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Abstract. The transmission TrG(v) of a vertex v of a connected graph G is the sum of distances between v
and all other vertices in G. G is a stepwise transmission irregular (STI) graph if |TrG(u) − TrG(v)| = 1 holds
for each edge uv ∈ E(G). In this paper, extremal results on STI graphs with respect to the size and different
metric properties are proved. Two extremal families appear in all the cases, balanced complete bipartite
graphs of odd order and the so called odd hatted cycles.

1. Introduction

All graphs throughout the paper are simple and connected. If G = (V(G),E(G)) is a graph and u, v ∈ V(G),
then the distance dG(u, v) is the number of edges on a shortest u, v-path. The transmission TrG(v) of a vertex
v ∈ V(G) is the sum of distances between v and all other vertices. This concept arose in different contexts,
hence it is not surprising that it is also known as the total distance, the farness, and the vertex Wiener
value, cf. [1, 22, 24–26]. The transmission also led to the Wiener complexity (the number of different
transmissions) [3], is closely related to other topological indices [26], and characterizes the distance-balanced
property and the opportunity index [9, 13].

Quite recently, Dobrynin and Sharafdini [16] defined stepwise transmission irregular graphs (STI graphs for
short) as the graphs G in which |TrG(u) − TrG(v)| = 1 holds for each edge uv of G. The class was proposed,
among other things, as a new pebble in the investigation of transmission dependent classes of graphs. A
striking example of such classes is the one of transmission irregular graphs which by definition contains
the graphs in which all its vertices have pairwise different transmissions. After being introduced in [4],
transmission irregular graphs received a lot of attention [6, 7, 11, 14, 15, 28].

Just as transmission irregular graphs, STI graphs also turned out to be a very interesting class of graphs.
In the seminal paper [16], basic properties of STI graphs were first established. In particular, STI graphs
are bipartite, 2-connected (except P3), and of odd order, so that no regular graph can be STI. By computer
search it was established that there are 1, 1, 3, 7, 18, 87, and 1171 STI graphs of respective orders 3, 5, 7, 9, 11,
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13, and 15. Six interesting infinite families of STI graphs were also presented and topological indices of STI
graphs briefly discussed. In the subsequent paper [8], Al-Yakoob and Stevanović confirmed a conjecture
from [16] by proving that all the graphs from an additional interesting infinite family are STI. They also
provided a further computational support for a challenging conjecture from [16] that the girth of every STI
graph is 4. As feasible candidates for a counterexample they checked all bipartite, 2-connected graphs on
up to 23 vertices with girth at least 6.

In this paper we are interested in extremal properties of STI graphs. In the second part of this section
definitions and notation needed is given. In Section 2 we determine the minimum and the maximum size of
an STI graph and characterize the extremal graphs. In Section 3 we determine extremal results for different
metric properties of STI graphs: the diameter, the eccentricity, the Wiener index, and the transmission.

1.1. Preliminaries

The eccentricity εG(v) of a vertex v ∈ V(G) is the maximum distance between v and other vertices of G.
The eccentricity ecc(G) of a graph G is the sum of the vertex eccentricities over all vertices of G. A vertex w
is an eccentric vertex of v if dG(v,w) = εG(v). The diameter diam(G) of G is the largest eccentricity among its
vertices.

The Wiener index W(G) of a graph G is the sum of distances between all pairs vertices of G, that is,
W(G) =

∑
{u,v}⊆V(G) dG(u, v) = 1

2

∑
v∈V(G) TrG(v), see the survey [23]. For an edge vw ∈ E(G), the number of

vertices lying closer to v than to w is denoted by nv(G). The value nw(G) is defined analogously. The Mostar
index Mo(G) of G is defined as Mo(G) =

∑
uv∈E(G) |nu(G) − nv(G)|. It was introduced in [18] and studied a lot

afterwards, see the recent survey [2]. The first Zagreb index Z1(G) of G is defined as Z1(G) =
∑

u∈V(G) deg(u)2,
the second Zagreb index Z2(G) of G is Z2(G) =

∑
uv∈E(G) deg(u) deg(v). These two invariants were respectively

introduced in [20, 21], see also the survey [19]. We note that the first Zagreb index can be equivalently
expressed as Z1(G) =

∑
uv∈E(G) deg(u) + deg(v), see [17].

For further reference we recall the following properties of STI graphs.

Theorem 1.1. [16] If G is an STI graph different from P3, then G is a bipartite, 2-connected graph of odd order.

To conclude the preliminaries we introduce a family of graphs that will be ubiquitous throughout the
rest of the paper. Let n ≥ 5. The graph Gn has the vertex set {v1, . . . , vn}, where the vertices v1, . . . , vn−1
induce a cycle of length n − 1, while vn is adjacent to v1 and v3. Note that G5 � K2,3, while for G11 see Fig. 1.
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Figure 1: The graph G11

We note in passing that in [12], the graphs Gn were named hatted cycles and investigated with respect to
the Rall’s 1/2-conjecture on the domination game. From our current point of view, it was shown in [16] that
Gn is an STI graph for every odd n ≥ 5. Moreover, in [10] it was proved that hatted cycles are the graphs
that attain the third maximum Wiener index over 2-connected graphs.
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2. Extremal STI graph with respect to size

In this section we bound the size of an STI graph and determine the extremal graphs. As a consequence
we do the same for the Mostar index and the two Zagreb indices.

Theorem 2.1. If G is an STI graph of order n and size m, then

n + 1 ≤ m ≤
n2
− 1
4
.

Moreover, the left equality holds if and only if G � Gn, and the right equality holds if and only if G � K n−1
2 ,

n+1
2

.

Proof. The right inequality was proved in [16, Proposition 4]. For the equality, let G be an arbitrary STI
graph of order n and size m. Then, by Theorem 1.1, G is bipartite and n is odd. Since K n−1

2 ,
n+1

2
is the unique

bipartite graph of order n with the maximum size and K n−1
2 ,

n+1
2

is an STI graph (cf. [16]), it is thus the unique
graph attaining the right equality.

Recall that a graph G is 2-connected if and only if G admits an ear decomposition (see [27] for the
definition of the ear decomposition). Hence the only 2-connected graph G with m = n is Cn. As cycles are
not STI graphs, we conclude that if G is an STI graph, then m ≥ n + 1. Let now G be an arbitrary STI graph
with m = n + 1. Then it is 2-connected and the ear decomposition implies that G consists of two vertices of
degree 3, say x and y, which are connected by three internally disjoint paths. Let these paths be of lengths
r, s, t, where 1 ≤ r ≤ s ≤ t.

Since G is bipartite, r, s, and t are either all odd or all even. Suppose first that r = 1, that is, x and y are
connected by an edge. Then clearly TrG(x) = TrG(y) and so G is not an STI graph. Assume in the rest that
r ≥ 2. If r = s = 2, then G � Gn which was shown to be an STI graph in [16, Proposition 7]. Hence let s ≥ 3.
If P1, P2, and P3 are the x, y-paths of respective lengths r, s, and t, and w is the neighbor of x on P3, then we
can estimate as follows:

TrG(w) − TrG(x) =
∑
z∈P1

(dG(w, z) − dG(x, z)) +
∑

z∈P2∪P3\{x,y}

(dG(w, z) − dG(x, z))

≥

∑
z∈P1

(dG(w, z) − dG(x, z)) ≥ 2 .

We conclude that Gn is the only STI graph with m = n + 1.

Corollary 2.2. If G is an STI graph of order n ≥ 5, then the following holds.

(i) n + 1 ≤Mo(G) ≤
n2
− 1
4
.

(ii) 4n + 10 ≤ Z1(G) ≤
n(n2

− 1)
4

.

(iii) 4n + 16 ≤ Z2(G) ≤
(

n2
− 1
4

)2

.

Moreover, in each of the cases the left equality holds if and only if G = Gn and the right equality holds if and only if
G = K n−1

2 ,
n+1

2
.

Proof. (i) This follows from the fact that if G is an arbitrary graph, then Mo(G) can be equivalently written
as

∑
uv∈E(G) |TrG(u) − TrG(v)|, see [5, Corollary 2.2].

(ii) By Theorem 2.1, and since G is 2-connected, G contains at least two vertices of degree 3, while the
other vertices are of degree at least 2. Thus

Z1(G) =
∑

v∈V(G)

deg(v)2
≥ 4(n − 2) + 18 = 4n + 10 .
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Equality holds here if and only if G has exactly two vertices of degree 3 and the other vertices are of degree
2 which means (having the ear decomposition in mind) that G � Gn. For the right inequality observe first
that if uv is an edge of (a bipartite graph) G, then deg(u) + deg(v) ≤ n. Therefore,

Z1(G) =
∑

uv∈E(G)

(deg(u) + deg(v)) ≤ n|E(G)| ≤
n(n2

− 1)
4

.

Using Theorem 2.1 again we infer that the right equality holds if and only if G � K n−1
2 ,

n+1
2

.
(iii) This is proved using a similar argument as (ii).

3. Metric properties

In this section we consider extremal behavior of STI graphs with respect to metric invariants. In the
first subsection we begin with their diameter and determine the extremal graphs. Based on this result, the
extremal STI graphs are determined with respect to the eccentricity. In the second subsection we prove
parallel results for the Wiener index and the transmission.

3.1. Eccentricity
Lemma 3.1. If G is an STI graph of order n, then

2 ≤ diam(G) ≤
n − 1

2
.

Moreover, the left equality holds if and only if G � K n−1
2 ,

n+1
2

, and the right equality holds for Gn.

Proof. The left inequality follows from the fact that the only bipartite graph of diameter 1 is K2 which is not
an STI graph. If the left equality holds, that is, if diam(G) = 2, then G is a complete bipartite graph. And
since G is an STI graph, we conclude that G � K n−1

2 ,
n+1

2
.

By Theorem 1.1, G is a 2-connected graph of odd order which in turn implies the right inequality. It is
clear that diam(Gn) = (n − 1)/2.

Theorem 3.2. If G is an STI graph of order n ≥ 4, then

2n ≤ ecc(G) ≤
n(n − 1)

2
.

Moreover, the left equality holds if and only if G � K n−1
2 ,

n+1
2

and the right equality holds if and only if G � Gn.

Proof. By Lemma 3.1, 2 ≤ diam(G) ≤ (n − 1)/2.
If diam(G) = 2, then Theorem 1.1 implies that G is a complete bipartite graph. Among them only K n−1

2 ,
n+1

2

is an STI graph.
As already said, diam(G) ≤ (n − 1)/2 which in turn implies that ecc(G) ≤ n (n−1)

2 . Suppose now that the
right equality holds for an STI graph G. Then each vertex v has εG(v) = (n − 1)/2. Let v and w be two
vertices with dG(v,w) = (n − 1)/2. As G is 2-connected, there exists internally disjoint v,w-paths P1 and P2.
Then each of these paths is of length at least (n − 1)/2, which means that |V(P1) ∪ V(P2)| ≥ n − 1. We now
distinguish two cases.

Suppose first that |V(P1)| = (n − 1)/2 and |V(P2)| = (n + 1)/2. In this case, V(G) = V(P1) ∪ V(P2). Since
G is an STI graph and cycles are not, there exists an edge pq < E(P1 ∪ P2). As G is bipartite, dP1∪P2 (p, q) ≥ 3.
But this implies that εG(p) < (n− 1)/2 which is not possible. In this case we thus have no equality situation.

Suppose second that |V(P1)| = |V(P2)| = (n − 1)/2. Then there exists exactly one vertex x < V(P1 ∪ P2).
As G is 2-connected, x has at least two neighbors in V(P1) ∪ V(P2), let y and z be its arbitrary neighbors.
If dP1∪P2 (y, z) ≥ 3, then εG(y) < (n − 1)/2. Hence we must have dP1∪P2 (y, z) = 2. If deg(x) = 3, then
εG(y) < (n − 1)/2 or εG(z) < (n − 1)/2. Also, if there exists an edge not in E(P1) ∪ E(P2) ∪ {xy, xz}, say st, then
εG(s) < (n − 1)/2. We conclude that G � Gn.
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3.2. Wiener index and transmission
Theorem 3.3. If G is an STI graph of order n, then

3n2
− 4n + 1

4
≤W(G) ≤

n3
− n2

− n + 17
8

.

Moreover, the left equality holds if and only if G � K n−1
2 ,

n+1
2

, and the right equality holds if and only if G � Gn.

Proof. By Theorem 1.1, G is bipartite. Let V(G) = V1 ∪ V2 be its bipartition. Since adding an edge between
two nonadjacent vertices decrease the Wiener index of the graph, we have W(G) ≥ W(K|V1 |,|V2 |). Moreover,
K n−1

2 ,
n+1

2
is the only complete bipartite of order n which is also an STI graph, hence the left inequality holds,

as well as its equality part.
For the right inequality, let Hn,p,q be a graph of order n comprised of three internally disjoint paths

with the same end-vertices and of respective lengths p, q, and n − p − q + 1. In [10, Theorem 1] it was
proved that if n ≥ 11, and G is a 2-connected graph of order n different from Cn, Hn,1,2, and Hn,2,2, then
W(G) <W(Hn,2,2) <W(Hn,1,2) <W(Cn). Note now that Gn � Hn,2,2 and that Hn,1,2 is not an STI graph. Hence,
as for odd n we have W(Gn) = (n3

− n2
− n + 17)/8, cf. [10, Table 2], the right inequality follows together

with the equality part. For the latter, one needs to consider the small cases separately, that is, [10, Theorem
7] for the case n = 9 and seven sporadic STI graphs with n = 7 from [16, Figure 1].

Theorem 3.4. If G is an STI graph of order n, then

max{TrG(v) : v ∈ V(G)} ≤
n2
− 1
4
.

Moreover, the equality holds if and only if G � Gn.

Proof. Let v be a vertex of G and consider the BFS-tree rooted at v. Since G is 2-connected, there must be at
least two vertices in each of the levels of the BFS-tree, that is, there exist at least two vertices at each possible
distance from v. Since n is odd, this implies that

TrG(v) ≤ 2
(
1 + · · · +

n − 1
2

)
=

n2
− 1
4
,

which proves the upper bound.
The equality holds if and only if for each positive integer k, 1 ≤ k ≤ (n−1)/2, there are exactly two vertices

at distance k from v and εG(v) = (n−1)/2. Let G be an STI graph for which the equality holds, and let v ∈ V(G)
be a vertex with TrG(v) = (n2

− 1)/4. Let w be an eccentric vertex of v, so that dG(v,w) = (n − 1)/2. As G is
2-connected, there exist two internally vertex disjoint v,w-paths P1 and P2. Then V(G) = V(P1)∪V(P2)∪{w′},
where w′ is the second eccentric vertex of v. Using the 2-connectivity of G again, we infer that w′ is adjacent
to the two vertices at distance (n − 3)/2 from v. Now, if these two edges, together with the edges of P1 and
P2 are all the edges of G, then G � Gn. Suppose next that G contains some other edge f . Since P1 and P2 are
shortest paths, such an edge connects a vertex x of P1 with a vertex y of P2. Suppose that x is selected such
that it is closest to v among all vertices that are endpoints of such additional edges f . As G is bipartite this
implies that dG(v, y) = dG(v, x) + 1. Let x′ be the predecessor of x on P1 (so that dG(v, x) = dG(v, x′) + 1). It is
possible that x′ = v.

We claim that Tr(x′) − Tr(x) ≥ 2. By the way the edge xy is selected, the vertices that are at distance at
most dG(v, x) from v together with the vertex y induce a cycle C. Moreover, again by the way the edge xy is
selected, C is an isometric cycle, that is, if z, z′ ∈ V(C), then dC(z, z′) = dG(z, z′). It follows that the vertices
of C contribute the same value to TrG(x) and to TrG(x′). Since for every vertex z′′ from V(G) \V(C) we have
dG(x, z′′) < dG(x′, z′′), the claim follows.

From the above claim we conclude that there is no such edge f in G and hence G � Gn. To complete
the argument observe that Gn contains exactly one vertex, say v, with εG(v) = (n − 1)/2, and for v we have
TrGn (v) = (n2

− 1)/4.



Y. Alizadeh, S. Klavžar / Filomat 37:4 (2023), 1271–1276 1276

Theorem 3.5. If G is an STI graph of order n, then

min{TrG(v) : v ∈ V(G)} ≥
3n − 5

2
.

Moreover, equality holds if and only if G � K n−1
2 ,

n+1
2

.

Proof. Let (X,Y) be the bipartition of G and assume without loss of generality that |X| ≤ |Y|. Since the order
n of an STI graph G is odd, we actually have |X| < |Y|. Let v ∈ X has the minimum transmission among
vertices of G. Then TrG(v) ≥ |Y|+ 2(|X| − 1), and equality holds if and only if v is adjacent to all vertices in Y
and is at distance 2 from each vertex of X. Let w ∈ Y be adjacent to v. Since G is an STI graph and |X| < |Y|,
we have TrG(w) = TrG(v) + 1 = |Y| + 2|X| − 1. If there would be a vertex z ∈ X non adjacent to w, or a vertex
z ∈ Y with dG(w, z) ≥ 4, then

TrG(w) ≥ (|X| − 1) + 2(|Y| − 1) + 3 = |X| + 2|Y| > TrG(v) + 1 ,

which is not possible. Hence w must be adjacent to all vertices of X and at distance 2 from each vertex in Y.
As w was an arbitrary neighbor of v we conclude that v has the minimum transmission TrG(v) = |Y|+2(|X|−1)
if and only if G is a complete bipartite graph. We conclude that G � K n−1

2 ,
n+1

2
and TrG(v) = (3n − 5)/2.
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[5] Y. Alizadeh, K. Xu, S. Klavžar, On the Mostar index of trees and product graphs, Filomat 35 (2021) 4637–4643.
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