2

)
< ε, for all µ > 0, (6)

then we yield that by applying (5), (6) and the modular inequality,

ε ≤ ω4µ

(
x2mq , x2 jq

)
≤ sω2µ

(
x2mq , x2mq+1

)
+ s2ωµ

(
x2mq+1, x2 jq+2

)
+s3ωµ/2

(
x2 jq+2, x2 jq+1

)
+ s3ωµ/2

(
x2 jq+1, x2 jq

)
such that

lim sup
q→∞

ωµ
(
x2mq+1, x2 jq+2

)
≥
ε

s2 . (7)

Also, we achieve

ωµ
(
x2mq , x2 jq+1

)
≤ sωµ/2

(
x2mq , x2 jq−2

)
+ s2ωµ/4

(
x2 jq−2, x2 jq−1

)
+s3ωµ/8

(
x2 jq−1, x2 jq

)
+ s3ωµ/8

(
x2 jq , x2 jq+1

)
.

If we take the limit superior in the above expression and regard (5), we procure that

lim sup
q→∞

ωµ
(
x2mq , x2 jq+1

)
≤ sε. (8)

Besides, we suggest that for a sufficiently large q ∈N, if jq > mq > q, then

1
2s

min
{
ωµ

(
x2 jq ,Sx2 jq

)
, ωµ

(
x2mq−1,Tx2mq−1

)}
≤ ωµ

(
x2 jq , x2mq−1

)
. (9)

Given the fact that, jq > mq and
{
ωµ

(
x j, x j+1

)}
j≥1

is non-decreasing, we acquire

ωµ
(
x2 jq ,Sx2 jq

)
= ωµ

(
x2 jq , x2 jq+1

)
≤ ωµ

(
x2mq , x2mq+1

)
≤ ωµ

(
x2mq−1, x2mq

)
= ωµ

(
x2mq−1,Kx2mq−1

)
.

Hence,

1
2s min

{
ωµ

(
x2 jq ,Sx2 jq

)
, ωµ

(
x2mq−1,Tx2mq−1

)}
= 1

2sωµ
(
x2 jq ,Sx2 jq

)
= 1

2sωµ
(
x2 jq , x2 jq+1

)
.

According to (5), there exists q1 ∈N such that for any q > q1,

ωµ
(
x2 jq , x2 jq+1

)
<
ε

2s
.

Also, there exists q2 ∈N such that for any q > q2,

ωµ
(
x2mq−1, x2mq

)
<
ε

2s
.
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Therefore, for any q > max
{
q1, q2

}
and jq > mq > q, we have

ε ≤ ω2µ

(
x2 jq , x2mq

)
≤ sωµ

(
x2 jq , x2mq−1

)
+ sωµ

(
x2mq−1, x2mq

)
≤ sωµ

(
x2 jq , x2mq−1

)
+ s ε

2s .

So, one concludes that

ε
2s
≤ ωµ

(
x2 jq , x2mq−1

)
.

Thus, we deduce that for any q > max
{
q1, q2

}
and jq > mq > q,

ωµ
(
x2 jq , x2 jq+1

)
<
ε

2s
≤ ωµ

(
x2 jq , x2mq−1

)
that is, the expression (9) is proved. Thereupon, since the pair (S,T) is triangular α−admissible, we get
α
(
x2mq , x2 jq+1

)
≥ 1. Therefore, from (1) and (ς1), we conclude that

CG ≤ ς
(
α
(
x2mq , x2 jq+1

)
Φ

(
s3ωµ

(
Sx2mq ,Tx2 jq+1

))
,Ψ

(
E

(
x2mq , x2 jq+1

)))
= ς

(
α
(
x2mq , x2 jq+1

)
Φ

(
s3ωµ

(
x2mq+1, x2 jq+2

))
,Ψ

(
E

(
x2mq , x2 jq+1

)))
< G

(
Ψ

(
E

(
x2mq , x2 jq+1

))
, α

(
x2mq , x2 jq+1

)
Φ

(
s3ωµ

(
x2mq+1, x2 jq+2

)))
and by using definition 1.15, it turns into

Φ
(
s3ωµ

(
x2mq+1, x2 jq+2

))
≤ α

(
x2mq , x2 jq+1

)
Φ

(
s3ωµ

(
x2mq+1, x2 jq+2

))
< Ψ

(
E

(
x2mq , x2 jq+1

))
< Φ

(
E

(
x2mq , x2 jq+1

))
,

(10)

where

E
(
x2mq , x2 jq+1

)
= ωµ

(
x2mq , x2 jq+1

)
+

∣∣∣∣∣ωµ(x2mq ,Sx2mq )−ωµ(x2 jq+1,Tx2 jq+1)
1+ωµ(x2mq ,x2 jq+1)

∣∣∣∣∣
= ωµ

(
x2mq , x2 jq+1

)
+

∣∣∣∣∣ωµ(x2mq ,x2mq+1)−ωµ(x2 jq+1,x2 jq+2)
1+ωµ(x2mq ,x2 jq+1)

∣∣∣∣∣ .
Thereby, taking the limit superior in (10) and taking (5), (7), and (8) into account, we achieve that

Φ (sε) ≤ lim sup
q→∞

Φ
(
s3ωµ

(
x2mq+1, x2 jq+2

))
< lim sup

q→∞
Ψ

(
E

(
x2mq , x2 jq+1

))

< Φ

lim sup
q→∞

E
(
x2mq , x2 jq+1

)
< Φ (sε) ,

which causes a contradiction. Hence, we say that the sequence
{
x j

}
is anω−Cauchy onω−complete modular

b−metric space, which assures that there exists a point x ∗ in X∗ω such that

lim
j→∞

x j = x ∗. (11)
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Next, our purpose is to confirm that the mappings S and T have the point x ∗ as a common fixed point.
But, initially, we state that for all j ≥ 0, at least one of the following inequalities is true:

1
2s
ωµ

(
x2 j, x2 j+1

)
≤ ωµ

(
x2 j, x ∗

)
, (12)

or
1

2s
ωµ

(
x2 j+1, x2 j+2

)
≤ ωµ

(
x2 j, x ∗

)
. (13)

Unlike, if for some j0 ≥ 0, both of them are not provided. Hence, we say that

ωµ
(
x2 j0 , x2 j0+1

)
≤ sωµ

(
x2 j0 , x

∗
)
+ sωµ

(
x ∗, x2 j0+1

)
< 1

2ωµ
(
x2 j0 , x2 j0+1

)
+ 1

2ωµ
(
x2 j0+1, x2 j0+2

)
< 1

2ωµ
(
x2 j0 , x2 j0+1

)
+ 1

2ωµ
(
x2 j0 , x2 j0+1

)
= ωµ

(
x2 j0 , x2 j0+1

)
,

such that it is a contradiction. That is why the assertion is true. From this point, one can discuss the
following two subcases.

Subcase (3.1): The inequality (12) holds for infinitely many j ≥ 0. In this case, from (3), since the mappings
S,T are ω−continuous, we get

Sx ∗ = S
(
lim
j→∞

x2 j

)
= lim

j→∞
Sx2 j = lim

j→∞
x2 j+1 = x ∗

= lim
j→∞

x2 j+2 = lim
j→∞

Tx2 j+1

= T
(
lim
j→∞

x2 j+1

)
= Tx ∗.

So, we achieve the desired results. Nevertheless, now let us consider the conditions (3′) and (2). Then, for
k = 2 j, we can notice a subsequence

{
x2 jk

}
of

{
x2 j

}
having the features α

(
x2 jk , x

∗
)
≥ 1, for all k. Thereupon,

we presume that x ∗ , Tx ∗, that is, ωµ (x ∗,Tx ∗) > 0. Then, if we consider (1) and (ς1), we possess that

CG ≤ ς
(
α
(
x2 jk , x

∗
)
Φ

(
s3ωµ

(
Sx2 jk ,Tx ∗

))
,Ψ

(
E

(
x2 jk , x

∗
)))

= ς
(
α
(
x2 jk , x

∗
)
Φ

(
s3ωµ

(
x2 jk+1,Tx ∗

))
,Ψ

(
E

(
x2 jk , x

∗
)))

< G
(
Ψ

(
E

(
x2 jk , x

∗
))
, α

(
x2 jk , x

∗
)
Φ

(
E3ωµ

(
x2 jk+1,Tx ∗

)))
.

This can be abbreviated by the following provided that considering the condition (3′) and definition 1.15

Φ
(
s3ωµ

(
x2 jk+1,Tx ∗

))
≤ α

(
x2 jk , x

∗
)
Φ

(
s3ωµ

(
x2 jk+1,Tx ∗

))
< Ψ

(
E

(
x2 jk , x

∗
))
< Φ

(
E

(
x2 jk , x

∗
))
,

(14)

where

E
(
x2 jk , x

∗
)
= ωµ

(
x2 jk , x

∗
)
+

∣∣∣∣∣ωµ(x2 jk ,Sx2 jk )−ωµ(x ∗,Tx ∗)

1+ωµ(x2 jk ,x
∗)

∣∣∣∣∣
= ωµ

(
x2 jk , x

∗
)
+

∣∣∣∣∣ωµ(x2 jk ,x2 jk+1)−ωµ(x ∗,Tx ∗)

1+ωµ(x2 jk ,x
∗)

∣∣∣∣∣ .
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In the above relation, letting (k→∞), we get lim inf
k→∞

E
(
x2 jk , x

∗
)
= ωµ (x ∗,Tx ∗) . Hence, keeping in mind the

lower-semicontinuity of Φ and s ≥ 1, the inequality (14) becomes

lim inf
s→ωµ(x ∗,Tx ∗)

Φ (s) ≤ lim
k→∞
Φ

(
ωµ

(
Sx2 jk ,Tx ∗

))
≤ Ψ

(
ωµ (x ∗,Tx ∗)

)
< Φ

(
ωµ (x ∗,Tx ∗)

)
< lim inf

s→ωµ(x ∗,Tx ∗)
Φ (s) ,

which arises a contradiction. Thereby, we gain that x ∗ = Tx ∗. Likewise, one can procure that x ∗ is the fixed
point of the mapping S, as well.

Subcase (3.2): The inequality (12) merely satisfies for finitely many j ≥ 0.
In consequence, we can find j0 ≥ 0 such that (13) holds for any j ≥ j0. In the same way, as in Subcase

(3.1), it follows that (13) also causes a contradiction unless x ∗ = Sx ∗ or x ∗ = Tx ∗.
As a result, it is seen that in both sub-cases, x ∗ is the common fixed point for the mappings S and T.
Ultimately, for the uniqueness, there exists a point x̃ , which is x̃ = Sx̃ = Tx̃ such that x̃ , x ∗. So, by

dealing with the expression (4), we deduce that α (x ∗, x̃ ) ≥ 1. Therewith, as

0 =
1

2s
min

{
ωµ (x ∗,Sx ∗) , ωµ (x̃ ,Tx̃ )

}
≤ ωµ (x ∗, x̃ ) ,

considering (1) and (ς1), we get

CG ≤ ς
(
α (x ∗, x̃ )Φ

(
s3ωµ (Sx ∗,Tx̃ )

)
,Ψ (E (x ∗, x̃ ))

)
= ς

(
α (x ∗, x̃ )Φ

(
s3ωµ (x ∗, x̃ )

)
,Ψ (E (x ∗, x̃ ))

)
< G

(
Ψ (E (x ∗, x̃ )) , α (x ∗, x̃ )Φ

(
s3ωµ (x ∗, x̃ )

))
,

and this means that

Φ
(
s3ωµ (x ∗, x̃ )

)
≤ α (x ∗, x̃ )Φ

(
s3ωµ (x ∗, x̃ )

)
< Ψ (E (x ∗, x̃ )) < Φ (E (x ∗, x̃ ))

= Φ
(
ωµ (x ∗, x̃ ) +

∣∣∣∣ωµ(x ∗,Sx ∗)−ωµ(x̃ ,Tx̃ )
1+ωµ(x ∗,x̃ )

∣∣∣∣)
= Φ

(
ωµ (x ∗, x̃ )

)
.

Thence, we achieve a contradiction. In turn, we deduce that x ∗ is a unique common fixed point. This
concludes the proof.

Now, we furnish some consequences regarding the primary outcomes.

Corollary 2.3. Let X∗ω be an ω−complete modular b−metric space with a constant s ≥ 1, α : X∗ω × X∗ω → R be a
function and S : X∗ω → X∗ω be a self-mapping. Presume that the following statements provide:

(1) there exists ς ∈ Z∗ such that

1
2s
ωµ(x ,Sx ) ≤ ωµ(x , y)

implies

ς
(
α
(
x , y

)
Φ

(
s3ωµ(Sx ,Sy)

)
,Ψ

(
E

(
x , y

)))
≥ CG,
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where Φ,Ψ : (0,∞)→ T are two functions as defined in definition 2.1 and also,

E
(
x , y

)
= ωµ

(
x , y

)
+

∣∣∣∣∣∣∣ωµ (x ,Sx ) − ωµ
(
y ,Sy

)
1 + ωµ

(
x , y

) ∣∣∣∣∣∣∣ ,
for all distinct x , y ∈ X∗ω , ωµ(Sx ,Sy) > 0 and for all µ > 0;

(2) S is a triangular α−orbital admissible mapping, and there exists x0 ∈ X
∗
ω such that α (x0,Sx0) ≥ 1,

(3) S is ω−continuous, or

(3’) if {xn} is a sequence satisfying

i. α (xn, xn+1) ≥ 1 , for all n;

ii. xn → x ∗ ∈ X∗ω as n→∞,

then we find a subsequence
{
xnk

}
of {xn} such that α

(
xnk , x

∗
)
≥ 1,

(4) there exist x , y ∈ Fix(S) such that α
(
x , y

)
≥ 1.

Thereby, under the conditions (S1) and (S2), the mapping S owns a unique fixed point in X∗ω.

Proof. If we take into consideration that S = T and Lemma 1.20, then we achieve the intended result.

Definition 2.4. Let X∗ω be a modular b−metric space with the constant s ≥ 1, α : X∗ω × X∗ω → R be a function and
S,T : X∗ω → X∗ω be two self-mappings. The pair (S,T) is called Suzuki (α,Φ,Ψ)−rational E type contraction if there
exist Φ,Ψ : (0,∞)→ R that satisfy the condition (c1) − (c3) in definition 2.1 such that

1
2s

min
{
ωµ(x ,Sx ), ωµ(y ,Ty)

}
≤ ωµ(x , y)

implies

α
(
x , y

)
Φ

(
s3ωµ(Sx ,Ty)

)
≤ Ψ

(
E

(
x , y

))
, (15)

where E
(
x , y

)
is as defined in definition 2.1, for all distinct x , y ∈ X∗x , ωµ(Sx ,Ty) > 0 and for all µ > 0.

Theorem 2.5. Let X∗ω be an ω−complete modular b−metric space with constant s ≥ 1, the mappings S and T are a
Suzuki (α,Φ,Ψ)−rational E type contraction. Presume that the following circumstances are provided:

(1) the pair (S,T) is triangular α−admissible, and there exists x0 ∈ X
∗
ω such that α (x0,Sx0) ≥ 1,

(2) S,T are ω−continuous, or

(2’) if {xn} is a sequence satisfying

i. α (xn, xn+1) ≥ 1, for all n;

ii. xn → x ∗ ∈ X∗ω as n→∞,

then we find a subsequence
{
xnk

}
of {xn} such that α

(
xnk , x

∗
)
≥ 1,

(3) there exist x , y ∈ CFix(S,T) such that α
(
x , y

)
≥ 1.

Thereupon, together with (S1) and (S2), there exists x ∗ ∈ X∗ω such that CFix (S,T) = {x ∗}.

Proof. We achieve the desired result if we evaluate the CG−simulation function ς ∈ Z∗ with the properties
CG in definition 1.15.
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Remark 2.6. Note that if we consider the simulation function with respect to χ ∈ Z instead of CG−simulation
function ς ∈ Z∗, we can achieve the same consequences.

Example 2.7. Let X∗ω =
{
0, 1

2 ,
3
2

}
and ω : (0,∞) × X × X → [0,∞] be a mapping fulfilling the following terms: for

all distinct x , y ∈ X∗x and for all µ > 0,

1. ωµ(x , y) = 0, where x = y ,

2. ωµ(x , y) = ωµ(y , x ),

3. ωµ(0, 1
2 ) = 1

4 , ωµ(0, 3
2 ) = 1

8 and ωµ( 1
2 ,

3
2 ) = 1

2 .

It is clear that,
(
X
∗
ω, ω

)
is an ω−complete modular b−metric space with the constant s = 4

3 . Also, let the mappings
S,T : X∗ω → X∗ω, α : X∗ω × X∗ω → R and Φ,Ψ : (0,∞)→ T be respectively defined by

S (0)= 0, S
(

1
2

)
= 0 and S

(
3
2

)
= 0

T (0)= 0, T
(

1
2

)
= 3

2 and T
(

3
2

)
= 0,

α
(
x , y

)
=

{
1, x .y ∈ [0, 1)
0, otherwise

and

Φ
(
η
)
=

4
5
η and Ψ

(
η
)
=

3
4
η.

Now, we will verify the contractivity conditions for all distinct x , y ∈ X∗ω , ωµ(Sx ,Ty) > 0 and for all µ > 0;

1
2s

min
{
ωµ(x ,Sx ), ωµ(y ,Ty)

}
≤ ωµ(x , y)

implies

ς
(
α
(
x , y

)
Φ

(
s3ωµ(Sx ,Ty)

)
,Ψ

(
E

(
x , y

)))
≥ 0,

via simulation function ς ∈ Z and taking ς
(
η, ν

)
< 3

4ν − η for all η, ν > 0.
Notice that, ς belongs to the class ofZ, and similarly, if we consider the properties CG, a similar case arises.
At this point, we propose the subsequent cases to be considered:

Case (1): x = 0, y = 1
2 . In this case, we achieve that

0 =
3
8

min
{
ωµ(0,S0), ωµ(

1
2
,T

1
2

)
}
≤ ωµ

(
0,

1
2

)
=

1
4
,

which implies that

ς
(
α
(
0,

1
2

)
Φ

(
s3ωµ(S0,T

1
2

)
)
,Ψ

(
E

(
0,

1
2

)))
≥ 0,

and by ς ∈ Z, we get

α
(
0, 1

2

)
Φ

(
s3ωµ(S0,T 1

2 )
)
= Φ

((
4
3

)3
ωµ(0, 3

2 )
)
= Φ

(
8
27

)
= 32

135

≤
3
4Ψ

(
E

(
0, 1

2

))
≤

3
4Ψ

(
ωµ

(
0, 1

2

)
+

∣∣∣∣∣ωµ(0,S0)−ωµ( 1
2 ,T

1
2 )

1+ωµ(0, 1
2 )

∣∣∣∣∣)
≤

3
4Ψ

(
13
20

)
= 117

320

such that all conditions of Theorem 2.2 are satisfied.
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Case (2): x = 3
2 , y = 1

2 . Then, we get

3
64
=

3
8

min
{
ωµ(

3
2
,S

3
2

), ωµ(
1
2
,T

1
2

)
}
≤ ωµ

(3
2
,

1
2

)
=

1
2

and

ς
(
α
(3

2
,

1
2

)
Φ

(
s3ωµ(S

3
2
,T

1
2

)
)
,Ψ

(
E

(1
2
,

3
2

)))
≥ 0.

By using ς ∈ Z with ς
(
η, ν

)
< 3

4ν − η, we deduce that

α
(

3
2 ,

1
2

)
Φ

((
4
3

)3
ωµ(S 3

2 ,T
1
2 )
)
= Φ

((
4
3

)3
ωµ(0, 3

2 )
)
= Φ

(
8
27

)
= 32

135

≤
3
4Ψ

(
E

(
3
2 ,

1
2

))
≤

3
4Ψ

(
ωµ

(
3
2 ,

1
2

)
+

∣∣∣∣∣ωµ( 3
2 ,S

3
2 )−ωµ( 1

2 ,S
1
2 )

1+ωµ( 3
2 ,

1
2 )

∣∣∣∣∣)
≤

3
4Ψ

(
3
4

)
= 27

64 .

Thereby, this case is provided, too. Other cases are ignored on account of ωµ(Sx ,Ty) = 0.
Accordingly, the mappings S and T provide the hypotheses of Theorem 2.2, and it is certain that CFix (S,T) = {0} .
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