Four dimensional matrix mappings on double summable spaces

Mehmet Ali Sarıgöla ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics,Pamukkale University, Denizli 20007, Turkey

Abstract

In a previous paper [9], some classes of triangular matrix transformations between the series spaces summable by the absolute weighted summability methods were characterized. In the present paper, we extend these classes to four dimensional matrices and double summability methods.

1. Introduction

Consider an infinite single series Σx_{v} of complex or real numbers with partial sums s_{n} and let σ_{n}^{α} denote the n-th term of the Cesàro mean of order $\alpha>-1$ of the sequence $\left(s_{n}\right)$. The series Σx_{v} is summable $|C, \alpha|_{k}, k \geq 1$, in Flett's notation (see [4]), if $\left(n^{1-1 / k} \Delta \sigma_{n}^{\alpha}\right) \in \ell_{k}$, where ℓ_{k} is the set of absolutely k-summable sequences. Further let $\left(\phi_{n}\right)$ be a sequence of positive numbers and $\left(p_{n}\right)$ be a sequences of positive numbers satisfying

$$
\begin{equation*}
P_{n}=p_{0}+p_{1}+\ldots+p_{n} \rightarrow \infty \text { as } n \rightarrow \infty, P_{-1}=p_{-1}=0 \tag{1}
\end{equation*}
$$

By T_{n}, we denote the n - th term of weighted mean $\left(\bar{N}, p_{n}\right)$ of the sequence of $\left(s_{n}\right)$, i.e.

$$
T_{n}=\sum_{v=0}^{n} p_{v} s_{v} / P_{n}
$$

The series Σx_{v} is said to be summable $\left|\bar{N}, p_{n}, \phi_{n}\right|_{k}, k \geq 1$, if (see [15]) $\left(\phi_{n}^{1-1 / k} \Delta T_{n}\right) \in \ell_{k}$, which reduces to the methods $\left|\bar{N}, p_{n}\right|_{k}$ and $\left|R, p_{n}\right|_{k}$ for $\phi_{n}=P_{n} / p_{n}$ and $\phi_{n}=n$ (see [2] and [12], respectively).

For $k \geq 1$, the space $\left|\bar{N}_{p}^{\phi}\right|_{k}$, the set of all series summable by the method $\left|\bar{N}, p_{n}, \phi_{n}\right|_{k}$, is a Banach space (see [9], [14]) according to the norm

$$
\|x\|_{\left.\bar{N}_{p}^{\phi}\right|_{k}}=\left(\left|x_{0}\right|^{k}+\sum_{n=1}^{\infty} \phi_{n}^{k-1}\left|\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} x_{v}\right|^{k}\right)^{1 / k} .
$$

[^0]Further, a series Σx_{v} is summable $\left|\bar{N}, p_{n}, \phi_{n}\right|_{k}$ iff a sequence $x=\left(x_{v}\right) \in\left|\bar{N}_{p}^{\phi}\right|_{k}$, and the space $\left|\bar{N}_{p}^{\phi}\right|_{k}$ is the same as the spaces $\left|\bar{N}_{p}\right|_{k}$ and $\left|R_{p}\right|_{k}$ for $\phi_{n}=P_{n} / p_{n}$ and $\gamma_{n}=n$, (see [14] and [12], respectively).

We denote the set of all infinite triangular matrices which map a single sequence space X to another sequence space Y by (X, Y). The following characterizations of matrix classes are well known (see [9]), which include some known corollaries and applications for particular matrices (see [3, 5, 10-14, 16]).

Throughout the paper k^{*} will denote the conjugate of k, i.,e., $1 / k+1 / k^{*}=1$ for $k>1,1 / k^{*}=0$ for $k=1$.
Theorem 1.1. Let $\left(p_{n}\right)$ and $\left(q_{n}\right)$ be positive sequences satisfying (1). Further, let $A=\left(a_{n v}\right)$ be an infinite triangular matrix and $\left(\phi_{n}\right)$ be a sequence of positive numbers. Then, $A \in\left(\left|\bar{N}_{p}\right|,\left|\bar{N}_{q}^{\phi}\right|_{k}\right)$, for the case $1 \leq k<\infty$, if and only if

$$
\begin{align*}
& \frac{P_{v} q_{v}}{p_{v} Q_{v}} \phi_{v}^{1 / k^{*}} a_{v v}=O(1) \tag{2}\\
& \sum_{n=v+1}^{\infty} \phi_{n}^{k-1}\left|\mu_{n} \sum_{r=v}^{n} Q_{r-1}\left(a_{r v}-a_{r, v+1}\right)\right|^{k}=O\left\{\left(\frac{p_{v}}{P_{v}}\right)^{k}\right\} \tag{3}\\
& \sum_{n=v+1}^{\infty} \phi_{n}^{k-1}\left|\mu_{n} \sum_{r=v+1}^{n} Q_{r-1} a_{r, v+1}\right|^{k}=O(1) \tag{4}
\end{align*}
$$

where

$$
\begin{equation*}
\mu_{n}=\frac{q_{n}}{Q_{n} Q_{n-1}}, n \geq 1 \tag{5}
\end{equation*}
$$

Theorem 1.2. Let $\left(p_{n}\right)$ and $\left(q_{n}\right)$ be positive sequences satisfying (1). Further, let $A=\left(a_{n v}\right)$ be an infinite triangular matrix and $\left(\phi_{n}\right)$ be a sequence of positive numbers. Then, $A \in\left(\left|\bar{N}_{p}^{\phi}\right|_{k},\left|\bar{N}_{q}\right|\right)$, for the case $1<k<\infty$, if and only if

$$
\begin{equation*}
\sum_{v=1}^{\infty} \frac{p_{v}^{-k^{*}}}{\phi_{v}}\left(\sum_{n=v}^{\infty} \mu_{n}\left|\sum_{r=v}^{n} Q_{r-1}\left(P_{r} a_{r v}-P_{r-1} a_{r, v+1}\right)\right|\right)^{k^{*}}<\infty . \tag{6}
\end{equation*}
$$

where μ_{n} is defined by (5).
In the present paper we establih Theorem 1.1 and Theorem 1.2 for four dimensional matrices and double summability, which extend earlier factor and inclusion results on absolute weighted summability to double summability.

2. Absolute double weighted summability

For any double sequence $\left(x_{r s}\right)$ and four dimentional sequence ($y_{m n r s}$), we write for $m, n, r, s \geq 0$,

$$
\begin{aligned}
\Delta_{1} x_{r s} & =x_{r s}-x_{r-1, s} \quad \Delta_{2} x_{r s}=x_{r s}-x_{r, s-1} \\
\Delta_{12} x_{r s} & =\Delta_{2}\left(\Delta_{1} x_{r s}\right), \quad x_{-1,0}=x_{0,-1}=0 \\
\Delta_{1} y_{m n r s} & =y_{m n r s}-y_{m n, r-1, s} \quad \Delta_{2} y_{m n r s}=y_{m n r s}-y_{m n, r, s-1} \\
\Delta_{12} y_{m n r s} & =\Delta_{2}\left(\Delta_{1} y_{m n r s}\right), \quad y_{m n,-1,0}=y_{m n, 0,-1}=0,
\end{aligned}
$$

We use the notations $\sum_{r, s=0}^{\infty}$ and $\sum_{r, s=0}^{m, n}$ instead of $\sum_{r=0}^{\infty} \sum_{s=0}^{\infty}$ and $\sum_{r=0}^{m} \sum_{s=0}^{n}$, respectively, and also

Let $\sum_{r, s=0}^{\infty} x_{r s}$ be an infinite double series with partial sums $s_{m n}$, i.e.,

$$
s_{m n}=\sum_{r, s=0}^{m, n} x_{r s}
$$

Let us denote the double weighted mean $\left(\bar{N}, p_{m}, p_{n}\right)$ of the double sequence $\left(s_{m n}\right)$ by

$$
\begin{equation*}
T_{m n}=\frac{1}{P_{m} Q_{n}} \sum_{r, s=0}^{m, n} p_{r} q_{s} s_{r s} \tag{8}
\end{equation*}
$$

we shall say that the series $\sum_{r, s=0}^{\infty} x_{r s}$ is called summable $\left|\bar{N}, p_{m}, q_{n} ; \gamma_{m n}\right|_{k}, k \geq 1$, if

$$
\begin{equation*}
\sum_{m, n=0}^{\infty} \gamma_{m n}^{k-1}\left|\Delta_{21} T_{m, n}\right|^{k}<\infty \tag{9}
\end{equation*}
$$

It may be noticed this method reduces to the methods $\left|\bar{N}, p_{m}, q_{n}\right|_{k},\left|R, p_{m}, q_{n}\right|_{k}$ and $|C, 1,1|_{k}$ for $\gamma_{m n}=$ $P_{m} Q_{n} / p_{m} q_{n}, \gamma_{m n}=m n$ and $p_{n}=q_{n}=1$, respectively, [8], [6-7].

Now, by $\left|\bar{N}_{p q}^{\phi}\right|_{k}$, we introduce the set of all double series summable by the method $\left|\bar{N}, p_{m}, q_{n} ; \gamma_{m n}\right|_{k}$. Then, the double series $\sum_{r, s=0}^{\infty} x_{r s}$ is summable $\left|\bar{N}, p_{m}, q_{n} ; \gamma_{m n}\right|_{k}$ if and only if a double sequence $x=\left(x_{r s}\right) \in\left|\bar{N}_{p q}^{\phi}\right|_{k}$. Further, since, for $m, n \geq 0$

$$
\begin{aligned}
T_{m n} & =\frac{1}{P_{m} Q_{n}} \sum_{r, s=0}^{m, n} p_{r} q_{s} s_{r s}=\frac{1}{P_{m} Q_{n}} \sum_{v, \mu=0}^{m, n} p_{v} q_{\mu} \sum_{r, s=0}^{v, \mu} x_{r s} \\
& =\frac{1}{P_{m} Q_{n}} \sum_{r, s=0}^{m, n} x_{r s} \sum_{v, \mu=r, s}^{m, n} p_{v} q_{\mu} \\
& =\frac{1}{P_{m} Q_{n}} \sum_{r, s=0}^{m, n} x_{r s}\left(P_{m}-P_{r-1}\right)\left(Q_{n}-Q_{s-1}\right) \\
& =\sum_{r, s=0}^{m, n} x_{r s}\left(1-\frac{P_{r-1}}{P_{m}}\right)\left(1-\frac{Q_{s-1}}{Q n}\right)
\end{aligned}
$$

it is easily seen that $\Delta_{1} T_{00}=\Delta_{2} T_{00}=\Delta_{21} T_{00}=x_{00}$ and, for $m, n \geq 1$,

$$
\begin{align*}
\Delta_{1} T_{m 0} & =\frac{p_{m}}{P_{m} P_{m-1}} \sum_{r=1}^{m} P_{r-1} x_{r 0} \\
\Delta_{2} T_{0 n} & =\frac{q_{n}}{Q_{n} Q_{n-1}} \sum_{s=1}^{n} Q_{s-1} x_{0 s} \tag{10}\\
\Delta_{21} T_{m n} & =\frac{p_{m} q_{n}}{P_{m} P_{m-1} Q_{n} Q_{n-1}} \sum_{r, s=1,1}^{m, n} P_{r-1} Q_{s-1} x_{r s} .
\end{align*}
$$

Define the following space which plays an impotant role in this paper

$$
\pi\left|\bar{N}_{p q}^{\gamma}\right|_{k}=\left\{x=\left(x_{r s}\right) \in\left|\bar{N}_{p q}^{\gamma}\right|_{k}: x_{r 0}=x_{0 s}=0 \text { for } r, s \geq 0\right\}
$$

Hence it is routine to verify that $\left|\bar{N}_{p q}^{\gamma}\right|_{k}$ and $\pi\left|\bar{N}_{p q}^{\gamma}\right|_{k}$ are a Banach space according to the norm

$$
\begin{equation*}
\|x\|_{\left.\bar{N}_{p q}^{v}\right|_{k}}=\left(\sum_{m, n=0}^{\infty} \gamma_{m n}^{k-1}\left|\Delta_{21} T_{m n}\right|^{k}\right)^{1 / k} \tag{11}
\end{equation*}
$$

Also, there is a close relationship between the spaces $\left|\bar{N}_{p q}^{\gamma}\right|_{k}$ and \mathcal{L}_{k}, i.e., $\left(x_{r s}\right) \in\left|\bar{N}_{p q}^{\gamma}\right|_{k}$ if and only if $\left(\gamma_{m n}^{1 / k^{*}} \Delta_{21} T_{m, n}\right) \in \mathcal{L}_{k}$, where \mathcal{L}_{k} is the set of all double sequences $\left(x_{r s}\right)$ of complex numbers such that $\sum_{r, s=0}^{\infty}\left|x_{r s}\right|^{k}<\infty$, the case $k=1$ of which reduces to the space \mathcal{L}, studied by Zeltser [18]. The space $\mathcal{L}_{k}, 1 \leq k<\infty$, is a Banach space [1] according to the natural norm

$$
\|x\|_{\mathcal{L}_{k}}=\left(\sum_{r, s=0}^{\infty}\left|x_{r s}\right|^{k}\right)^{1 / k}
$$

and the space \mathcal{L}_{∞} of all bounded double sequences is also a Banach space with the norm $\|x\|_{\infty}=\sup _{r, s}\left|x_{r s}\right|$.
Let $x=\left(x_{r s}\right)$ be a double sequence. If for every $\varepsilon>0$ there exists a natural interger $n_{0}(\varepsilon)$ and real number l such that $\left|x_{r s}-l\right|<\varepsilon$ for all $r, s \geq n_{0}(\varepsilon)$, then, the double sequence $x=\left(x_{r s}\right)$ is said to be convergent in the Peringsheim's sense. Also, a double series $\sum_{r, s=0}^{\infty} x_{r s}$ is convergent if and only if the double sequence of partial sums of series is convergent.

Let U and V be double sequence spaces and $A=\left(a_{m n r s}\right)$ be a four dimensional infinite matrix of complex (or, real) numbers. Then, A defines a matrix transformation from U to V, written $A \in(U, V)$, if for every sequence $x=\left(x_{r s}\right) \in U$, the A-transform $A(x)=\left(A_{m n}(x)\right)$ of x is well defined and belongs to V, where

$$
A_{m n}(x)=\sum_{r, s=0}^{\infty} a_{m n r s} x_{r s}
$$

provided the double series in the right hand side converges for $m, n \geq 0$.
The transpose $A^{t}=\left(a_{r s m n}\right)$ of the matrix $A=\left(a_{m n r s}\right)$ is defined by

$$
A_{r s}^{t}(x)=\sum_{m, n=0}^{\infty} a_{m n r s} x_{m n} \text { for } m, n \geq 0
$$

The β-dual U^{β} of the space U is the set of all double sequences $\left(b_{r s}\right)$ such that $\sum_{r, s=0}^{\infty} b_{r s} x_{r s}$ converges for all $x \in U$.

An infinite four dimensional matrix $A=\left(a_{m n r s}\right)$ is called triangular if $a_{m n r s}=0$ for $r>m$ or $s>n$.
We require the following lemmas for the proof of our theorems.
Lemma 2.1. ([18]). If T is a linear mapping from a Banach space X into a Banach space Y, then T is continuous if and only if it is bounded, i.e., there exists a constant L such that

$$
\|T(x)\|_{Y} \leq L\|x\|_{X} \text { for all } x \in X
$$

Lemma 2.2. Let $1<k<\infty$ and $A=\left(a_{m n i j}\right)$ be an infinite four dimentional matrix. Define $W_{k}(A)$ and $w_{k}(A)$ by

$$
W_{k}(A)=\sum_{r, s=0}^{\infty}\left(\sum_{m, n=0}^{\infty}\left|a_{m n r s}\right|\right)^{k}
$$

$$
w_{k}(A)=\sup _{M X N} \sum_{r, s=0}^{\infty}\left|\sum_{(m, n) \in M X N} a_{m n r s}\right|^{k}
$$

where the supremum is taken through all finite subsets M and N of the natural numbers. Then, the following statements are equivalent:
(i) $W_{k^{*}}(A)<\infty$
(ii) $A \in\left(\mathcal{L}_{k}, \mathcal{L}\right)$
(iii) $A^{t} \in\left(\mathcal{L}_{\infty}, \mathcal{L}_{k^{*}}\right)$
(iv) $w_{k^{*}}(A)<\infty$.

Proof. To prove the lemma, it is enough to show that $(i) \Rightarrow(i i) \Rightarrow(i i i) \Rightarrow(i v) \Rightarrow(i)$.
$(i) \Rightarrow$ (ii). Assume (i) holds. Then, for all $x \in \mathcal{L}_{k}$, it follows from Hölder's inequality that

$$
\begin{aligned}
\|A(x)\|_{\mathcal{L}} & =\sum_{m, n=0}^{\infty}\left|\sum_{r_{r, s=0}}^{\infty} a_{m n r s} x_{r s}\right|^{\leq} \sum_{r, s=0}^{\infty} \sum_{m, n=0}^{\infty}\left|a_{m n r s} x_{r s}\right| \\
& \left.\leq\left\{\sum_{r, s=0}^{\infty}\left(\sum_{m, n=0}^{\infty} \mid a_{m n r s}\right)^{k^{k}}\right)^{1 / k^{k}}\right\}^{\|x\|_{\mathcal{L}_{k}}} \\
& \leq\left(W_{k^{*}}(A)\right)^{1 / k^{*}}\|x\|_{\mathcal{L}_{k}}<\infty,
\end{aligned}
$$

which gives (ii).
(ii) \Rightarrow (iii). Suppose $A \in\left(\mathcal{L}_{k}, \mathcal{L}\right)$. Then, since \mathcal{L}_{k} is a Banach space for $k \geq 1$, by Lemma 2.1, there exists a constant L such that

$$
\begin{equation*}
\|A(x)\|_{\mathcal{L}}=\sum_{m, n=0}^{\infty}\left|\sum_{r, s=0}^{\infty} a_{m n r s} x_{r s}\right| \leq L\|x\|_{\mathcal{L}_{k}} \tag{12}
\end{equation*}
$$

for all $x \in \mathcal{L}_{k}$. Also, it is observed by putting $x_{r s}$ sgna $a_{m r s}$ instead of $x_{r s}$ that

$$
\sum_{m, n=0}^{\infty} \sum_{r, s=0}^{\infty}\left|a_{m n r s} x_{r s}\right| \leq L\|x\|_{\mathcal{L}_{k}}
$$

Now, let $u \in \mathcal{L}_{\infty}$ be given. Then, by (12),

$$
\begin{align*}
\left|\sum_{m, n=0}^{\infty} \sum_{r, s=0}^{\infty} u_{m n} a_{m n r s} x_{r s}\right| & \leq\|u\|_{\mathcal{L}_{\infty}} \sum_{m, n=0}^{\infty} \sum_{r, s=0}^{\infty}\left|a_{m n r s} x_{r s}\right| \tag{13}\\
& \leq L\|u\|_{\mathcal{L}_{\infty}}\|x\|_{\mathcal{L}_{k}}
\end{align*}
$$

In (13), taking $x_{r s}=1$ for $(r, s)=(i, j)$, and zero otherwise, it is easily seen that

$$
\left|\sum_{m, n=0}^{\infty} a_{m n r s} u_{m n}\right| \leq \sum_{m, n=0}^{\infty}\left|a_{m n r s} u_{m n}\right| \leq L\|u\|_{\mathcal{L}_{\infty}}
$$

which gives that $A^{t}(u)$ is defined for all $r, s \geq 0$, where the double sequence $A^{t}(u)=\left(A_{r s}^{t}(u)\right)$ is given by

$$
\begin{equation*}
A_{r s}^{t}(u)=\sum_{m, n=0}^{\infty} a_{m n r s} u_{m n}: m, n \geq 0 \tag{14}
\end{equation*}
$$

Again, it follows by considering (13) that

$$
\begin{equation*}
\left|\sum_{r, s=0}^{\infty} A_{r s}^{t}(u) x_{r s}\right| \leq L\|u\|_{\mathcal{L} \infty}\|x\|_{\mathcal{L}_{k}} \tag{15}
\end{equation*}
$$

which implies that the series in the left side hand of (14) converges. Therefore, since the dual of space \mathcal{L}_{k} is the space $\mathcal{L}_{k^{*}}$ (see [1]), we obtain $A^{t}(u) \in \mathcal{L}_{k^{*}}$, i.e., $A^{t} \in\left(\mathcal{L}_{\infty}, \mathcal{L}_{k^{*}}\right)$.
(iii) $\Rightarrow($ iv $)$. If $A^{t} \in\left(\mathcal{L}_{\infty}, \mathcal{L}_{k^{*}}\right)$, then, by Lemma 2.1, there exists a constant K such that $\left\|A^{t}(x)\right\|_{\mathcal{L}_{k^{*}}} \leq K\|x\|_{\mathcal{L}_{\infty}}$ for all $x \in \mathcal{L}_{\infty}$,i.e.,

$$
\begin{equation*}
\left(\sum_{r, s=0}^{\infty}\left|\sum_{m, n=0}^{\infty} a_{m n r s} x_{m n}\right|^{k^{*}}\right)^{1 / k^{*}} \leq K\|x\|_{\mathcal{L}_{\infty}} \tag{16}
\end{equation*}
$$

Let M and N be any finite subsets of all nature numbers. Take a sequence $x=\left(x_{m n}\right)$ as $x_{m n}=1$ for $(r, s) \in M X N$, and zero otherwise. Then, (16) is reduced to.

$$
\left(\sum_{r, s=0}^{\infty}\left|\sum_{(m, n) \in M X N} a_{m n r s}\right|^{k^{*}}\right)^{1 / k^{*}} \leq K
$$

which proves $w_{k^{*}}(A)<\infty$.
$(i i i) \Rightarrow(i v)$. Suppose (iii) is satisfied and $a_{m n r s}$ are real numbers. Then, for every finite subsets M and N of nature numbers,

$$
\sum_{r, s=0}^{\infty}\left|\sum_{(m, n) \in M X N} a_{m n r s}\right|^{k^{*}} \leq w_{k^{*}}(A)
$$

Let $H^{+}=\left\{(m, n) \in M X N: a_{m n r s} \geq 0\right\}$ and $H^{-}=\left\{(m, n) \in M X N: a_{m n r s}<0\right\}$. Then, by considering the inequality $|a+b|^{k^{*}} \leq 2^{k^{*}}\left(|a|^{k^{*}}+|b|^{k^{*}}\right)$, where a and b are complex numbers, we have

$$
\begin{aligned}
W_{k^{*}}(A) & =\sum_{r, s=0}^{\infty}\left(\sum_{m, n=0}^{\infty} \mid a_{m n r s}\right)^{k^{*}} \\
& =\sum_{r, s=0}^{\infty}\left\{\sum_{(m, n) \in H^{+}}^{\infty} a_{m n r s}+\sum_{(m, n) \in H^{-}}^{\infty}-a_{m n r s}\right\}^{k^{*}} \\
& \leq 2^{k^{k}} \sum_{r, s=0}^{\infty}\left\{\left(\sum_{(m, n) \in H^{+}}^{\infty} a_{m n r s}\right)^{k^{*}}+\left(\sum_{(m, n) \in H^{-}}^{\infty}-a_{m n r s}\right)^{k^{*}}\right\} \\
& \leq 2^{k^{k+1} w_{k}(A) .}
\end{aligned}
$$

If $a_{m n r s}$ is complex number for $m, n, r, s \geq 0$, it is easily seen that $W_{k^{*}}(A) \leq 2^{2 k^{*}+3} w_{k}(A)<\infty$, which implies (iv).

This step ends the proof.

3. Main Results

In this section we prove the following theorems.

Theorem 3.1. Let $\left(p_{n}\right),\left(q_{n}\right),\left(p_{n}^{\prime}\right)$ and $\left(q_{n}^{\prime}\right)$ be sequences of positive numbers satisfying (1). Further, let $\gamma=\left(\gamma_{r s}\right)$ be a double sequence of positive numbers and $A=\left(a_{m n r s}\right)$ be a four dimensional triangle matrix and define the matrix B by

Then, $A \in\left(\left|\bar{N}_{p q}\right|, \pi\left|\bar{N}_{p^{\prime} q^{\prime}}^{\gamma}\right| k \mid, 1 \leq k<\infty\right.$, if and only if

$$
\begin{align*}
& \sum_{m, n=r, s}^{\infty}\left|\mu_{m n}^{\prime} b_{m n, r+1, s+1}\right|^{k}=O(1) \tag{18}\\
& \sum_{m, n=r, s}^{\infty}\left|\mu_{m n}^{\prime} \Delta_{2} b_{m n, r+1, s+1}\right|^{k}=O\left\{\left(\frac{q_{s}}{Q_{s}}\right)^{k}\right\} \tag{19}\\
& \sum_{m, n=r, s}^{\infty}\left|\mu_{m n}^{\prime} \Delta_{1} b_{m n, r+1, s+1}\right|^{k}=O\left\{\left(\frac{p_{r}}{P_{r}}\right)^{k}\right\} \tag{20}\\
& \sum_{m=r, n=s}^{\infty}\left|\mu_{m n}^{\prime} \Delta_{12} b_{m n, r+1, s}\right|^{k}=O\left\{\left(\frac{P_{r} Q_{s}}{p_{r} q_{s}}\right)^{k}\right\} \tag{21}
\end{align*}
$$

where $\mu_{m n}^{\prime}$ is defined by (7).
Proof. Necessity. Let $A \in\left(\left|\bar{N}_{p, q}\right|, \pi\left|\bar{N}_{p^{\prime} q^{\prime}}^{\prime}\right| k\right)$. Then, since $\left|\bar{N}_{p, q}\right|$ and $\pi\left|\bar{N}_{p^{\prime} q^{\prime}}\right|_{k}$ are Banach spaces, it is seen from Lemma 2.1 that $A:\left|\bar{N}_{p, q}\right| \rightarrow \pi\left|\bar{N}_{p^{\prime} q^{\prime}}^{\gamma}\right|_{k k}$ defined by

$$
\begin{equation*}
A_{m n}(x)=\sum_{r, s=0}^{m, n} a_{m n r s} x_{r s} \tag{22}
\end{equation*}
$$

is a bounded linear operator. So, there exists a constant M such that

$$
\begin{equation*}
\|A(x)\|_{\pi\left|\bar{N}_{p^{\prime} q^{\prime}}^{\prime}\right|_{k}} \leq M\|x\|_{\left|\bar{N}_{p q}\right|} \tag{23}
\end{equation*}
$$

for all $x=\left(x_{r s}\right) \in\left|\bar{N}_{p, q}\right|$. Put $t_{m n}=\Delta_{21} T_{m n}$ for $m, n \geq 0$, where $\Delta_{21} T_{m n}$ is defined by (9). Then, $t=\left(t_{m n}\right) \in \mathcal{L}$. Also, $A(x)=\left(A_{r s}(x)\right) \in \pi\left|\bar{N}_{p^{\prime} q^{\prime}}^{\gamma}\right|_{k}$ if and only if $L^{\prime}(x)=\left(L_{m n}^{\prime}(x) \in \mathcal{L}_{k}\right.$, i.e.,

$$
\begin{equation*}
\|A(x)\|_{\pi\left|\bar{N}_{p^{\prime} q^{\prime}}^{\prime}\right|_{k}}=\left\|L^{\prime}(x)\right\|_{\mathcal{L}_{k}}=\left(\sum_{m, n=1}^{\infty}\left|L_{m n}^{\prime}(x)\right|^{k}\right)^{1 / k}<\infty \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{m n}^{\prime}(x)=\mu_{m n}^{\prime} \sum_{r, s=1}^{m, n} P_{r-1}^{\prime} Q_{s-1}^{\prime} A_{r s}(x) \tag{25}
\end{equation*}
$$

Choose a sequence $x=\left(x_{i j}\right) \in\left|\bar{N}_{p, q}\right|$ such that $x_{r s}=1, x_{i j}=0$ for $i \neq r, j \neq s$. Then, using (9), we have, for $m, n \geq 1$,

$$
t_{m n}=\left\{\begin{array}{c}
0, \quad m<r, n<s \tag{26}\\
\frac{p_{m} q_{n} P_{r-1} Q_{s-1}}{P_{m} P_{m-1} Q_{n} Q_{n-1}}, m \geq r, n \geq s .
\end{array},\|x\|_{\left|\bar{N}_{p, q}\right|}=\|t\|_{\mathcal{L}}=1\right.
$$

Also, it is easily seen that

$$
A_{m n}(x)=\left\{\begin{array}{c}
0, \quad m<r, n<s \\
a_{m n r s}, m \geq r, n \geq s
\end{array}\right.
$$

which gives, by (24),

$$
L_{m n}^{\prime}(x)=\left\{\begin{array}{cc}
0, & m<r, n<s \\
\mu_{m n}^{\prime} b_{m n r s}, & m \geq r, n \geq s .
\end{array}\right.
$$

and so

$$
\begin{equation*}
\|A(x)\|_{\left|\bar{N}_{p^{\prime} q^{\prime}}\right|_{k}}=\left(\sum_{m, n=r, s}^{\infty}\left|\mu_{m n}^{\prime} b_{m n r s}\right|^{k}\right)^{1 / k} . \tag{27}
\end{equation*}
$$

Now, it follows by applying (26) and (27) to the inequality (23) that, for $r, s \geq 1$,

$$
\sum_{m, n=r, s}^{\infty}\left|\mu_{m n}^{\prime} b_{m n v u}\right|^{k} \leq M^{k}
$$

which is equivalent to (18).
Now take $x_{r s}=1, x_{r, s+1}=-1$, and zero, otherwise. Then, by (10), we get

$$
t_{m n}=\left\{\begin{array}{cc}
0, & m<r, n<s \tag{28}\\
\frac{p_{m} q_{s} P_{r-1}}{P_{m} P_{m-1} Q_{s}}, \quad m \geq r, n=s \\
-\frac{P_{m} q_{n} P_{r-1} q_{s}}{P_{m} P_{m-1} Q_{n} Q_{n-1}}, m \geq r, n>s
\end{array}, \quad\|x\|_{\left|\bar{N}_{p q}\right|}=\|t\|_{\mathcal{L}}=\frac{2 q_{s}}{Q_{s}} .\right.
$$

Further, we obtain

$$
A_{m n}(x)=\sum_{i, j=r, s}^{m, n} a_{m n i j} x_{i j}=\left\{\begin{array}{cc}
0, & n<s, m<r \\
-\Delta_{2} a_{m n r, s+1}, n \geq s, m \geq r
\end{array}\right.
$$

which implies, by (25),

$$
L_{m n}^{\prime}(x)=\left\{\begin{array}{cc}
0, & m<r, n<s \\
-\mu_{m n}^{\prime} \Delta_{2} b_{m n r, s+1}, n \geq s, m \geq r
\end{array}\right.
$$

and

$$
\begin{equation*}
\|A(x)\|_{\left|\bar{N}_{p^{\prime} q^{\prime}}\right|_{k}}=\left(\sum_{m, n=r, s}^{\infty}\left|\mu_{m n}^{\prime} \Delta_{2} b_{m n r, s+1}\right|^{k}\right)^{1 / k} . \tag{29}
\end{equation*}
$$

So, using (28) and (29), we have from (23) that (19) holds. Also, by taking $x_{r s}=1, x_{r+1, s}=-1$, and zero, otherwise, then, similarly, (20) holds.

Finally, put $x_{r s}=1, x_{r, s+1}=-1, x_{r+1, s}=-1, x_{r+1, s+1}=1$, and zero, otherwise. Then,
and

$$
A_{m n}(x)=\left\{\begin{array}{c}
\Delta_{21} a_{m n, r+1, s+1}, r \leq m, s \leq n \\
0, \quad r>m, s>n
\end{array}\right.
$$

This verifies

$$
L_{m n}^{\prime}(x)=\left\{\begin{array}{cc}
\mu_{m n}^{\prime} \Delta_{12} b_{m n r+1 s+1}, r \leq m, s \leq n \\
0, & r>m, s>n
\end{array}\right.
$$

and

$$
\begin{equation*}
\|x\|_{\left|\bar{N}_{p^{\prime} q^{\prime}}\right|_{k}}=\left(\sum_{m, n=r, s}^{\infty}\left|\mu_{m n}^{\prime} \Delta_{12} b_{m n r+1 s+1}\right|^{k}\right)^{1 / k} \tag{31}
\end{equation*}
$$

Therefore, considering (30) and (31), it follows from (23) that (21) holds.
Sufficiency. Given $x=\left(x_{r s}\right) \in\left|\bar{N}_{p, q}\right|$. Then, $t=\left(t_{m n}\right) \in \mathcal{L}$, where $t_{m n}=\Delta_{21} T_{m n}$ for $m, n \geq 0$, as above. Now, we should show that $A(x)=\left(A_{r s}(x)\right) \in \pi\left|\bar{N}_{p^{\prime} q^{\prime}}\right|_{k}$, i.e.,

$$
\sum_{m, n=1}^{\infty}\left|L_{m n}^{\prime}(x)\right|^{k}<\infty
$$

where $L^{\prime}(x)=\left(L_{m n}^{\prime}(x)\right)$ is defined by (25). To achieve this, by solving (10) for $x_{m n}$, we obtain, for $m, n \geq 1$,

$$
\begin{align*}
x_{m n}= & \frac{P_{m} Q_{n}}{p_{m} q_{n}} t_{m n}-\frac{P_{m-2} Q_{n}}{p_{m-1} q_{n}} t_{m-1, n} \tag{32}\\
& -\frac{Q_{n-2} P_{m}}{q_{n-1} p_{m}} t_{m, n-1}+\frac{P_{m-2} Q_{n-2}}{p_{m-1} q_{n-1}} t_{m-1, n-1} .
\end{align*}
$$

Hence, since B is a triangular matrix, a few calculations reveal that

$$
\begin{aligned}
L_{m n}^{\prime}(x) & =\mu_{m n}^{\prime} \sum_{i, j=1}^{m, n} P_{i-1}^{\prime} Q_{j-1}^{\prime} A_{i j}(x) \\
& =\mu_{m n}^{\prime} \sum_{r, s=1}^{m, n} x_{r s} \sum_{i, j=r, s}^{m, n} P_{i-1}^{\prime} Q_{j-1}^{\prime} a_{i j r s}=\mu_{m n}^{\prime} \sum_{r, s=1}^{m, n} b_{m n r s} x_{r s}
\end{aligned}
$$

$$
\begin{aligned}
= & \mu_{m n}^{\prime} \sum_{r, s=1}^{m, n} b_{m n r s}\left(\frac{P_{r} Q_{s}}{p_{r} q_{s}} t_{r s}-\frac{P_{r-2} Q_{s}}{p_{r-1} q_{s}} t_{r-1, s}\right. \\
& \left.-\frac{P_{r} Q_{s-2}}{p_{r} q_{s-1}} t_{r, s-1}+\frac{P_{r-2} Q_{s-2}}{p_{r-1} q_{s-1}} t_{r-1, s-1}\right) \\
= & \mu_{m n}^{\prime}\left\{\sum_{r, s=1}^{m, n} b_{m n r s} \frac{P_{r} Q_{s}}{p_{r} q_{s}} t_{r s}-\sum_{r, s=1}^{m-1, n} b_{m n, r+1, s} \frac{P_{r-1} Q_{s}}{p_{r} q_{s}} t_{r s}\right. \\
& \left.-\sum_{r, s=1}^{m, n-1} b_{m n, r, s+1} \frac{P_{r} Q_{s-1}}{p_{r} q_{s}} t_{r s}+\sum_{r, s=1}^{m-1, n-1} b_{m n, r+1, s+1} \frac{P_{r-1} Q_{s-1}}{p_{r} q_{s}} t_{r s}\right\} \\
= & \mu_{m n}^{\prime} \sum_{r, s=1}^{m, n}\left(b_{m n r s} \frac{P_{r} Q_{s}}{p_{r} q_{s}}-b_{m n, r+1, s} \frac{P_{r-1} Q_{s}}{p_{r} q_{s}}-\right. \\
& \left.b_{m n, r, s+1} \frac{P_{r} Q_{s-1}}{p_{r} q_{s}}+b_{m n, r+1, s+1} \frac{P_{r-1} Q_{s-1}}{p_{r} q_{s}}\right) t_{r s} \\
= & \mu_{m n}^{\prime} \sum_{r, s=1}^{m, n} c_{m n r s} t_{r s},
\end{aligned}
$$

where

$$
\begin{align*}
c_{m n r s}= & \left(b_{m n r s} \frac{P_{r}}{p_{r}}-b_{m n, r+1, s} \frac{P_{r-1}}{p_{r}}\right) \frac{Q_{s}}{q_{s}} \\
& -\left(b_{m n, r, s+1} \frac{P_{r}}{p_{r}}-b_{m n, r+1, s+1} \frac{P_{r-1}}{p_{r}}\right) \frac{Q_{s-1}}{q_{s}} \\
= & \frac{P_{r} Q_{s}}{p_{r} q_{s}} \Delta_{12} b_{m n, r+1, s+1}-\frac{P_{r}}{p_{r}} \Delta_{1} b_{m n, r+1, s+1} \tag{33}\\
& -\frac{Q_{s}}{q_{s}} \Delta_{2} b_{m n, r+1, s+1}+b_{m n, r+1, s+1} .
\end{align*}
$$

Also, since

$$
\begin{aligned}
\left|c_{m n r s}\right|^{k} \leq & 3^{k}\left\{\left|\frac{P_{r} Q_{s}}{p_{r} q_{s}} \Delta_{12} b_{m n, r+1, s+1}\right|^{k}+\left|\frac{P_{r}}{p_{r}} \Delta_{1} b_{m n, r+1, s+1}\right|^{k}\right. \\
& \left.+\left|\frac{Q_{s}}{q_{s}} \Delta_{2} b_{m n, r+1, s+1}\right|^{k}+\left|b_{m n, r+1, s+1}\right|^{k}\right\}
\end{aligned}
$$

we get by Minkowski's inequality and the hypohese that

$$
\begin{aligned}
\left(\sum_{m, n=1}^{\infty}\left|L_{m n}^{\prime}(x)\right|^{k}\right)^{1 / k} & \leq\left\{\sum_{m, n=1}^{\infty}\left(\sum_{r, s=1}^{m, n}\left|\mu_{m n}^{\prime} c_{m n r s} t_{r s}\right|\right)^{k}\right\}^{1 / k} \\
& \leq \sum_{r, s=1}^{\infty, \infty}\left|t_{r s}\right|\left(\sum_{m, n=r, s}^{\infty, \infty}\left|\mu_{m n}^{\prime} c_{m n r s}\right|^{k}\right)^{1 / k} \\
& =O(1) \sum_{r, s=1}^{\infty, \infty}\left|t_{r s}\right|<\infty
\end{aligned}
$$

which completes the proof of the sufficiency.

Now, it is obvious that $A(x)=\left(A_{r s}(x)\right) \in\left|\bar{N}_{p^{\prime} q^{\prime}}^{\gamma}\right|_{k}$, i.e.,

$$
\begin{equation*}
\sum_{m, n=0}^{\infty}\left|L_{m n}^{\prime}(x)\right|^{k}=\sum_{m=0}^{\infty}\left|L_{m 0}^{\prime}(x)\right|^{k}+\sum_{n=1}^{\infty}\left|L_{0 n}^{\prime}(x)\right|^{k}+\sum_{m, n=1}^{\infty}\left|L_{m n}^{\prime}(x)\right|^{k}<\infty \tag{34}
\end{equation*}
$$

if and only if

$$
\sum_{m=0}^{\infty}\left|L_{m 0}^{\prime}(x)\right|^{k}<\infty, \sum_{n=1}^{\infty}\left|L_{0 n}^{\prime}(x)\right|^{k}<\infty, \sum_{m, n=1}^{\infty, \infty}\left|L_{m n}^{\prime}(x)\right|^{k}<\infty,
$$

where

$$
\begin{aligned}
L_{m 0}^{\prime}(x) & =\mu_{m 0}^{\prime} \sum_{r=1}^{m} P_{r-1}^{\prime} A_{r 0}(x) \\
L_{0 n}^{\prime}(x) & =\mu_{0 n}^{\prime} \sum_{s=1}^{n} Q_{s-1}^{\prime} A_{0 s}(x) \\
L_{m n}^{\prime}(x) & =\mu_{m n}^{\prime} \sum_{r, s=1}^{m, n} P_{r-1}^{\prime} Q_{s-1}^{\prime} A_{r s}(x) .
\end{aligned}
$$

So, if we define the matrices A_{1}, A_{2} and A_{3} by

$$
\begin{equation*}
A_{1}=\left(a_{m 0 r 0}\right), A_{2}=\left(a_{0 n 0 s}\right), A_{3}=\left(a_{m n r s}\right) \text { for } m, n \geq 1 \tag{35}
\end{equation*}
$$

then, $A \in\left(\left|\bar{N}_{p, q}\right|,\left|\bar{N}_{p^{\prime} q^{\prime}}^{\gamma}\right|_{k} \mid\right)$ if and only if $A_{1} \in\left(\left|\bar{N}_{p}\right|,\left|\bar{N}_{p^{\prime}}^{\gamma_{1}}\right|_{k}\right), A_{2} \in\left(\left|\bar{N}_{q}\right|,\left|\bar{N}_{q^{\prime}}^{\gamma_{2}}\right|_{k}\right)$ and $A_{3} \in\left(\left|\bar{N}_{p, q}\right|, \pi\left|\bar{N}_{p^{\prime} q^{\prime}}^{\gamma}\right|_{k} \mid\right)$, where $A=\left(a_{m n r s}\right)$ is a triangle matrix for $m, n \geq 0, \gamma_{1}=\left(\gamma_{m 0}\right)$ and $\gamma_{2}=\left(\gamma_{0 n}\right)$.

By identifying $A_{1}=\left(a_{m 0 r 0}\right) \equiv\left(a_{m r}\right), A_{2}=\left(a_{0 n 0 s}\right) \equiv\left(a_{n s}\right)$, the main theorem is immediately deduced by Theorem 1.1 and Theorem 2.1 as follows.

Theorem 3.2. Let the sequences $\left(p_{n}\right),\left(q_{n}\right),\left(p_{n}^{\prime}\right),\left(q_{n}^{\prime}\right),\left(\gamma_{m n}\right)$, and the matrices A, B be as in Theorem 3.1. Then, $A \in\left(\left|\bar{N}_{p, q}\right|,\left|\bar{N}_{p^{\prime} q^{\prime}}^{\gamma}\right|_{k}\right), k \geq 1$, if and only if conditions (18) - (21) and the following conditions are satisfied:

$$
\begin{aligned}
& \frac{P_{r} p_{r}^{\prime}}{p_{r} P_{r}^{\prime}} \gamma_{r 0}^{1 / k^{*}} a_{r 0 r 0}=O(1) \\
& \sum_{n=r+1}^{\infty}\left|\mu_{n 0}^{\prime} \sum_{v=r}^{n} P_{v-1}^{\prime} \Delta_{1} a_{v, 0, r+1,0}\right|^{k}=O\left\{\left(\frac{p_{r}}{P_{r}}\right)^{k}\right\} \\
& \sum_{n=r+1}^{\infty}\left|\mu_{n 0}^{\prime} \sum_{v=r+1}^{n} P_{v-1}^{\prime} a_{v, 0, r+1,0}\right|^{k}=O(1) \\
& \frac{Q_{v} q_{v}^{\prime}}{q_{v} Q_{v}^{\prime}} \gamma_{0 v}^{1 / k^{*}} a_{0 v 0 v}=O(1) \\
& \left.\sum_{n=v+1}^{\infty} \mid \mu_{0 n}^{\prime} \sum_{r=v}^{n} Q_{r-1}^{\prime} \Delta_{2} a_{0, r, 0, v+1}\right)\left.\right|^{k}=O\left\{\left(\frac{q_{v}}{Q_{v}}\right)^{k}\right\} \\
& \sum_{n=v+1}^{\infty}\left|\mu_{0 n}^{\prime} \sum_{r=v+1}^{n} Q_{r-1}^{\prime} a_{0, r, 0, v+1}\right|^{k}=O(1)
\end{aligned}
$$

where $\mu_{n 0}^{\prime}$ and $\mu_{0 n}^{\prime}$ are defined by (7). Now we qualify the converse of the matrix class in Theorem 3.2, which, althout is similar to the previous one, has a very different character.

Theorem 3.3. Let $\left(p_{n}\right),\left(q_{n}\right),\left(p_{n}^{\prime}\right),\left(q_{n}^{\prime}\right)$ and $\left(\gamma_{m n}\right)$ be as in Theorem 3.1. Further, let $A=\left(a_{m n r s}\right)$ be a four dimensional triangle matrix and define the matrix B by (17) for $m, n \geq 1$, and

$$
b_{m n r s}= \begin{cases}\sum_{j=s}^{n} Q_{j-1}^{\prime} a_{0 j 0 s}, & 1 \leq s \leq n, \\ m=0 \\ \sum_{j=r}^{m} P_{j-1}^{\prime} a_{j 0 r 0}, & 1 \leq r \leq m,\end{cases}
$$

Then, $A \in\left(\left|\bar{N}_{p q}\right|_{k},\left|\bar{N}_{p^{\prime} q^{\prime}}^{\gamma}\right|\right), 1<k<\infty$, if and only if

$$
\begin{align*}
& \sum_{s=1}^{\infty} \frac{1}{\gamma_{0 s}}\left(\sum_{n=s}^{\infty} \mu_{0 n}^{\prime}\left|\frac{Q_{s}}{q_{s}} \Delta_{2} b_{0 n 0, s+1}-b_{0 n 0, s+1}\right|\right)^{k^{*}}<\infty \tag{36}\\
& \sum_{r=1}^{\infty} \frac{1}{\gamma_{r 0}}\left(\sum_{m=r}^{\infty} \mu_{m 0}^{\prime}\left|\frac{P_{r}}{p_{r}} \Delta_{1} b_{m 0, r+1,0}-b_{m 0, r+1,0}\right|\right)^{k^{*}}<\infty \tag{37}\\
& \sum_{r, s=1}^{\infty} \frac{1}{\gamma_{r s}}\left(\sum_{m, n=r, s}^{\infty}\left|\mu_{m n}^{\prime} c_{m n r s}\right|\right)^{k^{*}}<\infty \tag{38}
\end{align*}
$$

where $\mu_{m n}^{\prime}$ and $c_{m n r s}$ are given by (7) with $k=1$ and (21), respectively.
Proof. Assume that $x=\left(x_{r s}\right) \in\left|\bar{N}_{p, q}\right|_{k}$ and $A(x)$ is A-transform sequence of x. Let $t_{m 0}=\Delta_{1} T_{m 0}, t_{0 n}=$ $\Delta_{2} T_{0 n}$ and $t_{m n}=\Delta_{21} T_{m n}$ for $m, n \geq 1$, where $\Delta_{1} T_{m 0}, \Delta_{2} T_{0 n}$ and $\Delta_{21} T_{m n}$ are defined by (10). Further, put $u_{m 0}=\gamma_{m 0}^{1 / k^{*}} t_{m 0}, u_{0 n}=\gamma_{0 n}^{1 / k^{*}} t_{0 n}$ and $u_{m n}=\gamma_{m n}^{1 / k^{*}} t_{m n}$. Then, $u=\left(u_{m n}\right) \in \mathcal{L}_{k}$, or, equivalently, $\left(u_{m 0}\right),\left(u_{0 n}\right) \in \ell_{k}$ and $\left(u_{m n}\right) \in \mathcal{L}_{k}$.Also, $A(x) \in\left|\bar{N}_{p^{\prime} q^{\prime}}\right|$, iff $L^{\prime}(x)=\left(L_{m n}^{\prime}(x)\right) \in \mathcal{L}$, or, equivalently, as in (34), $\left(L_{0 n}^{\prime}(x),\left(L_{m 0}^{\prime}(x)\right) \in \ell\right.$, and $\left(L_{m n}^{\prime}(x)\right) \in \mathcal{L}$, where

$$
\begin{aligned}
L_{0 n}^{\prime}(x) & =\mu_{0 n}^{\prime} \sum_{s=1}^{n} Q_{s-1}^{\prime} A_{0 s}(x) \\
L_{m 0}^{\prime}(x) & =\mu_{m 0}^{\prime} \sum_{r=1}^{m} P_{r-1}^{\prime} A_{r 0}(x) \\
L_{m n}^{\prime}(x) & =\mu_{m n}^{\prime} \sum_{r, s=1}^{m, n} Q_{r-1}^{\prime} Q_{s-1}^{\prime} A_{r s}(x)
\end{aligned}
$$

It follows by solving (10) for $x_{m 0}$ and $x_{0 n}$ that

$$
\begin{equation*}
x_{m 0}=\frac{P_{m}}{p_{m}} t_{m 0}-\frac{P_{m-2}}{p_{m-1}} t_{m-1,0}, x_{0 n}=\frac{Q_{n}}{q_{n}} t_{0 n}-\frac{Q_{n-2}}{q_{n-1}} t_{0, n-1} \tag{39}
\end{equation*}
$$

Since A and B are triangular matrix and $P_{-1}=Q_{-1}=0$, it is easily written from (39) and (32) that, for $m, n \geq 1$,

$$
\begin{aligned}
L_{0 n}^{\prime}(x) & =\mu_{0 n}^{\prime} \sum_{s=1}^{n} Q_{s-1}^{\prime} A_{0 s}(x)=\mu_{0 n}^{\prime} \sum_{j=0}^{n} b_{0 n 0 j} x_{0 j} \\
& =\mu_{0 n}^{\prime} \sum_{j=0}^{n}\left(\frac{Q_{j}}{q_{j}} \Delta_{2} b_{0 n 0, j+1}-b_{0 n 0, j+1}\right) \gamma_{0 j}^{-1 / k^{*}} u_{0 j}
\end{aligned}
$$

$$
\begin{aligned}
L_{m 0}^{\prime}(x) & =\mu_{m 0}^{\prime} \sum_{r=1}^{m} P_{r-1}^{\prime} A_{0 r}(x)=\mu_{m 0}^{\prime} \sum_{j=0}^{m} b_{m 0 j 0} x_{j 0} \\
& =\mu_{m 0}^{\prime} \sum_{j=0}^{m}\left(\frac{P_{j}}{p_{j}} \Delta_{1} b_{m 0, j+1,0}-b_{m 0, j+1,0}\right) \gamma_{j 0}^{-1 / k^{*}} u_{j 0} \\
L_{m n}^{\prime}(x) & =\mu_{m n}^{\prime} \sum_{i, j=1}^{m, n} P_{i-1}^{\prime} Q_{j-1}^{\prime} A_{i j}(x)=\mu_{m n}^{\prime} \sum_{i, j=1}^{m, n} P_{i-1}^{\prime} Q_{j-1}^{\prime} \sum_{r, s=1}^{i, j} a_{i j r s} x_{r s} \\
& =\mu_{m n}^{\prime} \sum_{r, s=1}^{m, n} x_{r s} \sum_{i, j=r, s}^{m, n} P_{i-1}^{\prime} Q_{j-1}^{\prime} a_{i j r s}=\mu_{m n}^{\prime} \sum_{r, s=1}^{m, n} b_{m n r s} x_{r s} \\
& =\mu_{m n}^{\prime} \sum_{r, s=1}^{m, n} b_{m n r s}\left(\frac{P_{r} Q_{s}}{p_{r} q_{s}} t_{r s}-\frac{P_{r-2} Q_{s}}{p_{r-1} q_{s}} t_{r-1, s}-\frac{P_{r} Q_{s-2}}{p_{r} q_{s-1}} t_{r, s-1}+\frac{P_{r-2} Q_{s-2}}{p_{r-1} q_{s-1}} t_{r-1, s-1}\right) \\
& =\mu_{m n}^{\prime} \sum_{r, s=1}^{m, n}\left(b_{m n r s} \frac{P_{r} Q_{s}}{p_{r} q_{s}}-b_{m n, r+1, s} \frac{P_{r-1} Q_{s}}{p_{r} q_{s}}-b_{m n, r, s+1} \frac{P_{r} Q_{s-1}}{p_{r} q_{s}}+b_{m n, r+1, s+1} \frac{P_{r-1} Q_{s-1}}{p_{r} q_{s}}\right) \frac{u_{r s}}{\gamma_{r s}^{1 / k^{*}}} \\
& =\mu_{m n}^{\prime} \sum_{r, s=1}^{m, n}\left(\frac{P_{r} Q_{s}}{p_{r} q_{s}} \Delta_{12} b_{m n, r+1, s+1}-\frac{P_{r}}{p_{r}} \Delta_{1} b_{m n, r+1, s+1}-\frac{Q_{s}}{q_{s}} \Delta_{2} b_{m n, r+1, s+1}+b_{m n, r+1, s+1}\right) \frac{u_{r s}}{\gamma_{r s}^{1 / k^{*}}} \\
& =\mu_{m n}^{\prime} \sum_{r, s=1}^{m, n} c_{m n r s} u_{r s} .
\end{aligned}
$$

Hence, it can be expressed that

$$
L_{m n}^{\prime}(u)=\sum_{r, s=0}^{m, n} d_{m n r s} u_{r s}
$$

where

$$
d_{m n r s}=\left\{\begin{array}{cc}
\mu_{0 n}^{\prime}\left(\frac{Q_{s}}{q_{s}} \Delta_{2} b_{0 n 0, s+1}-b_{0 n 0, s+1}\right) \gamma_{0 s}^{-1 / k^{*}}, 0 \leq s \leq n, m=r=0 \\
\mu_{m 0}^{\prime}\left(\frac{P_{r}}{p_{r}} \Delta_{1} b_{m 0, r+1,0}-b_{m 0, r+1,0}\right) \gamma_{r 0}^{-1 / k^{*}}, 0 \leq r \leq m, n=s=0 \\
\mu_{m n}^{\prime} c_{m n r s} \gamma_{r s}^{-1 / k^{*}}, & 1 \leq r \leq m, 1 \leq s \leq n \\
0, & \text { otherwise. }
\end{array}\right.
$$

This gives that $A \in\left(\left|\bar{N}_{p, q}^{\gamma}\right|_{k},\left|\bar{N}_{p^{\prime} q^{\prime}}\right|\right)$ if and only if $D \in\left(\mathcal{L}_{k}, \mathcal{L}\right)$. Therefore, it follows from Lemma 2.2 that the conclusion of the theorem is valid if and only if $W_{k^{*}}(A)<\infty$, or, equivalently,

$$
\sum_{s=0}^{\infty}\left(\sum_{n=s}^{\infty}\left|d_{0 n 0 s}\right|\right)^{k^{*}}<\infty, \sum_{r=0}^{\infty}\left(\sum_{m=r}^{\infty}\left|d_{m 0 r 0}\right|\right)^{k^{*}}<\infty
$$

and

$$
\sum_{r, s=1,1}^{\infty}\left(\sum_{m, n=r, s}^{\infty}\left|d_{m n r s}\right|\right)^{k^{*}}<\infty
$$

which gives (36) , (37) and (38) .
This completes the proof.

References

[1] F. Başar, Y. Sever , The space \mathcal{L}_{q} double sequences, Math. J. Okayama Univ. 51 (2009), 149-157.
[2] H. Bor, Some equivalence theorems on absolute summability methods, Acta Math. Hungar. 149 (2016), 208-214.
[3] L.S. Bosanquet, Review on G. Sunouchi's paper , Notes on Fourier analysis, XVIII, Absolute summability of series with constant terms, Mathematical Reviews 11 (1950), 654.
[4] T.M. Flett, On an extension of absolute summability and theorems of Littlewood and Paley, Proc. London Math. Soc. 7 (1957), 113-141.
[5] C. Orhan, M.A. Sarıg̈ll, On absolute weighted mean summability, Rocky Mount. J. Math. 23 (1993), 1091-1097.
[6] B.E. Rhoades, Absolute comparison theorems for double weighted mean and double Cesàro means, Math. Slovaca 48 (1998), 285-301.
[7] B.E. Rhoades, On absolute normal double matrix summability methods, Glas. Mat. 38 (58) (2003), 57-73.
[8] M.A. Sarıgöl, On equivalence of absolute double weighted mean methods, Quaest. Math. 44 (2021), 755-764.
[9] M.A. Sarıgöl, Matrix transformations on fields of absolute weighted mean summability, Studia Sci. Math. Hungar. 48 (2011), 331-341.
[10] M.A. Sarıgöl, H. Bor, Characterization of absolute summability factors, J. Math. Anal. Appl. 195 (1995), 537-545.
[11] M.A. Sarıgöl, A note on summability, Studia Sci. Math. Hungar. 28 (1993), 395-400.
[12] M.A. Sarıgöl, On two absolute Riesz summability factors of infinite series, Proc. Amer. Math. Soc. 118 (1993), 485-488.
[13] M.A. Sarıgöl, On absolute weighted mean summability methods, Proc. Amer. Math. Soc. 115 (1992),157-160.
[14] M.A. Sarıgöl, Necessary and sufficient conditions for the equivalence of the summability methods $\left|\bar{N}, p_{n}\right|_{k}$ and $|C, 1|_{k}$, Indian J. Pure Appl. Math. 22 (1991), 483-489.
[15] W.T. Sulaiman, On summability factors of infinite series, Proc. Amer. Math. Soc. 115 (1992), 313-317.
[16] G. Sunouchi, Notes on Fourier analysis, XVIII, Absolute summability of series with constant terms, Tohoku Math. J. 2 (1) (1949), 57-65.
[17] M. Zeltser, Investigation of double sequence spaces by soft and hard analitical methods, Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ. of Tartu, Faculty of Mathematics and Computer Science, Tartu, 2001.
[18] A.C. Zaanen, Linear Analysis, Amsterdam, 1953.

[^0]: 2020 Mathematics Subject Classification. Primary 40C05, 40D25, 40F05, 46B45.
 Keywords. Double series, absolute double weighted summability, four dimensional matrix, Banach spaces, Minkowski's inequality
 Received: 27 January 2022; Revised: 11 April 2022; Accepted: 18 April 2022
 Communicated by Ivana Djolović
 Email address: msarigol@pau.edu.tr (Mehmet Ali Sarıgöl)

