Coefficient bounds and Fekete-Szegő inequality for a certain family of holomorphic and bi-univalent functions defined by (\mathbf{M}, N)-Lucas polynomials

Abbas Kareem Wanas ${ }^{\text {a }}$, Grigore Ştefan Sălăgean ${ }^{\text {b }}$, Páll-Szabó Ágnes Orsolya ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics, College of Science, University of Al-Qadisiyah, Al Diwaniyah, Al-Qadisiyah, Iraq ${ }^{b}$ Department of Mathematics, Faculty of Mathematics and Computer Science, Babes-Bolyai University, Cluj-Napoca, Romania ${ }^{c}$ Department of Statistics-Forecasts-Mathematics, Faculty of Economics and Business Administration, Babes-Bolyai University, Cluj-Napoca, Romania

Abstract

In the current work, we use the (M,N)-Lucas Polynomials to introduce a new family of holomorphic and bi-univalent functions which involve a linear combination between Bazilevič functions and β-pseudo-starlike function defined in the unit disk \mathbb{D} and establish upper bounds for the second and third coefficients of functions belongs to this new family. Also, we discuss Fekete-Szegő problem in this new family.

1. Introduction

The Lucas Polynomials plays an important role in a diversity of disciplines as the mathematical, statistical, physical and engineering sciences (see, for example [10, 14, 38]).

Let \mathcal{A} stands for the collection of functions f that are holomorphic in the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ that have the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

Further, let S indicate the sub-collection of the set \mathcal{A} containing functions from \mathbb{D} satisfying (1) which are univalent in \mathbb{D}. According to the Koebe one-quarter theorem (see [9]), every function $f \in S$ has an inverse f^{-1} defined by $f^{-1}(f(z))=z,(z \in \mathbb{D})$ and $f\left(f^{-1}(w)\right)=w,\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)$, where

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{D} if both f and f^{-1} are univalent in \mathbb{D}, let we name by the notation Σ the set of bi-univalent functions in \mathbb{D} satisfying (1). In fact, Srivastava et al. [28] have

[^0]actually revived the study of holomorphic and bi-univalent functions in recent years, recalling the following examples of functions in the class Σ :
$$
\frac{z}{1-z},-\log (1-z), \quad \frac{1}{2} \log \left(\frac{1+z}{1-z}\right)
$$

The Koebe function is not a member of the bi-univalent function class Σ, same as other common examples of functions in S such as:

$$
z-\frac{z^{2}}{2}, \frac{z}{1-z^{2}}
$$

Their work was followed by such articles as those by Frasin and Aouf [11], Altinkaya and Yalçin [2], Srivastava and Wanas [29], Srivastava et al. [26] and others (see, for example [8, 17, 18, 20-25, 30, 32-37]).

More pioneering work was made by Srivastava et al. in [27] where they studied coefficients of meromorphic bi-univalent functions.

Lewin [13] was the first to investigate the class of bi-univalent functions, showing that the first coefficient of the Taylor series expansion of a bi-univalent function satisfies $\left|a_{2}\right|<1.51$.

Brannan and Clunie [6] conjectured that $\left|a_{2}\right| \leq \sqrt{2}$ for $f \in \Sigma$ and Netanyahu [16] showed that $\max \left|a_{2}\right|=\frac{4}{3}$.
The coefficient estimate problem for each of the coefficients $\left|a_{n}\right|(n \in \mathbb{N} \backslash\{1,2\})$ is still an open problem.
A function $f \in \mathcal{A}$ is called Bazilevič function in \mathbb{D} if (see [19])

$$
\operatorname{Re}\left\{\frac{z^{1-\alpha} f^{\prime}(z)}{(f(z))^{1-\alpha}}\right\}>0, \quad(z \in \mathbb{D}, \alpha \geq 0)
$$

A function $f \in \mathcal{A}$ is called β-pseudo-starlike function in \mathbb{D} if (see [5])

$$
\operatorname{Re}\left\{\frac{z\left(f^{\prime}(z)\right)^{\beta}}{f(z)}\right\}>0, \quad(z \in \mathbb{D}, \beta \geq 1)
$$

We use the definition of subordination between holomorphic functions: let the functions f and g be holomorphic in \mathbb{D}, we say that the function f is subordinate to g, if there exists a Schwarz function ω holomorphic in \mathbb{D} with $\omega(0)=0$ and $|\omega(z)|<1(z \in \mathbb{D})$ such that $f(z)=g(\omega(z))$. This subordination is indicated by $f<g$ or $f(z)<g(z)(z \in \mathbb{D})$ (see [15]).

For the polynomials $M(x)$ and $N(x)$ with real coefficients, the (M,N)-Lucas Polynomials $L_{M, N, k}(x)$ are defined by the following recurrence relation (see [12]):

$$
L_{M, N, k}(x)=M(x) L_{M, N, k-1}(x)+N(x) L_{M, N, k-2}(x) \quad(k \geq 2)
$$

with

$$
L_{M, N, 0}(x)=2, \quad L_{M, N, 1}(x)=M(x)
$$

$$
\begin{equation*}
L_{M, N, 2}(x)=M^{2}(x)+2 N(x), \quad L_{M, N, 3}(x)=M^{3}(x)+3 M(x) N(x) \tag{3}
\end{equation*}
$$

The generating function of the (M,N)-Lucas Polynomial $L_{M, N, k}(x)$ (see [14]) is given by

$$
T_{L}(M, N ; x, z)=\sum_{k=2}^{\infty} L_{M, N, k}(x) z^{k}=\frac{2-M(x) z}{1-M(x) z-N(x) z^{2}}
$$

Note that for particular values of M and N , the (M, N)-polynomial $L_{n}(x)$ leads to various polynomials, among those, we list few cases here (see, for more details [3]):
(i) For $M(x)=x$ and $N(x)=1$, we obtain the Lucas polynomials $L_{n}(x)$.
(ii) For $M(x)=2 x$ and $N(x)=1$, we obtain the Pell-Lucas polynomials $Q_{n}(x)$.
(iii) For $M(x)=1$ and $N(x)=2 x$, we obtain the Jacobsthal-Lucas polynomials $j_{n}(x)$.
(iv) For $M(x)=3 x$ and $N(x)=-2$, we obtain the Fermat-Lucas polynomials $f_{n}(x)$.
(v) For $M(x)=2 x$ and $N(x)=-1$, we have the Chebyshev polynomials $T_{n}(x)$ of the first kind.

2. Main Results

We begin this section by defining the family $\mathscr{L}_{M N}(\lambda, \alpha, \beta ; x)$ as follows:
Definition 2.1. For $0 \leq \lambda \leq 1 ; \alpha \geq 0 ; \beta \geq 1$ let $\mathscr{L}_{M N}(\lambda, \alpha, \beta ; x)$ denote the subclass of Σ such that

$$
(1-\lambda) \frac{z^{1-\alpha} f^{\prime}(z)}{(f(z))^{1-\alpha}}+\lambda \frac{z\left(f^{\prime}(z)\right)^{\beta}}{f(z)}<T_{L}(M, N ; x, z)-1
$$

and

$$
(1-\lambda) \frac{w^{1-\alpha}\left(f^{-1}(w)\right)^{\prime}}{\left(f^{-1}(w)\right)^{1-\alpha}}+\lambda \frac{w\left(\left(f^{-1}(w)\right)^{\prime}\right)^{\beta}}{f^{-1}(w)}<T_{L}(M, N ; x, w)-1
$$

where f^{-1} is given by (2).
In particular, if we choose $\alpha=\lambda=0$ or $\lambda=\beta=1$ in Definition 2.1, we have $\mathscr{L}_{M N}(0,0, \beta ; x)=$ $\mathscr{L}_{M N}(1, \alpha, 1 ; x):=P_{\sigma}(0 ; x)$ for the family of functions $f \in \Sigma$ given by (1) and satisfying the following subordinations:

$$
\frac{z f^{\prime}(z)}{f(z)}<T_{L}(M, N ; x, z)-1
$$

and

$$
\frac{w\left(f^{-1}(w)\right)^{\prime}}{f^{-1}(w)} \prec T_{L}(M, N ; x, w)-1
$$

If $M(x)=1, N(x)=0$ then $\frac{z f^{\prime}(z)}{f(z)}<T_{L}(1,0 ; x, z)-1=\frac{1}{1-z}$.
If $M(x)=2 x, N(x)=-1$ then $\frac{z f^{\prime}(z)}{f(z)}<T_{L}(2 x,-1 ; x, z)-1=\frac{1}{1-2 x z+z^{2}}$.
Theorem 2.2. For $0 \leq \lambda \leq 1, \alpha \geq 0$ and $\beta \geq 1$, let f belongs to the family $\mathscr{L}_{M N}(\lambda, \alpha, \beta ; x)$ and $N(x) \neq 0$;
let denote

$$
\begin{align*}
& \Omega(\lambda, \alpha, \beta)=(1-\lambda)(\alpha+1)+\lambda(2 \beta-1) \tag{4}\\
& E(\lambda, \alpha, \beta, M(x), N(x))=\frac{\sqrt{2}|M(x)| \sqrt{|M(x)|}}{\sqrt{\left|\left[(1-\lambda)(\alpha+2)(\alpha+1)+2 \lambda \beta(2 \beta-1)-2 \Omega^{2}(\lambda, \alpha, \beta)\right] M^{2}(x)-4 \Omega^{2}(\lambda, \alpha, \beta) N(x)\right|}}
\end{align*}
$$

and

$$
F(\lambda, \alpha, \beta, M(x))=\frac{|M(x)|}{\Omega(\lambda, \alpha, \beta)}
$$

then

$$
\left|a_{2}\right| \leq \min \{E(\lambda, \alpha, \beta, M(x), N(x)), F(\lambda, \alpha, \beta, M(x))\}
$$

and

$$
\left|a_{3}\right| \leq \frac{M^{2}(x)}{\Omega^{2}(\lambda, \alpha, \beta)}+\frac{|M(x)|}{(1-\lambda)(\alpha+2)+\lambda(3 \beta-1)}
$$

Proof. Suppose that $f \in \mathscr{L}_{M N}(\lambda, \alpha, \beta ; x)$. Then there exists two holomorphic functions $\phi, \psi: \mathbb{D} \longrightarrow \mathbb{D}$ given by

$$
\begin{equation*}
\phi(z)=r_{1} z+r_{2} z^{2}+r_{3} z^{3}+\cdots \quad(z \in \mathbb{D}) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(w)=s_{1} w+s_{2} w^{2}+s_{3} w^{3}+\cdots \quad(w \in \mathbb{D}) \tag{6}
\end{equation*}
$$

with $\phi(0)=\psi(0)=0,|\phi(z)|<1,|\psi(w)|<1, z, w \in \mathbb{D}$ such that

$$
\begin{equation*}
(1-\lambda) \frac{z^{1-\alpha} f^{\prime}(z)}{(f(z))^{1-\alpha}}+\lambda \frac{z\left(f^{\prime}(z)\right)^{\beta}}{f(z)}=-1+L_{M, N, 0}(x)+L_{M, N, 1}(x) \phi(z)+L_{M, N, 2}(x) \phi^{2}(z)+\cdots \tag{7}
\end{equation*}
$$

and

$$
\begin{align*}
& (1-\lambda) \frac{w^{1-\alpha}\left(f^{-1}(w)\right)^{\prime}}{\left(f^{-1}(w)\right)^{1-\alpha}}+\lambda \frac{w\left(\left(f^{-1}(w)\right)^{\prime}\right)^{\beta}}{f^{-1}(w)} \\
& =-1+L_{M, N, 0}(x)+L_{M, N, 1}(x) \psi(w)+L_{M, N, 2}(x) \psi^{2}(w)+\cdots \tag{8}
\end{align*}
$$

Combining (5), (6), (7) and (8), yield

$$
\begin{equation*}
(1-\lambda) \frac{z^{1-\alpha} f^{\prime}(z)}{(f(z))^{1-\alpha}}+\lambda \frac{z\left(f^{\prime}(z)\right)^{\beta}}{f(z)}=1+L_{M, N, 1}(x) r_{1} z+\left[L_{M, N, 1}(x) r_{2}+L_{M, N, 2}(x) r_{1}^{2}\right] z^{2}+\cdots \tag{9}
\end{equation*}
$$

and

$$
\begin{align*}
& (1-\lambda) \frac{w^{1-\alpha}\left(f^{-1}(w)\right)^{\prime}}{\left(f^{-1}(w)\right)^{1-\alpha}}+\lambda \frac{w\left(\left(f^{-1}(w)\right)^{\prime}\right)^{\beta}}{f^{-1}(w)} \\
& =1+L_{M, N, 1}(x) s_{1} w+\left[L_{M, N, 1}(x) s_{2}+L_{M, N, 2}(x) s_{1}^{2}\right] w^{2}+\cdots \tag{10}
\end{align*}
$$

It is quite well-known that if $|\phi(z)|<1$ and $|\psi(w)|<1, z, w \in \mathbb{D}$, we get

$$
\begin{equation*}
\left|r_{j}\right| \leq 1 \quad \text { and } \quad\left|s_{j}\right| \leq 1(j \in \mathbb{N}) \tag{11}
\end{equation*}
$$

In the light of (9) and (10), after simplifying, we find that

$$
\begin{align*}
& {[(1-\lambda)(\alpha+1)+\lambda(2 \beta-1)] a_{2}=} \tag{12}\\
& \begin{aligned}
{[(1-\lambda)(\alpha+2)+\lambda(3 \beta-1)] a_{3} } & +\left[\frac{1}{2}(1-\lambda)(\alpha+2)(\alpha-1)+\lambda(2 \beta(\beta-2)+1)\right] a_{2}^{2} \\
& =L_{M, N, 1}(x) r_{2}+L_{M, N, 2}(x) r_{1}^{2}
\end{aligned} \\
& -[(1-\lambda)(\alpha+1)+\lambda(2 \beta-1)] a_{2}=L_{M, N, 1}(x) s_{1} \tag{13}
\end{align*}
$$

and

$$
\begin{align*}
{[(1-\lambda)(\alpha+2)+\lambda(3 \beta-1)]\left(2 a_{2}^{2}-a_{3}\right)+} & {\left[\frac{1}{2}(1-\lambda)(\alpha+2)(\alpha-1)+\lambda(2 \beta(\beta-2)+1)\right] a_{2}^{2} } \\
& =L_{M, N, 1}(x) s_{2}+L_{M, N, 2}(x) s_{1}^{2} \tag{15}
\end{align*}
$$

It follows from (12) and (14) that

$$
\begin{equation*}
r_{1}=-s_{1} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
2[(1-\lambda)(\alpha+1)+\lambda(2 \beta-1)]^{2} a_{2}^{2}=L_{M, N, 1}^{2}(x)\left(r_{1}^{2}+s_{1}^{2}\right) \tag{17}
\end{equation*}
$$

If we add (13) to (15), we obtain

$$
\begin{equation*}
[(1-\lambda)(\alpha+2)(\alpha+1)+2 \lambda \beta(2 \beta-1)] a_{2}^{2}=L_{M, N, 1}(x)\left(r_{2}+s_{2}\right)+L_{M, N, 2}(x)\left(r_{1}^{2}+s_{1}^{2}\right) \tag{18}
\end{equation*}
$$

Substituting the value of $r_{1}^{2}+s_{1}^{2}$ from (17) in the right hand side of (18), we deduce that

$$
\begin{equation*}
\left[(1-\lambda)(\alpha+2)(\alpha+1)+2 \lambda \beta(2 \beta-1)-\frac{2 L_{M, N, 2}(x)}{L_{M, N, 1}^{2}(x)} \Omega^{2}(\lambda, \alpha, \beta)\right] a_{2}^{2}=L_{M, N, 1}(x)\left(r_{2}+s_{2}\right) \tag{19}
\end{equation*}
$$

where $\Omega(\lambda, \alpha, \beta)$ is given by (4).
Moreover computations using (3), (11) and (19), we find that

$$
\left|a_{2}\right| \leq \frac{\sqrt{2}|M(x)| \sqrt{|M(x)|}}{\sqrt{\left|\left[(1-\lambda)(\alpha+2)(\alpha+1)+2 \lambda \beta(2 \beta-1)-2 \Omega^{2}(\lambda, \alpha, \beta)\right] M^{2}(x)-4 \Omega^{2}(\lambda, \alpha, \beta) N(x)\right|}}
$$

From (12) and (14) we can also obtain

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{\left|L_{M, N, 1}(x)\right|}{(1-\lambda)(\alpha+1)+\lambda(2 \beta-1)} \leq \frac{|M(x)|}{(1-\lambda)(\alpha+1)+\lambda(2 \beta-1)} \tag{20}
\end{equation*}
$$

Next, if we subtract (15) from (13), we can easily see that

$$
\begin{equation*}
2[(1-\lambda)(\alpha+2)+\lambda(3 \beta-1)]\left(a_{3}-a_{2}^{2}\right)=L_{M, N, 1}(x)\left(r_{2}-s_{2}\right)+L_{M, N, 2}(x)\left(r_{1}^{2}-s_{1}^{2}\right) \tag{21}
\end{equation*}
$$

In view of (16) and (17), we get from (21)

$$
a_{3}=\frac{L_{M, N, 1}^{2}(x)}{2 \Omega^{2}(\lambda, \alpha, \beta)}\left(r_{1}^{2}+s_{1}^{2}\right)+\frac{L_{M, N, 1}(x)}{2[(1-\lambda)(\alpha+2)+\lambda(3 \beta-1)]}\left(r_{2}-s_{2}\right) .
$$

Thus applying (3), we conclude that

$$
\left|a_{3}\right| \leq \frac{M^{2}(x)}{\Omega^{2}(\lambda, \alpha, \beta)}+\frac{|M(x)|}{(1-\lambda)(\alpha+2)+\lambda(3 \beta-1)} .
$$

Putting $\lambda=\beta=1$ in Theorem 2.2, we conclude the following result:
Corollary 2.3. If f belongs to the family $P_{\sigma}(0 ; x)$, then

$$
\left|a_{2}\right| \leq|M(x)| \sqrt{\left|\frac{M(x)}{2 N(x)}\right|}
$$

and

$$
\left|a_{3}\right| \leq M^{2}(x)+\frac{|M(x)|}{2}
$$

The previous result was obtained in Corollary 1 from [3].
Remark 2.4. The class $\mathscr{L}_{M N}(\lambda, \alpha, \beta ; x)$ is a generalization of many classes considered earlier:
(i) If $\alpha=0, \lambda=0$ then $\mathscr{L}_{M N}(0,0, \beta ; x)=P_{\sigma}(0 ; x)$ from [3].
(ii) If $\lambda=0$ then $\mathscr{L}_{M N}(0, \alpha, \beta ; x)=\mathfrak{B}_{\Sigma}^{\alpha}(1,0)$ from [4].
(iii) If $\alpha=0, \lambda=0, M(x)=x, N(x)=1$ and from article [1] $a=2, b=1, p=1, q=1, \lambda=0$ then $\mathscr{L}_{M N}(0,0, \beta ; x)=\mathcal{S}_{\sigma}^{*}(0, x)$.
(iv) If $\alpha=0, \lambda=1$ then $\mathscr{L}_{M N}(1, \alpha, \beta ; x)=\mathcal{G}_{\Sigma}(\beta, \Phi(0) ; x)$ from [31].
(v) If $\alpha=0, \lambda=0, M(x)=2 x, N(x)=-1$ or $\beta=1, \lambda=1, M(x)=2 x, N(x)=-1$ then $\mathscr{L}_{M N}(0,0, \beta ; x)=$ $\mathscr{L}_{M N}(1, \alpha, 1 ; x)=\mathfrak{B}_{\Sigma}^{0}(1, t)$ from [7].
(vi) If $f \in \mathscr{L}_{1,0}(\lambda, \alpha, \beta ; x)$ then $f \in \mathcal{T}_{\Sigma}(\lambda, \alpha, \beta ; 1)$ from [30].

From Theorem 2.2, in particular cases, one can reobtain the same type of results for the classes mentioned above.
Remark 2.5. In the estimation of $\left|a_{2}\right|$, the minimum depends on $M(x)$ and $N(x)$.
In the case $M(x)=1, N(x)=0, \alpha=\lambda=0$ or $(\lambda=\beta=1)$ we obtain for $f(z)=\frac{z}{1-z}$ then $\frac{z \cdot f^{\prime}(z)}{f(z)}=\frac{1}{1-z}$ so $f \in \mathscr{L}_{M N}(0,0, \beta ; x)=\mathscr{L}_{M N}(1, \alpha, 1 ; x)$, but $f(z)=z \cdot\left(1+z+z^{2}+\ldots\right)=z+z^{2}+z^{3}+\ldots$ is Koebe's convex function which $E(0,0, \beta, 1,0)=\infty, F(0,0, \beta, 1)=1$, hence $\left|a_{2}\right| \leq 1$ and this is the best estimation.

In the next theorem, we discuss "the Fekete-Szegő Problem" for the family $\mathscr{L}_{M N}(\lambda, \alpha, \beta ; x)$.
Theorem 2.6. For $0 \leq \lambda \leq 1, \alpha \geq 0, \beta \geq 1$ and $\delta \in \mathbb{R}$, let $f \in \mathcal{A}$ belongs to the family $\mathscr{L}_{M N}(\lambda, \alpha, \beta ; x)$. Then

$$
\left|a_{3}-\delta a_{2}^{2}\right| \leq\left\{\begin{array}{l}
\frac{|M(x)|}{\frac{1-\lambda)(\alpha+2)+\lambda(3 \beta-1)}{} ;} \quad \text { for }|\delta-1| \leq \frac{1}{2[(1-\lambda)(\alpha+2)+\lambda(3 \beta-1)]} \times \\
\times\left|(1-\lambda)(\alpha+2)(\alpha+1)+2 \lambda \beta(2 \beta-1)-2 \Omega^{2}(\lambda, \alpha, \beta)-\frac{4 \Omega^{2}(\lambda, \alpha, \beta) N(x)}{M^{2}(x)}\right|, \\
\frac{2|M(x)|^{\mid}|\delta-1|}{\left.\left[(1-\lambda)(\alpha+2)(\alpha+1)+2 \lambda \beta(2 \beta-1)-2 \Omega^{2}(\lambda, \alpha, \beta)\right] M^{2}(x)-4 \Omega^{2}(\lambda, \alpha, \beta) N(x)\right]} ; \\
\text { for }|\delta-1| \geq \frac{1}{2[(1-\lambda)(\alpha+2)+\lambda(3 \beta-1)]} \times \\
\quad \times\left|(1-\lambda)(\alpha+2)(\alpha+1)+2 \lambda \beta(2 \beta-1)-2 \Omega^{2}(\lambda, \alpha, \beta)-\frac{4 \Omega^{2}(\lambda, \alpha, \beta) N(x)}{M^{2}(x)}\right|,
\end{array}\right.
$$

where $\Omega(\lambda, \alpha, \beta)$ is given by (4).
Proof. By making use of (19) and (21), we conclude that

$$
\begin{aligned}
a_{3}-\delta a_{2}^{2} & =(1-\delta) \frac{L_{M, N, 1}^{3}(x)\left(r_{2}+s_{2}\right)}{[(1-\lambda)(\alpha+2)(\alpha+1)+2 \lambda \beta(2 \beta-1)] L_{M, N, 1}^{2}(x)-2 \Omega^{2}(\lambda, \alpha, \beta) L_{M, N, 2}(x)} \\
& +\frac{L_{M, N, 1}(x)\left(r_{2}-s_{2}\right)}{2[(1-\lambda)(\alpha+2)+\lambda(3 \beta-1)]} \\
& =L_{M, N, 1}(x)\left[\left(\varphi(\delta ; x)+\frac{1}{2[(1-\lambda)(\alpha+2)+\lambda(3 \beta-1)]}\right) r_{2}\right. \\
& \left.+\left(\varphi(\delta ; x)-\frac{1}{2[(1-\lambda)(\alpha+2)+\lambda(3 \beta-1)]}\right) s_{2}\right],
\end{aligned}
$$

where

$$
\varphi(\delta ; x)=\frac{L_{M, N, 1}^{2}(x)(1-\delta)}{[(1-\lambda)(\alpha+2)(\alpha+1)+2 \lambda \beta(2 \beta-1)] L_{M, N, 1}^{2}(x)-2 \Omega^{2}(\lambda, \alpha, \beta) L_{M, N, 2}(x)}
$$

According to (3), we find that

$$
\left|a_{3}-\delta a_{2}^{2}\right| \leq\left\{\begin{array}{lr}
\frac{|M(x)|}{(1-\lambda)(\alpha+2)+\lambda(3 \beta-1)}, & 0 \leq|\varphi(\delta ; x)| \leq \frac{1}{2[(1-\lambda)(\alpha+2)+\lambda(3 \beta-1)]} \\
2|M(x)||\varphi(\delta ; x)|, & |\varphi(\delta ; x)| \geq \frac{1}{2[(1-\lambda)(\alpha+2)+\lambda(3 \beta-1)]}
\end{array}\right.
$$

After some computations, we obtain the desired result.
Putting $\lambda=\beta=1$ in Theorem 2.6, we conclude the following result:
Corollary 2.7. If f belongs to the family $P_{\sigma}(0 ; x)$, then

$$
\left|a_{3}-\delta a_{2}^{2}\right| \leq \begin{cases}\frac{|M(x)|}{2} ; & \text { for }|\delta-1| \leq \frac{|N(x)|}{M^{2}(x)}, \\ \frac{|M(x)|^{3}|\delta-1|}{2|N(x)|} ; & \text { for }|\delta-1| \geq \frac{|N(x)|}{M^{2}(x)}\end{cases}
$$

Putting $\delta=1$ in Theorem 2.6, we conclude the following result:
Corollary 2.8. If f belongs to the family $\mathscr{L}_{M N}(\lambda, \alpha, \beta ; x)$, then

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{|M(x)|}{(1-\lambda)(\alpha+2)+\lambda(3 \beta-1)}
$$

References

[1] C. Abirami, N. Magesh and J. Yamini, Initial Bounds for Certain Classes of Bi-Univalent Functions Defined by Horadam Polynomials, Abstr. Appl. Anal., 2020, Article ID 7391058, https://doi.org/10.1155/2020/7391058.
[2] S. Altinkaya and S. Yalçin, Coefficient estimates for two new subclasses of bi-univalent functions with respect to symmetric points, J. Funct. Spaces Appl., 2015, Art. ID 145242, (2015), 1-5.
[3] S. Altinkaya and S. Yalçin, On the (p,q)-Lucas polynomial coefficient bounds of the bi-univalent function class σ, Bol. Soc. Mat. Mexicana 25(2019), 567-575.
[4] A. Amourah, Fekete-Szegő Inequality For Analytic And Bi-univalent Functions Subordinate To ($p ; q$)-Lucas Polynomials, arXiv:2004.00409 [math.CV]
[5] K. O. Babalola, On λ-pseudo-starlike functions, J. Classical Anal., 3(2)(2013), 137-147.
[6] D. A. Brannan , J. G. Clunie (eds), Aspects of contemporary complex analysis, in Proceedings of the NATO Advanced Study Institute (University of Durham, Durham; July 1-20, 1979), Academic Press, New York and London (1980).
[7] S. Bulut, N. Magesh and C. Abirami, A Comprehensive Class of Analytic Bi-univalent functions by means of Chebyshev Polynomials, J. Fract. Calc. and Appl., vol. 8 , no. 2 (2017), 32-39.
[8] M. Caglar, E. Deniz and H. M. Srivastava, Second Hankel determinant for certain subclasses of bi-univalent functions, Turkish J. Math., 41(2017), 694-706.
[9] P. L. Duren, Univalent Functions, Grundlehren Math. Wiss., Band 259, Springer Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[10] P. Filipponi and AF. Horadam, Derivative sequences of Fibonacci and Lucas polynomials, Applications of Fibonacci Numbers, 4(1991), 99-108.
[11] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24(2011), 1569-1573.
[12] GY. Lee and M. Asci, Some properties of the (p,q)-Fibonacci and (p,q)-Lucas polynomials, J. Appl. Math., 2012(2012), 1-18.
[13] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18(1967), 63-68.
[14] A. Lupas, A guide of Fibonacci and Lucas polynomials, Octogon Math. Mag., 7(1999), 2-12.
[15] S. S. Miller, P. T. Mocanu, Differential Subordinations. Theory and Applications, Marcel Dekker Inc., New York, Basel, 2000.
[16] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Ration. Mech. Anal., 32(1969), 100-112.
[17] Á. O. Páll-Szabó, G. I. Oros, Coefficient related studies for new classes of bi-univalent functions, MDPI Mathematics, 8, 1110(2020), https://doi.org/10.3390/math8071110.
[18] Á. O. Páll-Szabó, A.K. Wanas, Coefficient estimates for some new classes of bi-Bazilevič functions of Ma-Minda type involving the Sălăgean integro-differential operator, Quaest. Math., 44(2021), 495-502.
[19] R. Singh, On Bazilevič functions, Proc. Amer. Math. Soc., 38(2)(1973), 261-271.
[20] H. M. Srivastava, S. Altinkaya and S. Yalcin, Certain Subclasses of Bi-Univalent Functions Associated with the Horadam Polynomials, Iran. J. Sci. Technol. Trans. A Sci., 43 (2019), 1873-1879, https://doi.org/10.1007/s40995-018-0647-0.
[21] H. M. Srivastava and D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc., 23(2015), 242-246.
[22] H. M. Srivastava, S. Bulut, M. Caglar and N. Yagmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27(5)(2013), 831-842.
[23] H. M. Srivastava, S. S. Eker and R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29(2015), 1839-1845.
[24] H. M. Srivastava, S. S. Eker, S. G. Hamidi and J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator, Bull. Iranian Math. Soc., 44(1)(2018), 149-157.
[25] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afrika Mat., 28(2017), 693-706.
[26] H. M. Srivastava, S. Hussain, I. Ahmad and S. G. Ali Shah, Coefficient bounds for analytic and bi-univalent functions associated with some conic domains, J. Nonlinear Convex Anal., 23(4), (2022), 741-753.
[27] H. M. Srivastava, A. Motamednezhad and S. Salehian, Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial Expansion, Axioms, 10(1)(2021), 27, https://doi.org/10.3390/axioms10010027.
[28] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(2010), 1188-1192.
[29] H. M. Srivastava and A. K. Wanas, Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination, Kyungpook Math. J., 59(3)(2019), 493-503.
[30] H. M. Srivastava, A. K. Wanas, H. Ozlem Guney, New Families of Bi-univalent Functions Associated with the Bazilevic Functions and the λ-Pseudo-Starlike Functions, Iran. J. Sci. Technol. Trans. A Sci., 45(2021), 1799-1804, https://doi.org/10.1007/s40995-021-01176-3.
[31] S. R. Swamy, P. K. Mamatha, N. Magesh and J. Yamini, Certain subclasses of bi-univalent functions defined by Sălăgean operator with the (p; q)-Lucas polynomials, Adv. Math., 9 (2020), 8, 6017-6025, https://doi.org/10.37418/amsj.9.8.70.
[32] A. K. Wanas, Bounds for initial Maclaurin coefficients for a new subclasses of analytic and m-Fold symmetric bi-univalent functions, TWMS J. of Apl. Eng. Math., 10(2)(2020), 305-311.
[33] A. K. Wanas, Applications of Chebyshev polynomials on λ-pseudo bi-starlike and λ-pseudo bi-convex functions with respect to symmetrical points, TWMS J. of Apl. Eng. Math., 10(3)(2020), 568-573.
[34] A. K. Wanas and A. A. Lupaş, Applications of Horadam polynomials on Bazilevič bi-univalent function satisfying subordinate conditions, J. Phys.: Conf. Series, 1294(2019), 1-6.
[35] A. K. Wanas and A. H. Majeed, Chebyshev polynomial bounded for analytic and bi-univalent functions with respect to symmetric conjugate points, Appl. Math. E-Notes, 19(2019), 14-21.
[36] A. K. Wanas and S. Yalçin, Initial coefficient estimates for a new subclasses of analytic and m-Fold symmetric bi-univalent functions, Malaya J. of Matematik, 7(3)(2019), 472-476.
[37] A. K. Wanas and S. Yalçin, Coefficient estimates and Fekete-Szegő inequality for family of bi-univalent functions defined by the second kind Chebyshev polynomial, Int. J. Open Problems Compt. Math., 13(2020), 25-33.
[38] T. Wang and W. Zhang, Some identities involving Fibonacci, Lucas polynomials and their applications, §Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 55(2012), 95-103.

[^0]: 2020 Mathematics Subject Classification. Primary 30C45; Secondary 30C50
 Keywords. Bi-Univalent function, (M,N)-Lucas Polynomials, Coefficient bounds, Fekete-Szegő problem, Subordination
 Received: 26 January 2022; Revised: 17 June 2022; Accepted: 16 July 2022
 Communicated by Hari M. Srivastava
 Email addresses: abbas.kareem.w@qu.edu.iq (Abbas Kareem Wanas), salagean@math. ubbcluj .ro (Grigore Ştefan Sălăgean), agnes.pallszabo@econ.ubbcluj.ro (Páll-Szabó Ágnes Orsolya)

