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Four dimensional matrix mappings on double summable spaces

Mehmet Ali Sarıgöla
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Abstract. In a previous paper [9], some classes of triangular matrix transformations between the series
spaces summable by the absolute weighted summability methods were characterized. In the present paper,
we extend these classes to four dimensional matrices and double summability methods.

1. Introduction

Consider an infinite single series Σxv of complex or real numbers with partial sums sn and let σαn denote
the n-th term of the Cesàro mean of order α > −1 of the sequence (sn). The series Σxv is summable
|C, α|k , k ≥ 1, in Flett’s notation (see [4]), if

(
n1−1/k∆σαn

)
∈ ℓk, where ℓk is the set of absolutely k-summable

sequences. Further let
(
ϕn

)
be a sequence of positive numbers and

(
pn

)
be a sequences of positive numbers

satisfying

Pn = p0 + p1 + ... + pn →∞ as n→∞, P−1 = p−1 = 0. (1)

By Tn,we denote the n- th term of weighted mean
(
N, pn

)
of the sequence of (sn) , i.e.

Tn =

n∑
v=0

pvsv/Pn.

The series Σxv is said to be summable
∣∣∣N, pn, ϕn

∣∣∣
k , k ≥ 1, if (see [15])

(
ϕ1−1/k

n ∆Tn

)
∈ ℓk, which reduces to

the methods
∣∣∣N, pn

∣∣∣
k and

∣∣∣R, pn

∣∣∣
k for ϕn = Pn/pn and ϕn = n (see [2] and [12], respectively).

For k ≥ 1, the space
∣∣∣∣Nϕp ∣∣∣∣k , the set of all series summable by the method

∣∣∣N, pn, ϕn

∣∣∣
k , is a Banach space

(see [9], [14]) according to the norm

∥x∥∣∣∣∣Nϕp ∣∣∣∣
k

=

|x0|
k +

∞∑
n=1

ϕk−1
n

∣∣∣∣∣∣∣ pn

PnPn−1

n∑
v=1

Pv−1xv

∣∣∣∣∣∣∣
k

1/k

.
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Email address: msarigol@pau.edu.tr (Mehmet Ali Sarıgöl)



M. A. Sarıgöl / Filomat 37:4 (2023), 1277–1290 1278

Further, a series Σxv is summable
∣∣∣N, pn, ϕn

∣∣∣
k iff a sequence x = (xv) ∈

∣∣∣∣Nϕp ∣∣∣∣k , and the space
∣∣∣∣Nϕp ∣∣∣∣k is the same

as the spaces
∣∣∣Np

∣∣∣
k and

∣∣∣Rp

∣∣∣
k for ϕn = Pn/pn and γn = n, ( see [14] and [12], respectively).

We denote the set of all infinite triangular matrices which map a single sequence space X to another
sequence space Y by (X,Y) . The following characterizations of matrix classes are well known (see [9]),
which include some known corollaries and applications for particular matrices (see [3, 5, 10-14, 16]).

Throughout the paper k∗ will denote the conjugate of k, i.,e., 1/k + 1/k∗ = 1 for k > 1, 1/k∗ = 0 for k = 1.
Theorem 1.1. Let

(
pn

)
and

(
qn

)
be positive sequences satisfying (1) . Further, let A = (anv) be an infinite

triangular matrix and
(
ϕn

)
be a sequence of positive numbers. Then, A ∈

(∣∣∣Np

∣∣∣ , ∣∣∣∣Nϕq ∣∣∣∣k) , for the case 1 ≤ k < ∞,

if and only if

Pvqv

pvQv
ϕ1/k∗

v avv = O (1) (2)

∞∑
n=v+1

ϕk−1
n

∣∣∣∣∣∣∣µn

n∑
r=v

Qr−1(arv − ar,v+1)

∣∣∣∣∣∣∣
k

= O
{( pv

Pv

)k
}

(3)

∞∑
n=v+1

ϕk−1
n

∣∣∣∣∣∣∣µn

n∑
r=v+1

Qr−1ar,v+1

∣∣∣∣∣∣∣
k

= O (1) . (4)

where

µn =
qn

QnQn−1
,n ≥ 1 (5)

Theorem 1.2. Let
(
pn

)
and

(
qn

)
be positive sequences satisfying (1) . Further, let A = (anv) be an infinite

triangular matrix and
(
ϕn

)
be a sequence of positive numbers. Then, A ∈

(∣∣∣∣Nϕp ∣∣∣∣k , ∣∣∣Nq

∣∣∣) , for the case 1 < k < ∞,

if and only if

∞∑
v=1

p−k∗
v

ϕv

 ∞∑
n=v

µn

∣∣∣∣∣∣∣
n∑

r=v

Qr−1(Prarv − Pr−1ar,v+1)

∣∣∣∣∣∣∣


k∗

< ∞. (6)

where µn is defined by (5).
In the present paper we establih Theorem 1.1 and Theorem 1.2 for four dimensional matrices and double

summability, which extend earlier factor and inclusion results on absolute weighted summability to double
summability.

2. Absolute double weighted summability

For any double sequence (xrs) and four dimentional sequence
(
ymnrs

)
,we write for m,n, r, s ≥ 0,

∆1xrs = xrs − xr−1,s ∆2xrs = xrs − xr,s−1

∆12xrs = ∆2(∆1xrs), x−1,0 = x0,−1 = 0
∆1ymnrs = ymnrs − ymn,r−1,s ∆2ymnrs = ymnrs − ymn,r,s−1

∆12ymnrs = ∆2
(
∆1ymnrs

)
, ymn,−1,0 = ymn,0,−1 = 0,

We use the notations
∑
∞

r,s=0 and
∑m,n

r,s=0 instead of
∑
∞

r=0
∑
∞

s=0 and
∑m

r=0
∑n

s=0, respectively, and also
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µ′mn =


γ1/k∗

m0 p′m
P′m−1P′m

, n = 0,m ≥ 1
γ1/k∗

0n q′n
Q′nQ′n−1

, m = 0,n ≥ 1
γ1/k∗

mn p′mq′n
P′m−1P′mQ′nQ′n−1

,m ≥ 1,n ≥ 1.

(7)

Let
∑
∞

r,s=0 xrs be an infinite double series with partial sums smn, i.e.,

smn =

m,n∑
r,s=0

xrs

Let us denote the double weighted mean
(
N, pm, pn

)
of the double sequence (smn) by

Tmn =
1

PmQn

m,n∑
r,s=0

prqssrs (8)

we shall say that the series
∑
∞

r,s=0 xrs is called summable
∣∣∣N, pm, qn;γmn

∣∣∣
k , k ≥ 1, if

∞∑
m,n=0

γk−1
mn

∣∣∣∆21Tm,n

∣∣∣k < ∞. (9)

It may be noticed this method reduces to the methods
∣∣∣N, pm, qn

∣∣∣
k ,

∣∣∣R, pm, qn

∣∣∣
k and |C, 1, 1|k for γmn =

PmQn/pmqn, γmn = mn and pn = qn = 1, respectively, [8], [6-7].

Now, by
∣∣∣∣Nϕpq

∣∣∣∣
k
,we introduce the set of all double series summable by the method

∣∣∣N, pm, qn;γmn

∣∣∣
k . Then,

the double series
∑
∞

r,s=0 xrs is summable
∣∣∣N, pm, qn;γmn

∣∣∣
k if and only if a double sequence x = (xrs) ∈

∣∣∣∣Nϕpq

∣∣∣∣
k
.

Further, since, for m,n ≥ 0

Tmn =
1

PmQn

m,n∑
r,s=0

prqssrs =
1

PmQn

m,n∑
v,µ=0

pvqµ
v,µ∑

r,s=0

xrs

=
1

PmQn

m,n∑
r,s=0

xrs

m,n∑
v,µ=r,s

pvqµ

=
1

PmQn

m,n∑
r,s=0

xrs (Pm − Pr−1) (Qn −Qs−1)

=

m,n∑
r,s=0

xrs

(
1 −

Pr−1

Pm

) (
1 −

Qs−1

Qn

)
,

it is easily seen that ∆1T00 = ∆2T00 = ∆21T00 = x00 and, for m,n ≥ 1,

∆1Tm0 =
pm

PmPm−1

m∑
r=1

Pr−1xr0

∆2T0n =
qn

QnQn−1

n∑
s=1

Qs−1x0s (10)

∆21Tmn =
pmqn

PmPm−1QnQn−1

m,n∑
r,s=1,1

Pr−1Qs−1xrs.
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Define the following space which plays an impotant role in this paper

π
∣∣∣∣Nγpq

∣∣∣∣
k
=

{
x = (xrs) ∈

∣∣∣∣Nγpq

∣∣∣∣
k

: xr0 = x0s = 0 for r, s ≥ 0
}

Hence it is routine to verify that
∣∣∣∣Nγpq

∣∣∣∣
k

and π
∣∣∣∣Nγpq

∣∣∣∣
k

are a Banach space according to the norm

∥x∥∣∣∣∣Nγpq

∣∣∣∣
k

=

 ∞∑
m,n=0

γk−1
mn |∆21Tmn|

k


1/k

. (11)

Also, there is a close relationship between the spaces
∣∣∣∣Nγpq

∣∣∣∣
k

and Lk, i.e., (xrs) ∈
∣∣∣∣Nγpq

∣∣∣∣
k

if and only if(
γ1/k∗

mn ∆21Tm,n

)
∈ Lk, where Lk is the set of all double sequences (xrs) of complex numbers such that∑

∞

r,s=0 |xrs|
k < ∞, the case k = 1 of which reduces to the space L, studied by Zeltser [18]. The space

Lk, 1 ≤ k < ∞, is a Banach space [1] according to the natural norm

∥x∥Lk
=

 ∞∑
r,s=0

|xrs|
k


1/k

and the space L∞ of all bounded double sequences is also a Banach space with the norm ∥x∥∞ = supr,s |xrs| .

Let x = (xrs) be a double sequence. If for every ε > 0 there exists a natural interger n0(ε) and real number
l such that |xrs − l| < ε for all r, s ≥ n0(ε), then, the double sequence x = (xrs) is said to be convergent in
the Peringsheim’s sense. Also, a double series

∑
∞

r,s=0 xrs is convergent if and only if the double sequence of
partial sums of series is convergent.

Let U and V be double sequence spaces and A = (amnrs) be a four dimensional infinite matrix of complex
(or, real) numbers. Then, A defines a matrix transformation from U to V, written A ∈ (U,V) , if for every
sequence x = (xrs) ∈ U, the A-transform A (x) = (Amn(x)) of x is well defined and belongs to V,where

Amn(x) =
∞∑

r,s=0

amnrsxrs

provided the double series in the right hand side converges for m,n ≥ 0.
The transpose At = (arsmn) of the matrix A = (amnrs) is defined by

At
rs(x) =

∞∑
m,n=0

amnrsxmn for m,n ≥ 0.

The β-dual Uβ of the space U is the set of all double sequences (brs) such that
∑
∞

r,s=0 brsxrs converges for
all x ∈ U.

An infinite four dimensional matrix A = (amnrs) is called triangular if amnrs = 0 for r > m or s > n.
We require the following lemmas for the proof of our theorems.
Lemma 2.1. ([18]). If T is a linear mapping from a Banach space X into a Banach space Y, then T is

continuous if and only if it is bounded, i.e., there exists a constant L such that

∥T(x)∥Y ≤ L ∥x∥X for all x ∈ X

Lemma 2.2. Let 1 < k < ∞ and A=
(
amnij

)
be an infinite four dimentional matrix. Define Wk(A) and wk(A)

by

Wk(A) =
∞∑

r,s=0

 ∞∑
m,n=0

|amnrs|


k

,
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wk(A) = sup
MXN

∞∑
r,s=0

∣∣∣∣∣∣∣ ∑
(m,n)∈MXN

amnrs

∣∣∣∣∣∣∣
k

where the supremum is taken through all finite subsets M and N of the natural numbers. Then, the following
statements are equivalent:

(i) Wk∗ (A) < ∞ (ii) A ∈ (Lk,L)

(iii) At
∈ (L∞,Lk∗ ) (iv) wk∗ (A) < ∞.

Proof. To prove the lemma, it is enough to show that (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (i) .
(i)⇒ (ii) . Assume (i) holds. Then, for all x ∈ Lk, it follows from Hölder’s inequality that

∥A(x)∥L =

∞∑
m,n=0

∣∣∣∣∣∣∣
∞∑

r,s=0

amnrsxrs

∣∣∣∣∣∣∣ ≤
∞∑

r,s=0

∞∑
m,n=0

|amnrsxrs|

≤


∞∑

r,s=0

 ∞∑
m,n=0

|amnrs|


k∗


1/k∗

∥x∥Lk

≤ (Wk∗ (A))1/k∗
∥x∥Lk

< ∞,

which gives (ii) .

(ii)⇒ (iii) . Suppose A ∈ (Lk,L) . Then, since Lk is a Banach space for k ≥ 1, by Lemma 2.1, there exists
a constant L such that

∥A(x)∥L =
∞∑

m,n=0

∣∣∣∣∣∣∣
∞∑

r,s=0

amnrsxrs

∣∣∣∣∣∣∣ ≤ L ∥x∥Lk
(12)

for all x ∈ Lk. Also, it is observed by putting xrss1namnrs instead of xrs that

∞∑
m,n=0

∞∑
r,s=0

|amnrsxrs| ≤ L ∥x∥Lk

Now, let u ∈ L∞ be given. Then, by (12),∣∣∣∣∣∣∣
∞∑

m,n=0

∞∑
r,s=0

umnamnrsxrs

∣∣∣∣∣∣∣ ≤ ∥u∥L∞

∞∑
m,n=0

∞∑
r,s=0

|amnrsxrs| (13)

≤ L ∥u∥L∞ ∥x∥Lk

In (13), taking xrs = 1 for (r, s) =
(
i, j

)
, and zero otherwise, it is easily seen that∣∣∣∣∣∣∣

∞∑
m,n=0

amnrsumn

∣∣∣∣∣∣∣ ≤
∞∑

m,n=0

|amnrsumn| ≤ L ∥u∥L∞ ,

which gives that At(u) is defined for all r, s ≥ 0,where the double sequence At(u) =
(
At

rs(u)
)

is given by

At
rs(u) =

∞∑
m,n=0

amnrsumn : m,n ≥ 0 (14)
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Again, it follows by considering (13) that∣∣∣∣∣∣∣
∞∑

r,s=0

At
rs(u)xrs

∣∣∣∣∣∣∣ ≤ L ∥u∥L∞ ∥x∥Lk
(15)

which implies that the series in the left side hand of (14) converges. Therefore, since the dual of space Lk is
the space Lk∗ (see [1]), we obtain At(u) ∈ Lk∗ , i.e., At

∈ (L∞,Lk∗ ) .

(iii)⇒ (iv) . If At
∈ (L∞,Lk∗ ) , then, by Lemma 2.1, there exists a constant K such that

∥∥∥At(x)
∥∥∥
Lk∗
≤ K ∥x∥L∞

for all x ∈ L∞, i.e., ∞∑
r,s=0

∣∣∣∣∣∣∣
∞∑

m,n=0

amnrsxmn

∣∣∣∣∣∣∣
k∗

1/k∗

≤ K ∥x∥L∞ . (16)

Let M and N be any finite subsets of all nature numbers. Take a sequence x = (xmn) as xmn = 1 for
(r, s) ∈MXN, and zero otherwise. Then, (16) is reduced to. ∞∑

r,s=0

∣∣∣∣∣∣∣ ∑
(m,n)∈MXN

amnrs

∣∣∣∣∣∣∣
k∗

1/k∗

≤ K

which proves wk∗ (A) < ∞.
(iii)⇒ (iv) . Suppose (iii) is satisfied and amnrs are real numbers. Then, for every finite subsets M and N

of nature numbers,

∞∑
r,s=0

∣∣∣∣∣∣∣ ∑
(m,n)∈MXN

amnrs

∣∣∣∣∣∣∣
k∗

≤ wk∗ (A).

Let H+ = {(m,n) ∈MXN : amnrs ≥ 0} and H− = {(m,n) ∈MXN : amnrs < 0} . Then, by considering the inequal-
ity |a + b|k

∗

≤ 2k∗
(
|a|k

∗

+ |b|k
∗
)
, where a and b are complex numbers, we have

Wk∗ (A) =

∞∑
r,s=0

 ∞∑
m,n=0

|amnrs|


k∗

=

∞∑
r,s=0

 ∞∑
(m,n)∈H+

amnrs +

∞∑
(m,n)∈H−

−amnrs


k∗

≤ 2k∗
∞∑

r,s=0


 ∞∑

(m,n)∈H+
amnrs


k∗

+

 ∞∑
(m,n)∈H−

−amnrs


k∗

≤ 2k∗+1wk(A).

If amnrs is complex number for m,n, r, s ≥ 0, it is easily seen that Wk∗ (A) ≤ 22k∗+3wk(A) < ∞, which implies
(iv) .

This step ends the proof.

3. Main Results

In this section we prove the following theorems.
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Theorem 3.1. Let
(
pn

)
,
(
qn

)
,
(
p′n

)
and

(
q′n

)
be sequences of positive numbers satisfying (1) . Further, let

γ =
(
γrs

)
be a double sequence of positive numbers and A = (amnrs) be a four dimensional triangle matrix

and define the matrix B by

bmnrs =


m,n∑

i, j=r,s
P′i−1Q′j−1ai jrs, 1 ≤ r ≤ m, 1 ≤ s ≤ n

0, r > m, or s > n.
(17)

Then, A ∈
(∣∣∣Npq

∣∣∣ , π ∣∣∣∣Nγp′q′ ∣∣∣∣k) , 1 ≤ k <∞, if and only if

∞∑
m,n=r,s

∣∣∣µ′mnbmn,r+1,s+1

∣∣∣k = O(1) (18)

∞∑
m,n=r,s

∣∣∣µ′mn∆2bmn,r+1,s+1

∣∣∣k = O


(

qs

Qs

)k
 (19)

∞∑
m,n=r,s

∣∣∣µ′mn∆1bmn,r+1,s+1

∣∣∣k = O
{( pr

Pr

)k
}

(20)

∞∑
m=r,n=s

∣∣∣µ′mn∆12bmn,r+1,s

∣∣∣k = O


(

PrQs

prqs

)k
 (21)

where µ′mn is defined by (7).

Proof. Necessity. Let A ∈
(∣∣∣Np,q

∣∣∣ , π ∣∣∣∣Nγp′q′ ∣∣∣∣k) . Then, since
∣∣∣Np,q

∣∣∣ and π
∣∣∣Np′q′

∣∣∣
k are Banach spaces, it is seen

from Lemma 2.1 that A :
∣∣∣Np,q

∣∣∣→ π ∣∣∣∣Nγp′q′ ∣∣∣∣kk
defined by

Amn(x) =
m,n∑

r,s=0

amnrsxrs (22)

is a bounded linear operator. So, there exists a constant M such that

∥A(x)∥
π
∣∣∣∣Nγp′q′ ∣∣∣∣k ≤M ∥x∥

|Npq|
(23)

for all x = (xrs) ∈
∣∣∣Np,q

∣∣∣ . Put tmn = ∆21Tmn for m,n ≥ 0, where ∆21Tmn is defined by (9). Then, t = (tmn) ∈ L.

Also, A(x) = (Ars(x)) ∈ π
∣∣∣∣Nγp′q′ ∣∣∣∣k if and only if L′(x) =

(
L′mn(x

)
∈ Lk, i.e.,

∥A(x)∥
π
∣∣∣∣Nγp′q′ ∣∣∣∣k = ∥L′(x)∥Lk

=

 ∞∑
m,n=1

∣∣∣L′mn(x)
∣∣∣k

1/k

< ∞ (24)

where

L′mn(x) = µ′mn

m,n∑
r,s=1

P′r−1Q′s−1Ars(x). (25)
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Choose a sequence x = (xi j) ∈
∣∣∣Np,q

∣∣∣ such that xrs = 1, xi j = 0 for i , r, j , s. Then, using (9), we have, for
m,n ≥ 1,

tmn =

{
0, m < r,n < s

pmqnPr−1Qs−1

PmPm−1QnQn−1
,m ≥ r,n ≥ s. , ∥x∥

∣∣∣Np,q
∣∣∣ = ∥t∥L = 1 (26)

Also, it is easily seen that

Amn(x) =
{

0, m < r,n < s
amnrs,m ≥ r,n ≥ s

which gives, by (24),

L′mn(x) =
{

0, m < r,n < s
µ′mnbmnrs,m ≥ r,n ≥ s.

and so

∥A(x)∥∣∣∣Np′q′
∣∣∣
k
=

 ∞∑
m,n=r,s

∣∣∣µ′mnbmnrs

∣∣∣k
1/k

. (27)

Now, it follows by applying (26) and (27) to the inequality (23) that, for r, s ≥ 1,

∞∑
m,n=r,s

∣∣∣µ′mnbmnvu

∣∣∣k ≤Mk

which is equivalent to (18).
Now take xrs = 1, xr,s+1 = −1, and zero, otherwise. Then, by (10), we get

tmn =


0, m < r,n < s
pmqsPr−1

PmPm−1Qs , m ≥ r,n = s
−

pmqnPr−1qs

PmPm−1QnQn−1
,m ≥ r,n > s

, ∥x∥∣∣∣Npq
∣∣∣ = ∥t∥L = 2qs

Qs
. (28)

Further, we obtain

Amn(x) =
m,n∑

i, j=r,s

amnijxi j =

{
0, n < s,m < r

−∆2amnr,s+1,n ≥ s,m ≥ r

which implies, by (25),

L′mn(x) =
{

0, m < r,n < s
−µ′mn∆2bmnr,s+1,n ≥ s,m ≥ r

and

∥A(x)∥∣∣∣Np′q′
∣∣∣
k
=

 ∞∑
m,n=r,s

∣∣∣µ′mn∆2bmnr,s+1

∣∣∣k
1/k

. (29)

So, using (28) and (29), we have from (23) that (19) holds. Also, by taking xrs = 1, xr+1,s = −1, and zero,
otherwise, then, similarly, (20) holds.
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Finally, put xrs = 1, xr,s+1 = −1, xr+1,s = −1, xr+1,s+1 = 1, and zero, otherwise. Then,

tmn =



0, m < r,n < s
prqs

PrQs
, n = s,m = r

−
prqnqs

PrQnQn−1
, n > s,m = r

−
prpmqs

PmPm−1Qs
,n = s,m > r

pmqnprqs

PmPm−1QnQn−1
,n > s,m > r

, ∥x∥∣∣∣Npq
∣∣∣ = 4prqs

PrQs
(30)

and

Amn(x) =
{
∆21amn,r+1,s+1, r ≤ m, s ≤ n

0, r > m, s > n.

This verifies

L′mn(x) =
{
µ′mn∆12bmnr+1s+1, r ≤ m, s ≤ n

0, r > m, s > n

and

∥x∥∣∣∣Np′q′
∣∣∣
k
=

 ∞∑
m,n=r,s

∣∣∣µ′mn∆12bmnr+1s+1

∣∣∣k
1/k

. (31)

Therefore, considering (30) and (31), it follows from (23) that (21) holds.

Sufficiency. Given x = (xrs) ∈
∣∣∣Np,q

∣∣∣ . Then, t = (tmn) ∈ L, where tmn = ∆21Tmn for m,n ≥ 0, as above. Now,
we should show that A(x) = (Ars(x)) ∈ π

∣∣∣Np′q′
∣∣∣
k , i.e.,

∞∑
m,n=1

∣∣∣L′mn(x)
∣∣∣k < ∞

where L′(x) =
(
L′mn(x)

)
is defined by (25). To achieve this, by solving (10) for xmn , we obtain, for m,n ≥ 1,

xmn =
PmQn

pmqn
tmn −

Pm−2Qn

pm−1qn
tm−1,n (32)

−
Qn−2Pm

qn−1pm
tm,n−1 +

Pm−2Qn−2

pm−1qn−1
tm−1,n−1.

Hence, since B is a triangular matrix, a few calculations reveal that

L′mn(x) = µ′mn

m,n∑
i, j=1

P′i−1Q′j−1Ai j(x)

= µ′mn

m,n∑
r,s=1

xrs

m,n∑
i, j=r,s

P′i−1Q′j−1ai jrs = µ
′

mn

m,n∑
r,s=1

bmnrsxrs
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= µ′mn

m,n∑
r,s=1

bmnrs

(
PrQs

prqs
trs −

Pr−2Qs

pr−1qs
tr−1,s

−
PrQs−2

prqs−1
tr,s−1 +

Pr−2Qs−2

pr−1qs−1
tr−1,s−1

)
= µ′mn

 m,n∑
r,s=1

bmnrs
PrQs

prqs
trs −

m−1,n∑
r,s=1

bmn,r+1,s
Pr−1Qs

prqs
trs

−

m,n−1∑
r,s=1

bmn,r,s+1
PrQs−1

prqs
trs +

m−1,n−1∑
r,s=1

bmn,r+1,s+1
Pr−1Qs−1

prqs
trs


= µ′mn

m,n∑
r,s=1

(
bmnrs

PrQs

prqs
− bmn,r+1,s

Pr−1Qs

prqs
−

bmn,r,s+1
PrQs−1

prqs
+ bmn,r+1,s+1

Pr−1Qs−1

prqs

)
trs

= µ′mn

m,n∑
r,s=1

cmnrstrs,

where

cmnrs =

(
bmnrs

Pr

pr
− bmn,r+1,s

Pr−1

pr

)
Qs

qs

−

(
bmn,r,s+1

Pr

pr
− bmn,r+1,s+1

Pr−1

pr

)
Qs−1

qs

=
PrQs

prqs
∆12bmn,r+1,s+1 −

Pr

pr
∆1bmn,r+1,s+1 (33)

−
Qs

qs
∆2bmn,r+1,s+1 + bmn,r+1,s+1.

Also, since

|cmnrs|
k
≤ 3k

{∣∣∣∣∣PrQs

prqs
∆12bmn,r+1,s+1

∣∣∣∣∣k + ∣∣∣∣∣Pr

pr
∆1bmn,r+1,s+1

∣∣∣∣∣k
+

∣∣∣∣∣Qs

qs
∆2bmn,r+1,s+1

∣∣∣∣∣k + ∣∣∣bmn,r+1,s+1

∣∣∣k} ,
we get by Minkowski’s inequality and the hypohese that ∞∑

m,n=1

∣∣∣L′mn(x)
∣∣∣k

1/k

≤


∞∑

m,n=1

 m,n∑
r,s=1

∣∣∣µ′mncmnrstrs

∣∣∣
k


1/k

≤

∞,∞∑
r,s=1

|trs|

 ∞,∞∑
m,n=r,s

∣∣∣µ′mncmnrs

∣∣∣k
1/k

= O(1)
∞,∞∑
r,s=1

|trs| < ∞

which completes the proof of the sufficiency.
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Now, it is obvious that A(x) = (Ars(x)) ∈
∣∣∣∣Nγp′q′ ∣∣∣∣k , i.e.,

∞∑
m,n=0

∣∣∣L′mn(x)
∣∣∣k = ∞∑

m=0

∣∣∣L′m0(x)
∣∣∣k + ∞∑

n=1

∣∣∣L′0n(x)
∣∣∣k + ∞∑

m,n=1

∣∣∣L′mn(x)
∣∣∣k < ∞ (34)

if and only if

∞∑
m=0

∣∣∣L′m0(x)
∣∣∣k < ∞, ∞∑

n=1

∣∣∣L′0n(x)
∣∣∣k < ∞, ∞,∞∑

m,n=1

∣∣∣L′mn(x)
∣∣∣k < ∞,

where

L′m0(x) = µ′m0

m∑
r=1

P′r−1Ar0(x)

L′0n(x) = µ′0n

n∑
s=1

Q′s−1A0s(x)

L′mn(x) = µ′mn

m,n∑
r,s=1

P′r−1Q′s−1Ars(x).

So, if we define the matrices A1,A2 and A3 by

A1 = (am0r0),A2 = (a0n0s), A3 = (amnrs) for m,n ≥ 1 (35)

then, A ∈
(∣∣∣Np,q

∣∣∣ , ∣∣∣∣Nγp′q′ ∣∣∣∣k) if and only if A1 ∈

(∣∣∣Np

∣∣∣ , ∣∣∣∣Nγ1

p′

∣∣∣∣
k

)
, A2 ∈

(∣∣∣Nq

∣∣∣ , ∣∣∣∣Nγ2

q′

∣∣∣∣
k

)
and A3 ∈

(∣∣∣Np,q

∣∣∣ , π ∣∣∣∣Nγp′q′ ∣∣∣∣k) ,
where A = (amnrs) is a triangle matrix for m,n ≥ 0, γ1 =

(
γm0

)
and γ2 =

(
γ0n

)
.

By identifying A1 = (am0r0) ≡ (amr), A2 = (a0n0s) ≡ (ans), the main theorem is immediately deduced by
Theorem 1.1 and Theorem 2.1 as follows.

Theorem 3.2. Let the sequences
(
pn

)
,
(
qn

)
,
(
p′n

)
,
(
q′n

)
,
(
γmn

)
, and the matrices A, B be as in Theorem

3.1. Then, A ∈
(∣∣∣Np,q

∣∣∣ , ∣∣∣∣Nγp′q′ ∣∣∣∣k) , k ≥ 1, if and only if conditions (18) − (21) and the following conditions are

satisfied:

Prp′r
prP′r
γ1/k∗

r0 ar0r0 = O (1)

∞∑
n=r+1

∣∣∣∣∣∣∣µ′n0

n∑
v=r

P′v−1∆1av,0,r+1,0

∣∣∣∣∣∣∣
k

= O
{( pr

Pr

)k
}

∞∑
n=r+1

∣∣∣∣∣∣∣µ′n0

n∑
v=r+1

P′v−1av,0,r+1,0

∣∣∣∣∣∣∣
k

= O (1)

Qvq′v
qvQ′v

γ1/k∗
0v a0v0v = O (1)

∞∑
n=v+1

∣∣∣∣∣∣∣µ′0n

n∑
r=v

Q′r−1∆2a0,r,0,v+1)

∣∣∣∣∣∣∣
k

= O


(

qv

Qv

)k


∞∑
n=v+1

∣∣∣∣∣∣∣µ′0n

n∑
r=v+1

Q′r−1a0,r,0,v+1

∣∣∣∣∣∣∣
k

= O (1)
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where µ′n0 and µ′0n are defined by (7). Now we qualify the converse of the matrix class in Theorem 3.2,
which, althout is similar to the previous one, has a very different character.

Theorem 3.3. Let
(
pn

)
,
(
qn

)
,
(
p′n

)
,
(
q′n

)
and

(
γmn

)
be as in Theorem 3.1. Further, let A = (amnrs) be a four

dimensional triangle matrix and define the matrix B by (17) for m,n ≥ 1, and

bmnrs =


n∑

j=s
Q′j−1a0 j0s, 1 ≤ s ≤ n, m = 0

m∑
j=r

P′j−1a j0r0, 1 ≤ r ≤ m, n = 0

Then, A ∈
(∣∣∣Npq

∣∣∣
k ,

∣∣∣∣Nγp′q′ ∣∣∣∣) , 1 < k <∞, if and only if

∞∑
s=1

1
γ0s

 ∞∑
n=s

µ′0n

∣∣∣∣∣Qs

qs
∆2b0n0,s+1 − b0n0,s+1

∣∣∣∣∣
k∗

< ∞ (36)

∞∑
r=1

1
γr0

 ∞∑
m=r

µ′m0

∣∣∣∣∣Pr

pr
∆1bm0,r+1,0 − bm0,r+1,0

∣∣∣∣∣
k∗

< ∞ (37)

∞∑
r,s=1

1
γrs

 ∞∑
m,n=r,s

∣∣∣µ′mncmnrs

∣∣∣
k∗

< ∞ (38)

where µ′mn and cmnrs are given by (7) with k = 1 and (21), respectively.
Proof. Assume that x = (xrs) ∈

∣∣∣Np,q

∣∣∣
k and A(x) is A-transform sequence of x. Let tm0 = ∆1Tm0, t0n =

∆2T0n and tmn = ∆21Tmn for m,n ≥ 1, where ∆1Tm0,∆2T0n and ∆21Tmn are defined by (10). Further, put
um0 = γ

1/k∗
m0 tm0, u0n = γ

1/k∗
0n t0n and umn = γ

1/k∗
mn tmn. Then, u = (umn) ∈ Lk, or, equivalently, (um0) , (u0n) ∈ ℓk and

(umn) ∈ Lk.Also, A(x) ∈
∣∣∣Np′q′

∣∣∣ , iff L′(x) =
(
L′mn(x)

)
∈ L, or, equivalently, as in (34), (L′0n(x),

(
L′m0(x)

)
∈ ℓ, and(

L′mn(x)
)
∈ L,where

L′0n(x) = µ′0n

n∑
s=1

Q′s−1A0s(x)

L′m0(x) = µ′m0

m∑
r=1

P′r−1Ar0(x)

L′mn(x) = µ′mn

m,n∑
r,s=1

Q′r−1Q′s−1Ars(x)

It follows by solving (10) for xm0 and x0n that

xm0 =
Pm

pm
tm0 −

Pm−2

pm−1
tm−1,0, x0n =

Qn

qn
t0n −

Qn−2

qn−1
t0,n−1 (39)

Since A and B are triangular matrix and P−1 = Q−1 = 0, it is easily written from (39) and (32) that, for
m,n ≥ 1,

L′0n(x) = µ
′

0n

n∑
s=1

Q′s−1A0s(x) = µ′0n

n∑
j=0

b0n0 jx0 j

= µ′0n

n∑
j=0

(
Q j

q j
∆2b0n0, j+1 − b0n0, j+1

)
γ−1/k∗

0 j u0 j,
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L′m0(x) = µ′m0

m∑
r=1

P′r−1A0r(x) = µ′m0

m∑
j=0

bm0 j0x j0

= µ′m0

m∑
j=0

(
P j

p j
∆1bm0, j+1,0 − bm0, j+1,0

)
γ−1/k∗

j0 u j0

L′mn(x) = µ′mn

m,n∑
i, j=1

P′i−1Q′j−1Ai j(x) = µ′mn

m,n∑
i, j=1

P′i−1Q′j−1

i, j∑
r,s=1

ai jrsxrs

= µ′mn

m,n∑
r,s=1

xrs

m,n∑
i, j=r,s

P′i−1Q′j−1ai jrs = µ
′

mn

m,n∑
r,s=1

bmnrsxrs

= µ′mn

m,n∑
r,s=1

bmnrs

(
PrQs

prqs
trs −

Pr−2Qs

pr−1qs
tr−1,s −

PrQs−2

prqs−1
tr,s−1 +

Pr−2Qs−2

pr−1qs−1
tr−1,s−1

)

= µ′mn

m,n∑
r,s=1

(
bmnrs

PrQs

prqs
− bmn,r+1,s

Pr−1Qs

prqs
− bmn,r,s+1

PrQs−1

prqs
+ bmn,r+1,s+1

Pr−1Qs−1

prqs

)
urs

γ1/k∗
rs

= µ′mn

m,n∑
r,s=1

(
PrQs

prqs
∆12bmn,r+1,s+1 −

Pr

pr
∆1bmn,r+1,s+1 −

Qs

qs
∆2bmn,r+1,s+1 + bmn,r+1,s+1

)
urs

γ1/k∗
rs

= µ′mn

m,n∑
r,s=1

cmnrsurs.

Hence, it can be expressed that

L′mn(u) =
m,n∑

r,s=0

dmnrsurs

where

dmnrs =


µ′0n

(
Qs
qs
∆2b0n0,s+1 − b0n0,s+1

)
γ−1/k∗

0s , 0 ≤ s ≤ n,m = r = 0

µ′m0

(
Pr
pr
∆1bm0,r+1,0 − bm0,r+1,0

)
γ−1/k∗

r0 , 0 ≤ r ≤ m,n = s = 0
µ′mncmnrsγ

−1/k∗
rs , 1 ≤ r ≤ m, 1 ≤ s ≤ n

0, otherwise.

This gives that A ∈
(∣∣∣∣Nγp,q∣∣∣∣k , ∣∣∣Np′q′

∣∣∣) if and only if D ∈ (Lk,L) . Therefore, it follows from Lemma 2.2 that the

conclusion of the theorem is valid if and only if Wk∗ (A) < ∞, or, equivalently,

∞∑
s=0

 ∞∑
n=s

|d0n0s|

k∗

< ∞,
∞∑

r=0

 ∞∑
m=r

|dm0r0|

k∗

< ∞

and

∞∑
r,s=1,1

 ∞∑
m,n=r,s

|dmnrs|


k∗

< ∞,

which gives (36) , (37) and (38) .
This completes the proof.
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