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Induced topologies on certain Banach algebras
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Abstract. Let A be a Banach algebra with a bounded approximate identity bounded by 1. Two new
topologies τso and τwo are introduced onA. We study these topologies and compare them with each other
and with the norm topology. The properties of τso and τwo are then studied further and we pay attention
to the group algebra L1(G) of a locally compact group G. Various necessary and sufficient conditions are
found for a locally compact group G to be finite.

1. Introduction and Notations

LetA be a Banach algebra. Terminologies and notations not explained in this section will be explained
or referenced in the next section. Given a subspace X of A, and a functional f on X, we will variously
denote the value of f on x ∈ X by f (x) and ⟨ f , x⟩. If X is any normed space, let’s agree to denote by ball X
the closed unite ball in X. The first Arens multiplication is defined as follows in three steps. For a, b inA, f
inA∗ and E,F inA∗∗, the elements f a, F f ofA∗ and EF ofA∗∗ are defined as follows:

⟨ f a, b⟩ = ⟨ f , ab⟩, ⟨F f , a⟩ = ⟨F, f a⟩ and ⟨EF, f ⟩ = ⟨E,F f ⟩.

As is well-known [2], the second dual A∗∗ of A endowed with the first Arens multiplication is a Banach
algebra. The basic properties of this multiplication are as follows. For F fixed inA∗∗, the mapping E 7→ EF
is weak∗-weak∗ continuous. For E fixed inA∗∗, the mapping F 7→ EF is general not continuous unless E is in
A (for more information see [2]). Whence the topological center of A∗∗ with respect to this multiplication
is defined as follows

Zt(A∗∗) = {E ∈ A∗∗; F 7→ EF is weak∗-weak∗ continuous onA∗∗}.

When A has a bounded right approximate identity {eα}, any weak∗ cluster point E of {eα} in A∗∗ satisfies
firstly aE = a and then FE = F for all F ∈ A∗∗. Thus E is a right identity forA∗∗, but not usually an identity
forA∗∗; however for a ∈ A∗ it is true that Ea = a.
ByA∗Awe denote the subspace ofA∗ consisting of the functionals of the form f a; for all f inA∗ and a inA.
WhenA has a bounded approximate identity the Cohen-Hewitt factorization theorem shows thatA∗A is
a norm closed linear subspace ofA∗. The dual of the spaceA∗A equipped with the multiplication induced
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by that ofA∗∗ is also a Banach algebra (for more details see [1]).
In [10], Peralta et al., among the other things, studied properties of the strong∗ topology and in particular
compare in to the w-right topology. They characterize the class of Banach spaces X for which the topologies
s∗(X) and ρ(X) coincide on bounded sets of X, see also [3].
In this paper, we continue our work [5] in the study of a Banach algebraA defined with respect to two new
topologies on A. Our purpose is to introduce two new topologies on a Banach algebra. We study these
topologies and compare those two topologies with each other and with norm topology. Finally, we will
shift our attention to group algebras and begin some discussion on group algebras.

2. Induced topologies on Banach algebras

Let A be a Banach algebra with a bounded approximate identity bounded by 1, and for a in A define
Ta : A∗ → A∗A by Ta( f ) = f a. Then A can be embedded into B(A∗,A∗A) by a linear map T so that
T(a) = Ta. Indeed it is obvious that ∥Ta∥ ≤ ∥a∥. Now let {eα} be a bounded approximate identity bounded
by 1. For any ϵ > 0, there exists f ∈ A∗ such that ∥ f ∥ ≤ 1 and ∥a∥ ≤ |⟨ f , a⟩| + ϵ. Since {eα} is a bounded
approximate identity, we may choose eα ∈ {eα} such that ∥aeα − a∥ < ϵ. Therefore

∥a∥ ≤ |⟨ f , a⟩| + ϵ ≤ |⟨ f , aeα⟩| + 2ϵ = |⟨ f a, eα⟩| + 2ϵ
= |⟨Ta( f ), eα⟩| + 2ϵ ≤ ∥Ta( f )∥ + 2ϵ ≤ ∥Ta∥ + 2ϵ.

As ϵ > 0 may be chosen arbitrarily, ∥a∥ ≤ ∥Ta∥. Since B(A∗,A∗A) carries naturally the strong operator
topology (weak operator topology), T allows us to consider the induced topology onA, which we denote
by τso (τwo). From the definition we immediately derive τwo ≤ τso ≤ τ∥.∥.

Proposition 2.1. Let A have a bounded approximate identity bounded by 1 and suppose E is a convex set in A.
Then the τwo-closure E

wo
of E is equal to its original closure E.

Proof. Every τwo-neighborhood of 0 inA contains a set of the form

m⋂
i=1

n⋂
j=1

{a ∈ A; |⟨Fi,Ta( f j)⟩| < ϵ}

where Fi ∈ A
∗∗, f j ∈ A

∗ and ϵ > 0. E
wo

is τwo-closed, hence originally closed, so that E ⊆ E
wo

. To obtain
the opposite inclusion, we first prove that E

so
⊆ E. Choose a ∈ E

so
. There exists a net {aβ} in E converging

to a in the τso-topology. We will prove that {aβ} converges to a in the weak topology of A. Fix any f ∈ A∗.
Obviously { f aβ} converges to f a in the norm topology. Let {eα} be a bounded approximate identity bounded
by 1 forA. Let ϵ > 0 be given. There exists β0 such that ∥ f aβ − f a∥ < ϵ for all β ⪰ β0. Fix β ⪰ β0. Consider a
fixed element eα in {eα} such that

∥aβ − aβeα∥ < ϵ, ∥aeα − a∥ < ϵ.

We have

|⟨ f , aβ − a⟩| ≤ |⟨ f , aβ − aβeα⟩| + |⟨ f , aβeα − aeα⟩| + |⟨ f , aeα − a⟩|
≤ ∥ f ∥∥aβ − aβeα∥ + ∥ f aβ − f a∥∥eα∥ + ∥ f ∥∥aeα − a∥
< 2∥ f ∥ϵ + ϵ.

This shows that {aβ} converges to a in the weak topology. On the other hand, the weak closure E
w

of E is
equal to its original closure E, see Theorem 3.12 in [11]. This shows that E

so
⊆ E.

We next prove that E
wo
⊆ E

so
. Let a0 < E

so
. Part (b) of the separation Theorem 3.4 in [11] shows that there

exist a τso-continuous linear functional L onA and γ ∈ R such that, for every a ∈ E,

ReL(a0) < γ < ReL(a).
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There exists a finite subset { f1, · · · , fn} ofA∗ and an ϵ > 0 such that sup{∥Ta( fi)∥, 1 ≤ i ≤ n} < ϵ, a ∈ A implies
|L(a)| < 1. Consider the linear spaceA∗ × · · · ×A∗ of all n-tuples ( f1, · · · , fn) with fi ∈ A∗, i = 1, · · · ,n. Norm
inA∗ × · · · × A∗ is

∥( f1, · · · , fn)∥ = max{∥ f1∥, · · · , ∥ fn∥}.

Define π : A → A∗ × · · · × A∗ by π(a) = (Ta( f1), · · · ,Ta( fn)). If a ∈ A and π(a) = 0, |L(ma)| < 1 for all m ∈ N.
This shows that L(a) = 0. Hence λ(π(a)) = L(a) define a linear functional λ on π(A). Extend λ to a linear
functional Λ on A∗ × · · · × A∗. This means that there exist Fi ∈ A

∗∗ such that Λ( f1, · · · , fn) =
∑n

i=1⟨Fi, fi⟩.
Therefore

L(a) = λ(π(a)) =
n∑

i=1

⟨Fi, fia⟩.

The set {a ∈ A; Re
∑n

i=1⟨Fi, fia⟩ = ReL(a) < γ} is therefore a τwo-neighborhood of a0 that dose not intersect E.
Thus a0 is not in E

wo
. This proves E

wo
⊆ E.

Example 2.2. Consider G = Z, the additive group of the integers. For each n ∈ N, let l1(Z)n be a copy of l1(Z)
andA = (

∑
∞

n=1

⊕
l1(Z)n)0 be their c0-sum. It is easy to see that {en} ((en = (1, 1, · · · , 1, · · · ), 1 occurs n times) is a

bounded approximate identity forA. For each

f = { fn} ∈ A∗ =
( ∞∑

n=1

⊕
l1(Z)∗n

)
1
,

we have

∥ f en − f ∥ =
∞∑

k=n+1

∥ fk∥ → 0, as n→∞.

A is a non unital Banach algebra. If {en} converges to some e ∈ A, then e is unite element ofA. This is a contradiction.
We immediately conclude that the τso-topology is strictly weaker than the norm-topology.

Proposition 2.3. LetA have a bounded approximate identity bounded by 1. Then the following assertions holds.

(i) Every τso-continuous linear functional L : A→ C is originally bounded, and vice versa.

(ii) Every τso-bounded set is originally bounded, and vice versa

Proof. Let L be a τso-continuous linear functional on A. Let ϵ > 0 be given. There exists a finite subset
{ f1, · · · , fn} of A∗ and an δ > 0 such that max{∥Ta( fi)∥; 1 ≤ i ≤ n} < δ, a ∈ A implies |L(a)| < ϵ. If
a ∈ {a ∈ A; max{∥ f1∥, · · · , ∥ fn∥}∥a∥ < δ}, then |L(a)| < ϵ, because

{a ∈ A; max{∥ f1∥, · · · , ∥ fn∥}∥a∥ < δ} ⊆
n⋂

i=1

{a ∈ A; ∥Ta( fi)∥ < δ}.

This shows that L is norm continuous.
Conversely, suppose that L ∈ A∗ is not τso-continuous. Let F denote the collection of all finite subsets F

ofA∗, and for every F ∈ F , ϵ > 0, let

V(F,ϵ) = {a ∈ A; ∥Ta( f )∥ < ϵ for every f ∈ F}.

For every F ∈ F and ϵ > 0, there exists a(F,ϵ) ∈ V(F,ϵ) such that |L(a(F,ϵ))| > 1 (which is not empty by the
assumption). Partially order D = {(F, ϵ); F ∈ F , ϵ > 0} by declaring (F′, ϵ′) ⪰ (F, ϵ) to mean that F ⊆ F′

and ϵ′ ≤ ϵ. We claim that a(F,ϵ) → 0 in the weak topology on A. Suppose that f0 ∈ A∗ and ϵ0 > 0. Let
(F, ϵ) ⪰ ({ f0}, ϵ0). Thus f0 ∈ F and ϵ ≤ ϵ0. It follows that ∥ f0a(F,ϵ)∥ < ϵ ≤ ϵ0. Let {eα} be an approximate
identity for A of bound 1. We have |⟨ f0a(F,ϵ), eα⟩| < ϵ ≤ ϵ0 for all α, and so |⟨ f0, a(F,ϵ)⟩| ≤ ϵ ≤ ϵ0. This shows
that ⟨ f0, a(F,ϵ)⟩ → 0. Hence a(F,ϵ) → 0 weakly. On the other hand, |L(a(F,ϵ))| > 1 for all F ∈ F and ϵ > 0 which
is a contradiction.
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Suppose that E is a norm bounded set of A. There exists M < ∞ such that ∥a∥ ≤ M for all a ∈ E. For
each f in A∗ define ρ f : A → [0,∞) by ρ f (a) = ∥Ta( f )∥. Then ρ f is a seminorm. It is easy to see that
Ω = {ρ f ; f ∈ A∗} separates the points ofA and makeA into a locally convex space. The topology defined
by theses seminorms is τso-topology onA. On the other hand, ∥ρ f (a)∥ ≤ ∥ f ∥∥a∥ for all a ∈ A and f ∈ A∗. It
follows that every ρ f ∈ Ω is bounded on E. Hence E is τso-bounded by (b) of Theorem 1.37 in [11].

Finally, suppose E is τso-bounded. Fix f ∈ A∗. Since

{a ∈ A; ∥Ta( f )∥ < 1}

is a neighborhood of 0, E ⊆ n{a ∈ A; ∥Ta( f )∥ < 1} for some n ∈ N. Hence ∥Ta( f )∥ ≤ n for every a ∈ E. On
the other hand A has a bounded approximate identity bounded by 1. Thus |⟨ f , a⟩| ≤ n for every a ∈ E.
Put K = { f ∈ A∗; ∥ f ∥ ≤ 1}. Since K is convex and weak∗-compact and since the functions f 7→ ⟨ f , a⟩ are
weak∗-continuous, we can apply Theorem 2.9 in [11] to conclude that there is a constant M < ∞ such that
|⟨ f , a⟩| ≤ M for every a ∈ E and f ∈ K. It follows that ∥a∥ ≤ M for every a ∈ E. This finishes the proof of the
proposition.

Suppose X and Y are Banach spaces. It is shown that in [8], there is a ‘right topology’ for X such that a
linear map from X into Y is weakly compact precisely when it is a continuous map from X, equipped with
the right topology, into Y, equipped with the norm topology. Quasi completely continuous multilinear
operators have been studied by Peralta et al. in [9]. They have obtained a number of interesting and nice
results. The following Proposition shows that a linear operator L from A to itself is τso-continuous if and
only if L is τwo-continuous.

Proposition 2.4. LetA have a bounded approximate identity bounded by 1. A linear operator L onA is continuous
with respect to the τso-topology if and only if it is continuous with respect to the τwo-topology.

Proof. Let U be the open unit ball in A. By Proposition 2.3 (ii), U is τso-bounded. We claim that L(U) is
τso-bounded. Every τso-neighborhood of 0 inA contains a set of form

{a ∈ A; ∥Ta( fi)∥ < ϵ for 1 ≤ i ≤ n},

where fi ∈ A∗ and ϵ > 0. By the hypothesis, there exist f ′1 , · · · , f ′m ∈ A∗ and δ > 0 such that

L
( m⋂

i=1

{a ∈ A; ∥Ta( f ′i )∥ < δ}
)
⊆

n⋂
i=1

{a ∈ A; ∥Ta( fi)∥ < ϵ}.

Since U is τso-bounded,

U ⊆ k
m⋂

i=1

{a ∈ A; ∥Ta( f ′i )∥ < δ}

for some k ∈N. Thus

L(U) ⊆ k
n⋂

i=1

{a ∈ A; ∥Ta( fi)∥ < ϵ}.

This shows that L(U) is τso-bounded and, by Proposition 2.3 (ii), is also norm bounded. We conclude that
L is norm continuous. Now, let {aα} be a net in A such that aα → a in the τwo-topology. For f ∈ A∗,
Taα ( f )→ Ta( f ) in the weak topology. Since L is norm bounded, f oT ∈ A∗, and so Taα ( f oL)→ Ta( f oL) in the
weak topology. This shows that L is τwo-continuous.

Conversely, assume that L is not τso-continuous. Then there is a neighborhood

W =
n⋂

i=1

{a ∈ A; ∥Ta( fi)∥ < ϵ}

of 0 in A such that L−1(W) contains no neighborhood of 0 in A. An argument similar to the proof of
Proposition 2.3 shows that there is a net {aα} inA such that Taα ( f )→ 0 for all f ∈ A∗ (in the weak topology)
and max{∥Taα ( fi)∥; 1 ≤ i ≤ n} ≥ ϵ for all α, which is a contradiction.
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3. Some more results on group algebras

Let G be a locally compact group. The left Haar measure on the locally compact group G is λ. Let M(G)
be the Banach algebra of regular Borel measures on G. Let Lp(G) (1 ≤ p ≤ ∞) have the usual meanings.
Convolution of functions φ and f is defined by φ ∗ f (x) =

∫
φ(y) f (y−1x)dy whenever the integral makes

sense. Usually, φ, ψ will be elements of the L1(G), f , 1 elements of L∞(G), and E,F elements of L1(G)∗∗. For
any subset A of G, 1A denotes the characteristic function of A. For every φ : G→ C, we define φ̃(x) = φ(x−1).
The second dual L1(G)∗∗ of L1(G) is a Banach algebra with the first Arens product. For each f ∈ L∞(G) and
φ ∈ L1(G), fφ = 1

∆ φ̃ ∗ f and φ f = f ∗ φ̃, here ∆ is the modular function of G. Duality between Banach spaces
is denoted by ⟨ ⟩; thus for f ∈ L∞(G) and φ ∈ L1(G), we have ⟨ f , φ⟩ =

∫
f (x)φ(x)dx.

Example 3.1. A locally compact group G is finite if and only if τso-topology is compatible with τwo-topology on
L1(G). Indeed, if G is a finite group, then the dimension of L1(G) is finite. Let dim L1(G) = n. Then every basis
of L1(G) induces an isomorphism of L1(G) onto Cn. Theorem 1.21 in [11] shows that this isomorphism must be a
homeomorphism. Consequently τso = τwo.

Conversely, let τso = τwo. Consider a fixed element φ in L1(G). For every ψ ∈ L1(G),

⟨1Gφ,ψ⟩ = ⟨1G, φ ∗ ψ⟩ =

∫ ∫
ψ(y−1x)φ(y)dydx = ⟨1G, ψ⟩⟨1G, φ⟩.

This shows that 1Gφ = ⟨1G, φ⟩1G. By hypothesis, there exist F1, · · · ,Fn ∈ L∞(G)∗, f1, · · · , fm ∈ L∞(G) and ϵ > 0
such that

W =
n⋂

i=1

m⋂
j=1

{ϕ; |⟨Fi, f jϕ⟩| < ϵ} ⊆ {ϕ; |⟨1G, φ⟩| = ∥1Gϕ∥ < 1}.

Since φ 7→ (⟨F1, f1φ⟩, · · · , ⟨Fn, fmφ⟩) maps L1(G) into Cmn with null space N, we see that dim L1(G) ≤ mn+dim N.
If G is an infinite group, then L1(G) is an infinity dimensional space. If φ ∈ N ⊆W and ⟨1, φ⟩ , 0, kφ ∈ N ⊆W for
all k ∈N. It follows that k|⟨1, φ⟩| < 1 for all k ∈N, which is a contradiction.

A further consequence is one expressing a relationship between convergence and τwo convergence in
L1(G).

Theorem 3.2. A sequence {φn} converges to φ in L1(G) if and only if the following conditions hold:

(i) {φn} converges to φ in the τwo-topology;

(ii) {φn} converges to φ locally in measure, that is, for each compact set K ⊆ G and each number ϵ > 0 one has

lim
n→∞

λ(K ∩ {x ∈ G; |φn(x) − φ(x)| ≥ ϵ}) = 0.

Proof. Since norm topology is stronger than τwo-topology, it is clear that norm convergence implies τwo
convergence. If {φn} converges to φ in L1(G), then a simple verification shows that {φn} converges to φ
locally in measure.

To prove the converse, let {eα} be an approximate identity for L1(G) of bound 1. Without loss of generality,
we may assume that eα → E (E ∈ L∞(G)∗) in the weak∗-topology. Let A ⊆ G be a measurable set. It is easy
to see that ⟨1A, φn⟩ → ⟨1A, φ⟩. Indeed,

lim
n→∞
⟨1A, φn⟩ = lim

n→∞
⟨E1A, φn⟩ = lim

n→∞
⟨E, 1Aφn⟩

= ⟨E, 1Aφ⟩ = ⟨1A, φ⟩.

We first show that for any given ϵ > 0 there exists a compact subset K in G such that

lim sup
{
⟨1G\K, |φn − φ|⟩,n ∈N

}
< ϵ.
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Sinceφn ∈ L1(G), the functionφn vanishes outside of aσ-finite set. Therefore
⋃
∞

n=1{x, φn(x) , 0}∪{x; φ(x) , 0}
can be written as S = (

⋃
∞

m=1 Km) ∪ N where λ(N) = 0 and {Km} is an increasing sequence of compact sets.
Let M be the subset of L∞(G) formed of all functions equal almost everywhere to characteristic functions
of measurable subsets of G. We define ∥s − s′∥m = ⟨1Km , |s − s′|⟩. These norms ∥.∥m (m = 1, 2, · · · ) make M
into a Banach space. Applying Baire’s theorem, we infer the existence of a measurable A ⊆ S and natural
numbers m and l and a number δ > 0 such that∣∣∣∣⟨1B, φn − φ⟩

∣∣∣∣ ≤ ϵ
16

for all n ≥ l

whenever B ⊆ S is measurable, and ∥1B − 1A∥m < δ. For arbitrary n ∈N, we write

φn − φ = (φn
1
− φ1) − (φn

2
− φ2) + i[(φn

3
− φ3) − (φn

4
− φ4)],

where φn
i
− φi’s are functions in L1(G)+ and

min{φn
1
− φ1, φn

2
− φ2
} = min{φn

3
− φ3, φn

4
− φ4
} = 0.

If B ⊆ S is measurable, ∥1B − 1A∥m < δ and n ≥ l, then∣∣∣∣⟨1B, φn
i
− φi
⟩

∣∣∣∣ ≤ ϵ
16

for all 1 ≤ i ≤ 4.

It follows that ⟨1B, |φn − φ|⟩ < ϵ
4 for all n ≥ l. If B ⊆ G \ Km, then

⟨1B, |φn − φ|⟩ = ⟨1B∩S, |φn − φ|⟩

= ⟨1(B∩S)∪(A∩Km), |φn − φ|⟩ − ⟨1A∩Km , |φn − φ|⟩ <
ϵ
2

for all n ≥ l. This being true for each measurable B ⊆ G \ Km, it follows that ⟨1G\Km , |φn − φ|⟩ < ϵ
2 . By

hypothesis {φn} converges to φ locally in measure. Therefore ⟨χKm , |φn − φ|⟩ converges to 0. Consequently

lim sup ∥φn − φ∥1 ≤ lim sup{⟨1Km , |φn − φ|⟩; n ∈N}

+ lim sup
{
⟨1G\Km , |φn − φ|⟩,n ∈N

}
< ϵ.

Therefore {φn} converges to φ with respect to norm topology.

Recall that a left multiplier of a Banach algebra A is a bounded linear operator T which maps A into A
satisfing T(ab) = T(a)b for any a and b in A. Wendel’s Theorem tells us that the left multiplier algebra of
L1(G) is the measure algebra M(G).

Proposition 3.3. Let G be a locally compact group. Then the absolutely convex hulls of τso-relatively compact sets
in L1(G) are again τso-relatively compact.

Proof. For each f ∈ L∞(G), let L∞(G) f be a copy of L∞(G). Let

X =
∏{

L∞(G) f ; f ∈ L∞(G)
}
.

If {xα} is a net in X, then xα → x if and only if xα( f )→ x( f ) for all f ∈ L∞(G). Therefore φ 7→ { fφ} f∈L∞(G) is a
continuous one-to-one linear function from L1(G) with respect to τso-topology into the product of the norm
topology on L∞(G). Let K be a compact subset of L1(G). Define the projection function π f : X → L∞(G) by
π f (x) = x( f ). π f is continuous by definition of the product topology; hence π f (K) is a compact subset of
L∞(G) for all f ∈ L∞(G). Obviously K ⊆

∏
{π f (K); f ∈ L∞(G)}. Hence

{ n∑
i=1

ciki; ki ∈ K, ci ∈ C,n ∈N,
n∑

i=1

|ci| ≤ 1
}
⊆

∏
{S f ; f ∈ L∞(G)}
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where S f is absolutely convex hull of π f (K) in L∞(G). On the other hand, the absolutely convex hull of a
compact subset of a Banach space is compact. Hence

∏
{S f ; f ∈ L∞(G)} is compact by the Tychonoff theorem,

since S f is compact for each f ∈ L∞(G). We will show that the absolutely convex hull of K is actually a
closed subset of X. Indeed, let {φα} be a net in absolutely convex hull of K that converges to some T ∈ X
in the product topology. As K is compact, K is τso-bounded. By Proposition 2.3 (ii), K is norm bounded.
Finally, the absolutely convex hull of K is again norm bounded. It is easy to see that T is a bounded linear
operator on L∞(G). Let T∗ : L∞(G)∗ → L∞(G)∗ be adjoint to T. Then T∗ is a left multiplier on L∞(G)∗. In fact,
for E,F ∈ L∞(G)∗, f ∈ L∞(G), we have

⟨T∗(EF), f ⟩ = ⟨EF,T( f )⟩ = lim
α
⟨EF, fφα⟩

= lim
α
⟨E,F fφα⟩ = ⟨E,T(F f )⟩

= ⟨T∗(E),F f ⟩ = ⟨T∗(E)F, f ⟩.

Hence T∗(EF) = T∗(E)F, showing that T∗ is a left multiplier on L∞(G)∗. We next show that for each φ ∈ L1(G),
T∗(φ) ∈ L1(G). Indeed, if {Fβ} is a net in L∞(G)∗ and Fβ → F in the weak∗-topology, then

lim
β
⟨T∗(φ)Fβ, f ⟩ = lim

β
⟨φ,T(Fβ f )⟩ = lim

β
⟨φ,FβT( f )⟩

= lim
β
⟨φFβ,T( f )⟩ = lim

β
⟨Fβ,T( f )φ⟩

= ⟨F,T( f )φ⟩ = ⟨φF,T( f )⟩
= ⟨T∗(φF), f ⟩ = ⟨T∗(φ)F, f ⟩

for all f ∈ L∞(G). Hence T∗(φ)Fβ → T∗(φ)F, showing that T∗(φ) is in the topological center of L∞(G)∗. It is
known that if G is a locally compact topological group, then the topological center of L1(G)∗∗ is L1(G), so
T∗(φ) ∈ L1(G) [7]. Therefore T∗ restricted to L1(G) is a left multiplier from L1(G) into L1(G). Consequently
there exist µ ∈ M(G) such that T∗(φ) = µ ∗ φ for all φ ∈ L1(G). For every f ∈ L∞(G), fφα converges to
fµ in the norm topology. Since L1(G) is a closed two-sided ideal in the algebra M(G), we have µ ∈ L1(G)
[4]. Consequently {φα} converges to µ ∈ L1(G). It follows that the absolutely convex hull of K in L1(G) is
compact, being a closed subset of the compact set

∏
{S f ; f ∈ L∞(G)}.

Theorem 3.4. Let G be a locally compact group. Then the following statements are equivalent.

(i) G is a finite group.

(ii) ball L1(G) is compact with respect to the τwo-topology.

Proof. It is clear that (i) implies (ii), so it will be shown that (ii) implies (i). Let F ∈ball L∞(G)∗. We claim
that for every finite subset A = { f1, ..., fn} of L∞(G) and ϵ > 0, there exists φA,ϵ ∈ ball L1(G) such that∑n

i=1 |⟨F − φ̂A,ϵ, fi⟩|2 < ϵ. Let A = { f1, ..., fn}, say, and let ϵ > 0 be given. Consider the map

Λ : ball L1(G)→ Rn φ 7→ (⟨F − φ̂, f1⟩, ..., ⟨F − φ̂, fn⟩).

We show that β := inf{|Λ(φ)|2; φ ∈ ball L1(G)} = 0. For every k ∈ N there exists φk ∈ ball L1(G) such that
β ≤ |Λ(φk)| < β+ 1

k . Since {(⟨F− φ̂k, f1⟩, ..., ⟨F− φ̂k, fn⟩); k ∈N} ⊆ Rn is bounded, withought loss of generality,
we can assume that

(⟨F − φ̂k, f1⟩, ..., ⟨F − φ̂k, fn⟩)→ (r1, ..., rn).

For every 0 < t < 1, φ ∈ ball L1(G) and k ∈N, we have

|Λ((1 − t)φk + tφ)|2 =
n∑

i=1

|⟨F, fi⟩ − ⟨ fi, φk⟩ + t⟨ fi, φk − φ⟩|
2.
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It is easy to see that

β ≤ lim sup |Λ((1 − t)φk + tφ)|2

≤ β + 2tRe
n∑

i=1

(⟨F, fi⟩ − ri)(ri − ⟨ fi, φ⟩) + t2
n∑

i=1

|ri − ⟨ fi, φ⟩|2.

Therefore

2Re
n∑

i=1

si(ri − ⟨ fi, φ⟩) ≥ −t
n∑

i=1

|ri − ⟨ fi, φ⟩|2.

where si = ⟨F, fi⟩ − ri. As 0 < t < 1 may be chosen arbitrary, we must have Re
∑n

i=1 risi ≥ Re
∑n

i=1 si⟨ fi, φ⟩. Let
f =
∑n

i=1 si fi. Therefore Re⟨ f , φ⟩ ≤ Re
∑n

i=1 risi. As φ ∈ ball L1(G) may be chosen arbitrary, we must have
∥ f ∥ ≤ Re

∑n
i=1 risi. We have

β = lim
k
|Λ(φk)|2 =

n∑
i=1

|⟨F, fi⟩ − ri|
2 = Re⟨F, f ⟩ − Re

n∑
i=1

risi

≤ ∥F∥∥ f ∥ − ∥ f ∥ ≤ ∥ f ∥ − ∥ f ∥ = 0.

Now, let ball L1(G) is compact in the τwo-topology. For every finite set A = { f1, ..., fn} and for every ϵ > 0,
we can choose an φA,ϵ ∈ ball L1(G) such that

∑n
i=1 |⟨F − φ̂A,ϵ, fi⟩|2 < ϵ. Order the pairs (A, ϵ) in the obvious

manner. After passing to a subnet if necessary, we can assume that φA,ϵ → φ in the τwo-topology. We show
that F = φ̂.
Let E be a right identity in L∞(G)∗. Suppose that f0 ∈ L∞(G) and ϵ > 0 be given. There exists a finite subset
A0 in ball L1(G) and ϵ0 > 0 such that |⟨E, f0φA′,ϵ′⟩ − ⟨E, f0φ⟩| < ϵ

2 for all (A′, ϵ′) ⪰ (A0, ϵ0). Put A′ = A0 ∪ { f0}
and ϵ′ = min{ϵ0,ϵ}

2 . We have

|⟨F − φ̂, f0⟩ ≤ |⟨F, f0⟩ − ⟨E, f0φA′,ϵ′⟩| + |⟨E, f0φA′,ϵ′ − ⟨E, f0φ⟩|

< ϵ′ +
ϵ
2
≤ ϵ.

This shows that F = φ̂ ∈ L1(G). Consequently L1(G) is an ideal in L∞(G)∗. It is known that L1(G) is a
two-sided ideal in L∞(G)∗ if and only if G is a compact group [6], and so G is compact. On the other hand
E ∈ L∞(G)∗ = L1(G) is a two-sided identity for L1(G), and so G is discrete [4]. Finally G is a finite group.
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