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Abstract. In this article, we study some class of fractional boundary value problem involving generalized
Riemann Liouville derivative with respect to a function and the p-Laplace operator. Precisely, using
variational methods combined with the mountain pass theorem, we prove that such problem has a nontrivial
weak solution. Our main result significantly complement and improves some previous papers in the
literature.

1. Introduction

Recently, fractional calculus has been attracted the attention of many authors. This is due to its im-
portance and applications in many fields such as physics, chemistry, aerodynamics, electro dynamics of
complex medium, polymer rheology (see [3, 4, 11, 12, 16, 20, 22, 24]). Concequently, there has been signif-
icant development in ordinary and partial differential equations involving different fractional operators.
For details and examples, one can see the monographs [1, 2, 6, 13–15, 18, 21] and references therein.
By means of the mountain pass theorem, Torres [25] studied the existence of solutions for the following
problem{

−tDα
1 0Dα

t u(t) = f (t,u(t)), t ∈ (0,T)
u(0) = u(T) = 0, (1)

and obtained the existence of at least one nontrivial solution, where tDα
1 and 0Dα

t are the right and left
Riemann Liouville fractional derivatives. We notes that the first paper studiying such prblem by using the
varitional aproach is the paper of Jiao and Zhou [17]. After this, many authors studied several works by
using different medhods we refere the readers to [6–9, 15] and the references therein. Precisly, César [7]
concidered the following p-Laplacian Dirichlet problem with mixed derivatives{

−tDα
1 (φp

(
0Dα

t u(t))
)
= f (t,u(t)), t ∈ (0,T)

u(0) = u(T) = 0,
(2)
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where 0 < 1
p < α < 1 and f : [0,T] × R → R is a Carathéodory function. Under suitable assymptions

on the nonlinearity f and using direct variational medhod combined with the mountain pass theorem, the
author prove that problem (2) has at least one nontrivial weak solution.
Given this large number of definitions of fractional operators introduced so far, several researchers are still
looking for how to choose the best fractional derivative to discuss certain objectives. one of these operators
is the fractional Liouville operator with respect to another function which is introduced for the first time
by Samko et al. [23], and developed after that by Kilbas [18]. Very recently, Almeida in [5] has found other
properties in this direction. As we know, there are a few articles dealing with these types of operators that
we cite for example [5, 26].
Motivated by the above mentioned works, in this paper, we want to contribute with the development of
this new area on fractional differential equations theory. Precisely, we will study the existence of nontrivial
weak solutions for the following fractional boundary value problem involving the p-Laplace operator and
the ψ-Riemann Liouville derivative{

M(u(t)) tD
α,ψ
T

(
φp

(
0Dα,ψ

t u(t)
))
= λ f (t,u(t)) + 1(t,u(t)), t ∈ (0,T),

u(0) = u(T) = 0,
(3)

where λ is a positive parameter, 0 < 1
p < α ≤ 1, the function M : R→ R is defined by

M(u(t)) =
(
a + b

∫ T

0

∣∣∣∣0Dα,ψ
t u(t)

∣∣∣∣p dt
)p−1

, with a ≥ 1 and b > 1.

While, the functions f , 1 : [0,T] ×R→ R are continuous, moreover, 1 is positively homogeneous of degree
q − 1, which means that for all s > 0 and (t,u) ∈ [0,T] ×R, we have 1(t, su) = sq−11(t,u).
Now, we put

F(x, s) =
∫ s

0
f (x, t)dt, and G(x, s) =

∫ s

0
1(x, t)dt,

and we assume the following hypotheses:
(H1) There exists δ > p, µ > 0 such that

0 < δF(t,u) ≤ u f (t,u) (4)

∀(t,u) ∈ [0,T] ×R , |u| ≥ µ.

and there exists C0 > 0, such that

|F(t,u)| ≤ C0|u|δ. (5)

(H2) G : [0,T] ×R→ R is positively homogeneous of degree q, tha is

G(t, su) = sqG(t,u), ∀ (s, t,u) ∈ (0,∞) × [0,T] ×R.

We notes that from condition (H2), we get the so-called Euler identity:

u1(t,u) = qG(t,u). (6)

Moreover, there exists C1 > 0, such that

|G(t,u)| ≤ C1|u|q. (7)

Our main results is the following.

Theorem 1.1. Assume that hypotheses (H1) and (H2) are satisfied. If 1
p < α < 1, and 1 < p < p2 < min(δ, q), then

there exists λ0 > 0, such that for any λ ∈ (0, λ0), problem (3) has at least one nontrivial weak solution.

Note that our main result here is new and generalizes some known results in the literature.
This paper is organized as follows. In Section 2, some preliminaries on the fractional calculus are presented.
In Section 3, we set up the variational framework of problem and give some necessary lemmas. Finally,
Section 4 presents the main result and its proof.
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2. Preliminaries and variational setting

In this section, we present some preliminaries and background theory on the concept of Riemann
Liouville operator with respect to another function which will be used in the rest of this paper. First let us
start by introduce the definition of the fractional integral in the sens of Kilbas et al. [18] and Samko et al.
[23]. Throughout this section, α and β denote positive real numbers, Γ denotes the Euler gamma function,
and if −∞ ≤ a < b ≤ ∞, then [a, b] denotes a finite or infinite interval in the real line.

Definition 2.1. ([18, 23]) Let u be an integrable function defined on [a, b], and ψ ∈ C1([a, b],R) be an increasing
function such that ψ′(x) , 0, for all x ∈ [a, b]. The left and right fractional integrals of a function u with respect to
another function ψ are defined respectively as follows:

Iα,ψa+ u(x) :=
1
Γ(α)

∫ x

a
ψ′(t)(ψ(x) − ψ(t))α−1u(t)dt,

and

Iα,ψb− u(x) :=
1
Γ(α)

∫ b

x
ψ′(t)(ψ(t) − ψ(x))α−1u(t)dt.

Definition 2.2. ([18, 23]) Let u be an integrable function defined on [a, b], and ψ ∈ C1([a, b],R) be an increasing
function such that ψ′(x) , 0, for all x ∈ [a, b]. The left and right fractional derivatives of a function u with respect to
another function ψ are defined respectively by:

Dα,ψ
a+ u(x) :=

(
1

ψ′(x)
d

dx

)n

In−α,ψ
a+ u(x)

=
1

Γ(n − α)

(
1

ψ′(x)
d
dx

)n ∫ x

a
ψ′(t)(ψ(x) − ψ(t))n−α−1u(t)dt,

and

Dα,ψ
b− u(x) :=

(
−

1
ψ′(x)

d
dx

)n

In−α,ψ
b− u(x)

=
1

Γ(n − α)

(
−

1
ψ′(x)

d
dx

)n ∫ b

x
ψ′(t)(ψ(t) − ψ(x))n−α−1u(t)dt,

where n = [α] + 1.

Now, by interchanging the order of integration by the Dirichlet formula in the particular case Fubini
theorem, we can prove the following integration by parts for the ψ-Riemann-Liouville fractional integral:∫ b

a
Iα,ψa+ u(x)v(x) dx =

∫ b

a
u(x)ψ′(x)Iα,ψb−

(
v(x)
ψ′(x)

)
dx.

For more details, one can see Equation (16) in [29].
Also, we need the following result which called fractional integration by parts:

Lemma 2.3. Letψ ∈ C1([a, b],R) be an increasing function such thatψ′(x) , 0, for all x ∈ [a, b]. If u is an absolutely
countinous function on [a, b] and v is of class C1 on [a, b] such that v(a) = v(b) = 0. Then we have∫ b

a
Dα,ψ

a+ u(x)v(x) dx =
∫ b

a
u(x)ψ′(x)Dα,ψ

b−

(
v(x)
ψ′(x)

)
dx (8)

Proof. The proof is a direct consequence of Theorem 2.4 in citevsj.
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For 1 ≤ r ≤ ∞, Lr(a, b) denotes the set of all measurable function u on [a, b], such that
∫ b

a |u(t)|rdt < ∞. Put

∥u∥Lr(a,b) =

(∫ b

a
|u(t)|rdt

) 1
r

, and ∥u∥∞ = ess sup
a≤t≤b
|u(t)|.

Remark 2.4. ([19, 29]) If 0 < α ≤ 1, r ≥ 1 and q = p
p−1 , then for each φ ∈ Lr(a, b), we have:

(i) Iα,ψa+ φ is bounded in Lr(a, b), moreover we have

∥Iα,ψa+ φ∥Lr(a,b) ≤
(ψ(b) − ψ(a))α

Γ(α + 1)
∥φ∥Lr(a,b).

(ii) If 1
r < α < 1, then Iα,ψa+ is Hölder continuous on [a, b] with exponent α − 1

r .

(iii) If 1
r < α < 1, then lim

t→a
Iα,ψa+ φ(t) = 0. That is Iα,ψa+ φ can be continuously extended by zero in t = a. So, Iα,ψa+ φ is

continuous on [a, b], moreover, we get

∥Iα,ψa+ φ∥∞ ≤
(ψ(b) − ψ(a))α−

1
r

Γ(α)
(
(α − 1)q + 1

) 1
q

∥φ∥Lr(a,b).

To show the existence of solutions to the problem (3), we will use the following theorem.

Theorem 2.5. (Mountain pass theorem) Let E be a real Banach space and J ∈ C1(E,R) satisfying the palai smail
condition. Assume that that

(i) J(0) = 0,
(ii) There is ρ > 0 and σ > 0 such that J(z) ≥ σ for all z ∈ E with ∥z∥ = ρ.

(iii) There exists z1 ∈ E with ∥z1∥ ≥ ρ such that J(z1) < 0.

Then ϕλ possesses a critical value c ≥ σ. Moreover, c can be characterized as

c = inf
γ∈Γ

max
z∈[0,1]

ϕλ(γ(z)),

where Γ = {γ ∈ C([0, 1],Ep) : γ(0) = 0, γ(1) = z1}.

We notes that The functional J satisfies the Palais-Smale condition if any Palais-Smale sequence has a
strongly convergent subsequnce. That is um ∈ E is such that J(um) is bounded and J′λ(um) converges to 0 in
E′α,ψp , then .um has a convergent subsequence.

3. The proof of the main result

In this section, in order to apply the mountain pass theorem, we begin by introduce the fractional
derivative space and some other interesting results. we denote by C∞([0,T],R) the set of all functions u
with u(0) = u(T) = 0. In order to formulate the variational setting to problem (3), we define the fractional
derivative space Eα,ψp by the closure of C∞0 ([0,T],R) with respect to the norm

∥u∥Eα,ψp
=

(
∥u∥pLp(0,T) + ∥0Dα,ψ

t u∥pLp(0,T)

) 1
p .

Note that, we have

Eα,ψp =
{
v ∈ Lp([0,T]) : 0Dα,ψ

t v ∈ Lp([0,T],R), v(0) = v(T) = 0
}
.

Remark 3.1. ([19, 29]) Assume that 1
p < α < 1, the following statements hold true:
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(i) The space Eα,ψp is compactly embedded in C([0,T],R). So, if φk is a sequence which converges weakly to φ in Eα,ψp ,
then φk converge strongly to φ in C([0,T],R).

(ii) The space Eα,ψp is uniformly convex, reflexive and separable Banach space.

Definition 3.2. (see [27, 28])A Banach space E is said to have the Kadec Klee property if whenever {uk} is a sequence
in E that converges weakly to u∗ ∈ E and ∥uk∥ → ∥u∗∥, as k→∞, then, {uk} converges strongly to u∗.

Remark 3.3. (See [10]) Every uniformly convex real Banach space is reflexiv, strictly convex and has the Kadec Klee
property.

Proposition 3.4. If 1
p < α and q = p

p−1 , then for each φ ∈ Eα,ψp one has:

(i)

∥φ∥Lr(a,b) ≤
(ψ(b) − ψ(a))α

Γ(α + 1)
∥Dα,ψ

a+ φ∥Lr(a,b). (9)

(ii)

∥φ∥∞ ≤
(ψ(b) − ψ(a))α−

1
r

Γ(α)
(
(α − 1)q + 1

) 1
q

∥Dα,ψ
a+ φ∥Lr(a,b). (10)

Proof. The proof of Proposition 3.4 is a direct consequence of Proposition 2.1 in [29].

Remark 3.5. From, Equation (9), the space Eα,ψp can be equipped with the following equivalent norm:

∥u∥α,ψ = ∥0Dα,ψ
t u∥Lp(0,T).

Moreover, from (10), if 1
p < α, then Eα,ψp is continuously injected into C([0,T],R).

Now, we are in a position to define the notion of solution.

Definition 3.6. we say that u is a weak solution of problem (p) if for every v ∈ Eα,ψp we have :

M(u(t))
∫ T

0
|0Dα,ψ

t u(t)|p−2
0Dα,ψ

t u(t) 0Dα,ψ
t v(t)dt − λ

∫ T

0
f (t,u(t))v(t)dt −

∫ T

0
1(t,u(t))v(t)dt = 0

Since we use the variational method, it is natural to define the associate functional ϕλ : Eα,ψp → R, which is
defined by:

ϕλ(u) =
1

bp2

(
a + b∥u∥pα,ψ

)p
− λ

∫ T

0
F(t,u(t))dt −

∫ T

0
G(t,u(t))dt −

ap

bp2 .

Since F and G are continuous, it is not difficult to show that ϕλ ∈ C1(Eα,ψp ,R), moreover for all u, v ∈ Eα,ψp ,
we have

⟨ϕ′λ(u), v⟩ =
(
a + b∥u∥pα,ψ

)p−1
∫ T

0
φp(0Dα,ψ

t u(t))0Dα,ψ
t v(t)dt

− λ

∫ T

0
f (t,u(t))v(t)dt −

∫ T

0
1(t,u(t))v(t)dt (11)

So, critical points of ϕλ are solutions of problem (3).
In order to prove that ϕλ satisfies the mountain pass geometry, we need to prove the following lemmas.
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Lemma 3.7. If conditions (H1) and (H2) are satisfied, and min(δ, q) > p, then There is ρ > 0 and σ > 0 such that
ϕλ(z) ≥ σ for all z ∈ Eα,ψp with ∥z∥ = ρ.

Proof. Let z ∈ Eα,ψp , then, by equations (5),(7), proposition 3.4 and Remark 3.5, we obtain

ϕλ(z) =
1

bp2

(
a + b∥z∥pα,ψ

)p
− λ

∫ T

0
F(t, z(t))dt −

∫ T

0
G(t, z(t))dt −

ap

bp2

≥
1

bp2

(
a + b∥z∥pα,ψ

)p
− λC0

∫ T

0
|z|δdt − C1

∫ T

0
|z|qdt −

ap

bp2

≥
1

bp2

(
a + b∥z∥pα,ψ

)p
− λC0T

 (ψ(T) − ψ(0))α−
1
p

Γ(α)((α − 1)q + 1)
1
q


δ

∥z∥δα,ψ

− C1T

 (ψ(T) − ψ(0))α−
1
p

Γ(α)((α − 1)q + 1)
1
q


q

∥z∥qα,ψ −
ap

bp2 .

Assume that ∥z∥α,ψ = ρ > 0, then, using the elementary inequality

(x + y)p
≥ xp + pyxp−1,

we obtain

ϕλ(z) ≥
1

bp2

(
a + bρp)p

− λC0T

 (ψ(T) − ψ(0))α−
1
p

Γ(α)((α − 1)q + 1)
1
q


δ

ρδ

− C1T

 (ψ(T) − ψ(0))α−
1
p

Γ(α)((α − 1)q + 1)
1
q


q

ρq
−

ap

bp2

≥
ρpap−1

p
− λC0T

 (ψ(T) − ψ(0))α−
1
p

Γ(α)((α − 1)q + 1)
1
q


δ

ρδ − C1T

 (ψ(T) − ψ(0))α−
1
p

Γ(α)((α − 1)q + 1)
1
q


q

ρq

≥ ρpχ(ρ).

where

χ(t) =
ap−1

p
− λC0T

 (ψ(T) − ψ(0))α−
1
p

Γ(α)((α − 1)q + 1)
1
q


δ

tδ−p
− C1T

 (ψ(T) − ψ(0))α−
1
p

Γ(α)((α − 1)q + 1)
1
q


q

tq−p.

Since min(δ, q) > p and

lim
ρ→0

χ(ρ) =
ap−1

p
> 0,

then, we can choose ρ > 0 small enough such that

ρpχ(ρ) := σ > 0

So we have
ϕλ(z) ≥ σ > 0.

This completes the proof of Lemma 3.7

Lemma 3.8. If hypotheses (H1) and (H2) are fulfilled, then, there exists z1 ∈ Eα,ψp with ∥z1∥ ≥ ρ such thatϕλ(z1) < 0.
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Proof. Let ξ > 0 large enough such that a < ξp, then using hypothesis (H2), Equation (5) and Proposition
3.4, we obtain for all u ∈ Eα,ψp

ϕλ(ξu) =
1

bp2

(
a + b∥ξu∥pα,ψ

)p
− λ

∫ T

0
F(t, ξu(t))dt −

∫ T

0
G(t, ξu(t))dt −

ap

bp2

≤
ξp2

bp2

(
1 + b∥u∥pα,ψ

)p
− ξq

∫ T

0
G(t,u(t))dt −

ap

bp2

Since we have q > p2, then we have lim
ξ→∞

ϕλ(ξu) = −∞. So we can choose ξ0 > a
1
p large enough such that

z1 = ξ0u, satisfy ∥z1∥ ≥ ρ such that ϕλ(z1) < 0.

Lemma 3.9. Suppose that the hypotheses (H1) and (H2) are satisfied, then, The functional ϕλ satisfies the Palais-
Smale condition

Proof. Let {uk} ∈ Eα,ψp be a palai smail sequence, that is ϕλ(uk) is bounded and ϕ′λ(uk) tends to zero as k tends
to infinity. So, there exist C2 > 0 and C3 > 0 such that

|ϕλ(uk)| ≤ C2, and |⟨ϕ′λ(uk),uk⟩| < C3. (12)

We begin by proving that {uk} is bounded. If not, up to a subsequence still denoted by {uk}, we can assume
that ∥uk∥ → ∞. From (11),we have

⟨ϕ′λ(uk),uk⟩ =
(
a + b∥uk∥

p
α,ψ

)p−1
∥uk∥

p
− λ

∫ T

0
f (t,uk(t))uk(t)dt

−

∫ T

0
1(t,uk(t))uk(t)dt. (13)

by using (4),(6) and (12), we obtain

C2 ≥ ϕλ(uk)

=
1

bp2

(
a + b∥uk∥

p
α,ψ

)p
− λ

∫ T

0
F(t,uk(t))dt −

∫ T

0
G(t,uk(t))dt −

ap

bp2

=
1

bp2

(
a + b∥uk∥

p
α,ψ

)p
−
λ
δ

∫ T

0
f (t,uk(t))ukdt −

1
q

∫ T

0
1(t,uk(t))ukdt −

ap

bp2

≥
1

bp2

(
a + b∥uk∥

p
α,ψ

)p
−

λ
max(δ, q)

∫ T

0
f (t,uk(t))ukdt

−
1

max(δ, q)

∫ T

0
1(t,uk(t))ukdt −

ap

bp2 (14)

On the other hand,from (12) and (13), we get

C3 > |⟨ϕ′λ(uk),uk⟩|

≥ −⟨ϕ′λ(uk),uk⟩

= −

(
a + b∥uk∥

p
α,ψ

)p−1
∥uk∥

p

+ λ

∫ T

0
f (t,uk(t))uk(t)dt +

∫ T

0
1(t,uk(t))uk(t)dt. (15)
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By combining (14) with (15), we get

max(δ, q)C2 + C3 ≥ max(δ, q)
1

bp2

(
a + b∥uk∥

p
α,ψ

)p
−

(
a + b∥uk∥

p
α,ψ

)p−1
∥uk∥

p

− (max(δ, q) − 1)
ap

bp2

=
(
a + b∥uk∥

p
α,ψ

)p−1 [
max(δ, q)

1
bp2 (a + b∥uk∥

p
α,ψ) − ∥uk∥

p
α,ψ

]
− −(max(δ, q) − 1)

ap

bp2

=
(
a + b∥uk∥

p
α,ψ

)p−1 [a max(δ, q)
bp2 + (

max(δ, q)
p2 − 1)∥uk∥

p
α,ψ)

]
− −(max(δ, q) − 1)

ap

bp2 .

Since max(δ, q) > p2, then by letting k tends to infinity we obtain a contradiction. So, {uk} is bounded.
Therefore, from Remark 3.1, there exists u∗ ∈ Eα,ψp such that, up to a subsequence, we have{

uk ⇀ u, weakly in Eα,ψp ,
uk → u, in C([0,T],R).

From (11), we get

⟨ϕ′λ(uk) − ϕ′λ(u∗),uk − u∗⟩ =
(
a + b∥uk∥

p
α,ψ

)p−1
∫ T

0
φp(0Dα,ψ

t uk(t))0Dα,ψ
t (uk(t) − u∗(t))dt

−

(
a + b∥u∗∥

p
α,ψ

)p−1
∫ T

0
φp(0Dα,ψ

t u∗(t))0Dα,ψ
t (uk − u∗(t))dt

−λ

∫ T

0

(
f (t,uk(t) − f (t,u∗(t)

)
(uk(t) − u∗(t))dt

−λ

∫ T

0

(
1(t,uk(t) − 1(t,u∗(t)

)
(uk(t) − u∗(t))dt

=
(
a + b∥uk∥

p
α,ψ

)p−1
(
∥uk∥

p
α,ψ −

∫ T

0
φp(0Dα,ψ

t uk(t))0Dα,ψ
t u∗(t)dt

)
+

(
a + b∥u∗∥

p
α,ψ

)p−1
(
∥uk∥

p
α,ψ −

∫ T

0
φp(0Dα,ψ

t u∗(t))0Dα,ψ
t uk(t)dt

)
−λ

∫ T

0

(
f (t,uk(t) − f (t,u∗(t)

)
(uk(t) − u∗(t))dt

−λ

∫ T

0

(
1(t,uk(t) − 1(t,u∗(t)

)
(uk(t) − u∗(t))dt.

Using the Hölder inequality, we have∫ T

0
φp(0Dα,ψ

t uk(t))0Dα,ψ
t u∗(t)dt ≤ ∥uk∥

p−1
α,ψ ∥u∗∥

p
α,ψ,

∫ T

0
φp(0Dα,ψ

t u∗(t))0Dα,ψ
t uk(t)dt ≤ ∥u∗∥

p−1
α,ψ ∥uk∥

p
α,ψ.
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Hence, we obtain

⟨ϕ′λ(uk) − ϕ′λ(u∗),uk − u∗⟩ ≥
(
a + b∥uk∥

p
α,ψ

)p−1 (
∥uk∥

p
α,ψ − ∥uk∥

p−1
α,ψ ∥u∗∥α,ψ

)
+

(
a + b∥u∗∥

p
α,ψ

)p−1 (
∥uk∥

p
α,ψ − ∥u∗∥

p−1
α,ψ ∥uk∥α,ψ

)
−λ

∫ T

0

(
f (t,uk(t) − f (t,u∗(t)

)
(uk(t) − u∗(t))dt

−λ

∫ T

0

(
1(t,uk(t) − 1(t,u∗(t)

)
(uk(t) − u∗(t))dt

≥

(
a + b∥uk∥

p
α,ψ

)p−1
∥uk∥

p−1
α,ψ

(
∥uk∥α,ψ − ∥u∗∥α,ψ

)
+

(
a + b∥u∗∥

p
α,ψ

)p−1
∥u∗∥

p−1
α,ψ

(
∥uk∥α,ψ − ∥uk∥α,ψ

)
−λ

∫ T

0

(
f (t,uk(t) − f (t,u∗(t)

)
(uk(t) − u∗(t))dt

−λ

∫ T

0

(
1(t,uk(t) − 1(t,u∗(t)

)
(uk(t) − u∗(t))dt. (16)

Since uk → u, in C([0,T],R), and | f (t,uk(t) − f (t,u∗(t)|, |1(t,uk(t) − 1(t,u∗(t)|, are bounded, then we get∫ T

0

(
f (t,uk(t) − f (t,u∗(t)

)
(uk(t) − u∗(t))dt→ 0, as k→∞, (17)

and ∫ T

0

(
1(t,uk(t) − 1(t,u∗(t)

)
(uk(t) − u∗(t))dt→ 0, as k→∞. (18)

On the other hand, since uk ⇀ u, weakly in Eα,ψp , and ϕ′λ(uk)→ 0, then we obtain

⟨ϕ′λ(uk) − ϕ′λ(u∗),uk − u∗⟩ → 0, as k→∞. (19)

By combining Equations (17), (18), (19) with Equation (16), we obtain

∥uk∥α,ψ → ∥u∗∥α,ψ, as k→∞. (20)

Finally, by combining Remarks 3.1, 3.3, Definition 3.2 with Equation (20), we obtain that uk → u, strongly in Eα,ψp .
this ends the proof of Lemma 3.9.

Now, we are ready to prove the main result of this paper.
Proof of Theorem 1.1First of all, it is easy that ϕλ(0) = 0.
Now, from Lemma 3.7, There exist ρ > 0 and σ > 0 such that for all z ∈ Eα,ψp , if ∥z∥ = ρ, then we have

ϕλ(z) ≥ σ > 0. (21)

On the other hand, from Lemma 3.8, there exists z1 ∈ Eα,ψp satisfying

∥z1∥ ≥ ρ, and ϕλ(z1) < 0. (22)

By combining Equations (21) and (22) with Lemma 3.9, we conclude that all hypothesis of the mountain
pass theorem (Theorem 2.5) are satisfied. So, we can deduce the existence of a critical point u of ϕλ, which
is a weak solution for problem (3). Moreover, Equation (21) implies that u is nontrivial. The proof of
Theorem1.1, is now completed.
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