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Abstract. In this study, we introduce a new kind of nonlinear Bernstein-Chlodowsky operators based
on q-integers. Firstly, we define the nonlinear q−Bernstein-Chlodowsky operators of max-product kind.
Then, we give an error estimation for the q−Bernstein Chlodowsky operators of max-product kind by
using a suitable generalizition of the Shisha-Mond Theorem. There follows an upper estimates of the
approximation error for some subclasses of functions.

1. Introduction

In recent years, q−calculus plays a significant role in the approximation of functions by a linear positive
operator so that the approximations are studied by suitable q−generalization of many operators known in
the literature.

Lupaş [23] introduced q−Bernstein operators and studied approximation and shape-preserving prop-
erties for these operators. Phillips [24] presented another generalization of Bernstein operators based on
the q−integers. In [21], the authors introduced the linear q-Bernstein-Chlodowsky operators and obtained
approximation properties for these new operators. Many other interesting generalizations of linear positive
operators based on the q-integers were defined and studied by several researchers [1], [14], [19]–[25].

In the Korovkin-type approximation theory, the main topic is the approximation of a continuous function
by a sequence of linear positive operators (see [2, 22]). In recent years, nonlinear positive operators have
been introduced instead of linear positive operators by Bede et al., [7] (see, also, [6]). Although the
Korovkin theorem fails for these nonlinear operators, they obtained that the nonlinear operators have a
similar approximation behavior to the linear operators.

In [4]–[13], the “max-product kind operators” were introduced and Jackson type error estimation was
given in terms of the modulus of continuity. These studies have been given a significant improvement in
the approximation theory owing to the non-linearity of operators.

Note that Bernstein operators have important applications in many fields. One of them is the creation
of Bézier curves, which are very important in computer aided geometric designs, by using Bernstein basis
functions.
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In [27], they studied a new construction of Bernstein operators with the help of Bézier bases with
shape parameter λ and established various approximation results. Moreover, the Stancu-type modification
of λ-Bernstein operators based on Bézier bases were introduced by Srivastava et al., [32]. Many other
generalization of some operators based on the Bézier type were defined and studied by several researchers
(see, [26], [28]–[31]). For future studies, the max-product type some operators based on Bézier bases can be
examined in the light of these studies.

In this paper, we propose a further improvement in max-product type operators which is based on
q-integers. Our main contribution is to give some novel results about the max-product type q-Bernstein-
Chlodowsky operators in the approximation theory.

This paper is organized as follows: in Section 2 some preliminary remarks are given. Section 3 shows
the construction of operators on q-integers. A fundamental theorem on error estimation by nonlinear q-
operators and the approximation error for some family of functions are given in Section 4. Conclusion and
a discussion on further developments are given in Section 5. In the appendix 6, the proofs of some theorem
and lemma are included.

2. Preliminary remarks

This section deals with some preliminary definitions and fundamentals on the theory of nonlinear
max-product operators.

2.1. Max-product operators
In the interval [0,+∞), it is defined a semi-ring structure with the operations “∨” (maximum) and “·”

(product) . Then, ([0,+∞), ∨,·) is called “max-product algebra” (see [4, 6]). Let I ⊂ [0,+∞) be a finite or
infinite interval and

CB+(I) =
{
f : I→ [0,+∞); f continuous and bounded on I

}
.

The general form of discrete max-product type approximation operators Ln : CB+(I)→ CB+(I) is defined by

Ln( f ; x) =
n∨

i=0

Kn(x, xi) f (xi), Ln( f ; x) =
∞∨

i=0

Kn(x, xi) f (xi)

where f ∈ CB+(I), n ∈ N and for all i, Kn(., xi) ∈ CB+(I), xi ∈ I. These operators are nonlinear positive
operators satisfying pseudo-linearity property, that is,

Ln(α. f ∨ β.1; x) = α.Ln( f ; x) ∨ β.Ln(1; x)

for any α, β ∈ [0,+∞) and for all f , 1 : I → [0,+∞). Additionally, the max-product operators are positive
homogeneous, i.e., ∀λ ≥ 0, Ln(λ. f ; x) = λ.Ln( f ; x).More details can be found in [7].

Güngör et al., [35] introduced the following nonlinear Bernstein-Chlodowsky operators of max-product
kind by replacing the sum operator “Σ ” with the max-operator “∨”.

C(M)
n

(
f
)

(x) =

∨n
k=0 hn,k(x) f

(
bnk
n

)∨n
k=0 hn,k(x)

, x ∈ [0, bn] (1)

with

hn,k(x) =
(
n
k

) ( x
bn

)k (
1 −

x
bn

)n−k
, f : [0, bn]→ R+

where x ∈ [0, bn] and (bn) is a sequence of positive real numbers such that limn→∞ bn = ∞ and limn→∞
bn
√

n
= 0.
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2.2. q-calculus

Let us first shortly summarize some elementary definitions about q-calculus.

Definition 2.1. For any fixed real number q > 0 and non-negative integer n, the q−integer of the number n is defined
by

[n]q :=
{ 1−qn

1−q , q , 1
n , q = 1

, [0]q := 0.

Definition 2.2. The q−factorial is defined by

[n]q! := [n]q...[2]q[1]q with [0]q! := 1.

Definition 2.3. For integers n and k, with 0 ≤ k ≤ n, the q-binomial coefficients are defined by[n
k

]
q

:=
[n]q!

[n − k]q![k]q!
.

For more information about the q−calculus, see e.g. [3].
In the following we will define a class of nonlinear q−Bernstein-Chlodowsky operators of max-product

kind and estimate the rate of pointwise convergence of these operators. Moreover, a better error estimate
for some subclasses of functions will be also given.

3. Construction of the Operators

In this section, a nonlinear approximation operator by modifying the Bernstein-Chlodowsky operators
(1) is defined. The construction is mainly based on the work of Bede et al. [6, 7].

Definition 3.1. Let f : [0, bn] → R+ be a continuous function. The nonlinear q−Bernstein-Chlodowsky operators
of max-product kind are defined as:

C(M)
n,q ( f ; x) =

n∨
i=0

sn,i,q (x) f
(

[i]qbn

[n]q

)
n∨

i=0
sn,i,q (x)

(2)

with

sn,i,q (x) =
[n

i

]
q

( x
bn

)i n−i∏
s=1

(
1 − qs x

bn

)
for all n ∈ N, q ∈ (0, 1) and x ∈ [0, bn] where (bn) be an increasing sequence of positive real numbers and satisfy the
properties:

lim
n→∞

bn = ∞ and lim
n→∞

bn√
[n]q
= 0

for n ∈N.
We will show the convergence for the operators C(M)

n,q ( f ; x) defined by (2). However, in order to get such an
approximation we have to replace the fixed single value q ∈ (0, 1) considered in Definition 3.1, with an appropriate
sequence (qn) whose terms still belong to the interval (0, 1). Otherwise, [n]q →

1
1−q as n→∞ for a fixed q.
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Definition 3.2. Let non-negative integer n and (qn) is a sequence of real numbers such that qn ∈ (0, 1) and
limn→∞ qn = 1. Then the q-sequence of q-integer of the number n is defined as

[n]qn = {[0]q0 , [1]q1 , [2]q2 , ..., [n]qn }.

There follows, according to Definition 2.1, that

[n]qn =
1 − qn

n

1 − qn
.

For example, let qn =
n+1
n+2 . Then

[0]q0 =
1 − q0

0

1 − q0
= 0, q0 ∈ (0, 1)

[1]q1 =
1 − q1

1

1 − q1
= 1, q1 ∈ (0, 1)

[2]q2 =
1 − q2

2

1 − q2
=

7
4
, q2 ∈ (0, 1)

....

[n]qn =
1 −

(
n+1
n+2

)n

1 − n+1
n+2

, qn ∈ (0, 1)

So that the q-sequence of the q-number is

[n]qn = {[0]q0 , [1]q1 , [2]q2 , ..., [n]qn } = {0, 1,
7
4
, ....,

1 −
(

n+1
n+2

)n

1 − n+1
n+2

}.

In order to obtain convergence for the nonlinear q−Bernstein-Chlodowsky operators of max-product kind (2), let
q := (qn) (replacing q with (qn)) is a sequence of real numbers such that qn ∈ (0, 1) and limn→∞ qn = 1, and (bn) is an
increasing sequence of positive real numbers and satisfy the properties:

lim
n→∞

bn = ∞ and lim
n→∞

bn√
[n]qn

= 0,

for n ∈N.

C(M)
n,qn

( f ; x) are positive and continuous on the interval [0, bn], and these operators satisfy the pseudo-linearity
property and positive homogeneous. Moreover, C(M)

n,qn
( f ; x) reduce to C(M)

n ( f ; x) given by (1) as qn → 1−, and
C(M)

n,qn
( f ; 0) − f (0) = 0, for all n.

For all x ∈ [0, bn] and qn ∈ (0, 1), since
n∨

i=0
sn,i,qn (x) > 0, C(M)

n,qn
( f ; x) is well-defined.

Let us give the following simple examples for the maximum function.

Example 1. Let f (x) = x3 + x2 + 1, bn = n1/3 and qn = 1 −
1
n
. Assume that

sn,i,qn (x) =
[n

i

]
qn

( x
bn

)i n−i∏
s=1

(1 − qs
n

x
bn

)

and

An,qn ( f ; x) = sn,i,qn (x) f
(

[i]qn bn

[n]qn

)
.
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In the first graph in Figure 1, we show the graph of sn,i,qn for values i = 0, 1, 2 (green,blue,red) and n = 4. Then
we also show the graph of the maximum function of sn,i,qn (black) relative to these i points.

In the second graph in Figure 1, we show the graph of An,qn for values i = 0, 1, 2 (green,blue,red) and n = 4. Then
we also show the graph of the maximum function of An,qn (black) relative to these i points.

Figure 1: The graph of sn,i,qn and An,qn , respectively, for i = 0, 1, 2 (green, blue, red) and its maximum function (black)

We need the following notations and lemmas for the proofs of the main results.

Definition 3.3. For each i, j ∈ {0, 1, 2, ...,n} and x ∈
[

[ j]qn bn

[n+1]qn
,

[ j+1]qn bn

[n+1]qn

]
, we define

Mi,n, j,qn (x) =

sn,i,qn (x)

∣∣∣∣∣∣ [i]qn bn

[n]qn

− x

∣∣∣∣∣∣
sn, j,qn (x)

(3)

and

mi,n, j,qn (x) =
sn,i,qn (x)
sn, j,qn (x)

. (4)

If i ≥ j + 1, then

Mi,n, j,qn (x) =
sn,i,qn (x)

(
[i]qn bn

[n]qn

− x
)

sn, j,qn (x)
(5)

and if i ≤ j − 1, then

Mi,n, j,qn (x) =
sn,i,qn (x)

(
x −

[i]qn bn

[n]qn

)
sn, j,qn (x)

. (6)

Definition 3.4. For each i, j ∈ {0, 1, 2, ...,n}, i ≥ j + 2 and x ∈
[

[ j]qn bn

[n+1]qn
,

[ j+1]qn bn

[n+1]qn

]
, we define

−

Mi,n, j,qn (x) =
sn,i,qn (x)

(
[i]qn bn

[n + 1]qn

− x
)

sn, j,qn (x)
(7)
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and for each i, j ∈ {0, 1, 2, ...,n}, i ≤ j − 2 and x ∈
[

[ j]qn bn

[n+1]qn
,

[ j+1]qn bn

[n+1]qn

]
,

∼
Mi,n, j,qn (x)(x) =

sn,i,qn (x)
(
x −

[i]qn bn

[n + 1]qn

)
sn, j,qn (x)

. (8)

Lemma 3.5. Let x ∈
[

[ j]qn bn

[n+1]qn
,

[ j+1]qn bn

[n+1]qn

]
, for all n ∈N and j ∈ {0, 1, 2, ...,n}.Then, we obtain the following inequalities:

(a) for all i ∈ {0, 1, 2, ...,n}, i ≥ j + 2, we have

−

Mi,n, j,qn (x) ≤Mi,n, j,qn (x) ≤
−

Mi,n, j,qn (x)
(
1 +

2
qn+1

n

)
,

(b) for all i ∈ {0, 1, 2, ...,n}, i ≤ j − 1, we have

Mi,n, j,qn (x) ≤
∼
Mi,n, j,qn (x) ≤Mi,n, j,qn (x)

(
1 +

2
qn

n

)
.

Proof. See the proof in the appendix.

Lemma 3.6. Let x ∈
[

[ j]qn bn

[n+1]qn
,

[ j+1]qn bn

[n+1]qn

]
, for all n ∈N and i, j ∈ {0, 1, 2, ...,n}. Then, we have

mi,n, j,qn (x) ≤ 1.

Proof. We have two cases: a) i ≥ j and b) i ≤ j.

Case a. Let i ≥ j. Since the function 1(x) = bn−qn−i
n x

x is nonincreasing on the interval
[

[ j]qn bn

[n+1]qn
,

[ j+1]qn bn

[n+1]qn

]
, it

follows from (4) that

mi,n, j,qn (x)
mi+1,n, j,qn (x)

=
[i + 1]qn

[n − i]qn

(bn − qn−i
n x)

x

≥
[i + 1]qn

[n − i]qn

[n + 1]qn bn − qn−i
n [ j + 1]qn bn

[ j + 1]qn bn
,

Since [i + 1]qn ≥ [ j + 1]qn , we get

mi,n, j,qn (x)
mi+1,n, j,qn (x)

≥
[n + 1]qn − qn−i

n [ j + 1]qn

[n − i]qn

=
1 − qn+1

n − qn−i
n (1 − q j+1

n )

1 − qn−i
n

= 1.

Then, we conclude that

1 = m j,n, j,qn (x) ≥ m j+1,n, j,qn (x) ≥ m j+2,n, j,qn (x) ≥ ... ≥ mn,n, j,qn (x).

Therefore, the proof of the case (a) is complete.

Case b. Let i ≤ j. The function h(x) = x
bn−qn−i+1

n x is nondecreasing on the interval
[

[ j]qn bn

[n+1]qn
,

[ j+1]qn bn

[n+1]qn

]
. Also,

since [i]qn ≤ [ j]qn , similarly to (a), we can write

mi,n, j,qn (x)
mi−1,n, j,qn (x)

≥
[n − i + 1]qn

[n + 1]qn − qn−i+1
n [i]qn

=
1 − qn−i+1

n

1 − qn+1
n − qn−i+1

n (1 − qi
n)

= 1.
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Then, we clearly get

1 = m j,n, j,qn (x) ≥ m j−1,n, j,qn (x) ≥ m j−2,n, j,qn (x) ≥ ... ≥ m0,n, j,qn (x),

which completes the proof of the lemma.

Lemma 3.7. Let x ∈
[

[ j]qn bn

[n+1]qn
,

[ j+1]qn bn

[n+1]qn

]
for all n ∈N and j ∈ {0, 1, 2, ...,n}.

(a) if i ∈ { j + 2, j + 3, ...,n − 1} is such that [i + 1]qn −

√
qi

n[i + 1]qn ≥ [ j + 1]qn , then

−

Mi,n, j,qn (x) ≥
−

Mi+1,n, j,qn (x),

(b) if i ∈ {1, 2, ..., j − 2} is such that [i]qn +
√

qi−1
n [i]qn ≥ [ j]qn , then

∼
Mi,n, j,qn (x) ≥

∼
Mi−1,n, j,qn (x).

Proof. See the proof in the appendix.

Lemma 3.8. Let x ∈
[

[ j]qn bn

[n+1]qn
,

[ j+1]qn bn

[n+1]qn

]
for all n ∈N and j ∈ {0, 1, 2, ...,n}. Denoting

sn,i,qn (x) =
[n

i

]
qn

( x
bn

)i n−i∏
s=1

(1 − qs
n

x
bn

),

we have

n∨
i=0

sn,i,qn (x) = sn, j,qn (x) .

Proof. See the proof in the appendix.

4. Degree of approximation by C(M)
n,qn

( f )

In this section, we give an error estimate in terms of modulus of continuity for C(M)
n,qn

( f ) by using the
Shisha-Mond Theorem given for nonlinear max-product type operators in [6, 7].

Theorem 4.1. Let q := (qn) is a sequence of real numbers such that qn ∈ (0, 1) and limn→∞ qn = 1. If f : [0, bn]→ R+
is a continuous function and C(M)

n,qn
( f ; x) are the nonlinear q−Bernstein-Chlodowsky operators of max-product kind

defined in (2), then the following pointwise estimate holds

∣∣∣C(M)
n,qn

( f ; x) − f (x)
∣∣∣ ≤ 4

(
1 +

2
qn+1

n

)
ω1

 f ;
bn√
[n]qn

 ,
where ω1( f ; δ) = sup{| f (x) − f (y)|; x, y ∈ [0, bn], |x − y| ≤ δ}.

Proof. By using the Shisha-Mond Theorem, we get∣∣∣C(M)
n,qn

( f ; x) − f (x)
∣∣∣ ≤ (

1 +
1
δn

C(M)
n,qn

(φx; x)
)
ω1

(
f ; δn

)
,
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where φx(t) = |t − x| . Therefore, it is enough to estimate only the following term

C(M)
n,qn

(φx; x) =

n∨
i=0

sn,i,qn (x)

∣∣∣∣∣∣ [i]qn bn

[n]qn

− x

∣∣∣∣∣∣
n∨

i=0
sn,i,qn (x)

.

Firstly, let x ∈
[

[ j]qn bn

[n+1]qn
,

[ j+1]qn bn

[n+1]qn

]
for a fixed j ∈ {0, 1, 2, ...,n}. Then, from Lemma 3.8,we have

C(M)
n,qn

(φx; x) =
n∨

i=0

Mi,n, j,qn (x), (9)

where Mi,n, j,qn (x) is the same as (5).For i ∈ {0, 1, 2, ...,n} and j = 0, we get Mi,n,0,qn (x) ≤ bn
[n]qn

for all x ∈
[
0, bn

[n+1]qn

]
.

Indeed, if j = i = 0, then M0,n,0,qn (x) = x ≤ bn
[n]qn

for all x ∈
[
0, bn

[n+1]qn

]
. Also, if i ∈ {1, 2, 3, ...,n} and j = 0, for all

x ∈
[
0, bn

[n+1]qn

]
, we obtain that

Mi,n,0,qn (x) =

sn,i,qn (x)
(

[i]qn bn

[n]qn

− x
)

sn,0,qn (x)

≤
[n − i + 1]qn

[n + 1]qn − qn−i+1
n

...
[n]qn

[n + 1]qn − qn
n
.

bn

[i − 1]qn ![n]qn

,

for all x ∈
[
0, bn

[n+1]qn

]
.Here, for each k = 1, 2, 3, ..., i,we observe that [n−i+k]qn

[n+1]qn−qn−i+k
n
≤ 1. Consequently, the above

inequality gives that Mi,n,0,qn (x) ≤ bn
[n]qn
.

Now, let i ∈ {0, 1, 2, ...,n} and j ∈ {1, 2, ...,n} .We can easily show (see the proof in the appendix) that the
inequality

Mi,n, j,qn (x) ≤

(
1 + 2

qn+1
n

)
bn√

[n + 1]qn

(10)

holds for x ∈
[

[ j]qn bn

[n+1]qn
,

[ j+1]qn bn

[n+1]qn

]
. As a result, from this claim and the above inequalities we conclude that

C(M)
n,qn

(φx; x) ≤
2bn

(
1 + 2

qn+1
n

)
√

[n]qn

for all i, j ∈ {0, 1, 2, ...,n}, n ∈N and x ∈ [0, bn], and taking δn =
2bn

(
1+ 2

qn+1
n

)
√

[n]qn
,we obtain the estimate

∣∣∣C(M)
n,qn

( f ; x) − f (x)
∣∣∣ ≤ 4

(
1 +

2
qn+1

n

)
ω1

 f ;
bn√
[n]qn

 .
So that the proof is achieved.

In the following, we illustrate the rate of convergence of the operators C(M)
n,qn

to certain functions by
graphics. We also compare the convergence of the max-product (nonlinear) q-Bernstein-Chlodowsky
operators and the classical linear q-Bernstein-Chlodowsky operators (see [21]) to functions.
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Remark 4.2. The classical linear q-Bernstein-Chlodowsky operators have the following form

Cn,qn ( f ; x) =
n∑

i=0

f
(

[i]qn

[n]qn

bn

) [n
i

]
qn

( x
bn

)i n−i−1∏
s=0

(
1 − qs

n
x
bn

)
,

where x ∈ [0, bn] and (bn) is a sequence of positive real numbers such that limn→∞ bn = ∞, limn→∞
bn

[n]qn

= 0 and

(qn) is a sequence of real numbers such that qn ∈ (0, 1) and limn→∞ qn = 1 (see [21]).

Note that we prefer
n−i∏
s=1

(1 − qs
n

x
bn

), as opposed to the classical linear q-Bernstein-Chlodowsky operators due

to some technical complexity from the q-calculus.

Example 2. Let f (x) = |4sin(πx) − 2| , bn = n1/5 and qn = 1 −
1
n
.

In the first graph in Figure 2, we show the operators C(M)
n,qn

approximation to f (x)(black) for the values n =
5, 15, 25(red, green, blue). Later, in the second graph in Figure 2, we illustrate the convergence of the operators
C(M)

n,qn
(blue) and Cn,qn (red) to f (x)(black) for n = 25.

Figure 2: Approximation to the function f (x) = |4sin(πx) − 2|

Example 3. Let f (x) = e−sin(πx), bn = n1/5 and qn = 1 −
1
n
.

In the first graph in Figure 3, we show the operators C(M)
n,qn

approximation to f (x)(black) for the values n =
5, 15, 25(red, green, blue). Later, we illustrate the convergence of the operators C(M)

n,qn
(blue) and Cn,qn (red) to f (x)(black)

for n = 25 in the second graph.

As a result, from the second graph in Figure 2 and Figure 3, it is clearly seen that for the corresponding
functions, the max- product (nonlinear) q-Bernstein-Chlodowsky operators approximate much better than
the classical linear q-Bernstein-Chlodowsky operators.
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Figure 3: Approximation to the function f (x) = e−sin(πx)

Example 4. Let f (x) = x4e−4x, bn = n1/3 and qn = 1 −
1
n
. The approximation of C(M)

n,qn
to f (x) is shown in Table 1 for

different values n.

Table 1: The error estimation of f (x) = x4e−4x by using modulus of continuity

n Estimation for modulus of continuity of function

10 0.07257148244
102 0.06316331032
103 0.04847666096
104 0.03492674332
105 0.02442452536

Now, we make the following observation to get a better order of approximation for subclasses of
functions f .

For any i, j ∈ {0, 1, 2, ...,n}, n ∈N, consider the function

fi,n, j,qn (x) :
[

[ j]qn bn

[n + 1]qn

,
[ j + 1]qn bn

[n + 1]qn

]
→ R

defined by

fi,n, j,qn (x) = mi,n, j,qn (x) f
(

[i]qn bn

[n]qn

)
=

[
n
i

]
qn

(
x
bn

)i n−i∏
s=1

(1 − qs
n

x
bn

)

[
n
j

]
qn

(
x
bn

) j n− j∏
s=1

(1 − qs
n

x
bn

)

f
(

[i]qn bn

[n]qn

)
.

Thus, for any j ∈ {0, 1, 2, ...,n} and x ∈
[

[ j]qn bn

[n+1]qn
,

[ j+1]qn bn

[n+1]qn

]
,we can write

C(M)
n,qn

( f ; x) =
n∨

i=0

fi,n, j,qn (x).



Ö. Ö. Güller et al. / Filomat 37:4 (2023), 1065–1085 1075

Lemma 4.3. Let f : [0, bn]→ [0,∞). If

C(M)
n,qn

( f ; x) = max{ f j,n, j,qn (x), f j+1,n, j,qn (x)},

for all x ∈
[

[ j]qn bn

[n+1]qn
,

[ j+1]qn bn

[n+1]qn

]
, n ∈N. Then

∣∣∣C(M)
n,qn

( f ; x) − f (x)
∣∣∣ ≤ 3ω1

(
f ;

bn

[n]qn

)
.

Proof. See the proof in the appendix.

Lemma 4.4. Let f : [0, bn]→ [0,∞). If

C(M)
n,qn

( f ; x) = max{ f j−1,n, j,qn (x), f j,n, j,qn (x)},

for all x ∈
[

[ j]qn bn

[n+1]qn
,

[ j+1]qn bn

[n+1]qn

]
, n ∈N. Then

∣∣∣C(M)
n,qn

( f ; x) − f (x)
∣∣∣ ≤ 2ω1

(
f ;

bn

[n]qn

)
.

Proof. See the proof in the appendix.

Lemma 4.5. Let f : [0, bn]→ [0,∞), n ∈N. If

C(M)
n,qn

( f ; x) = max{ f j−1,n, j,qn (x), f j,n, j,qn (x), f j+1,n, j,qn (x)},

for all x ∈
[

[ j]qn bn

[n+1]qn
,

[ j+1]qn bn

[n+1]qn

]
. Then

∣∣∣C(M)
n,qn

( f ; x) − f (x)
∣∣∣ ≤ 3ω1

(
f ;

bn

[n]qn

)
.

Proof. Let x ∈
[

[ j]qn bn

[n+1]qn
,

[ j+1]qn bn

[n+1]qn

]
be fixed such that

C(M)
n,qn

( f ; x) = f j,n, j,qn (x) or C(M)
n,qn

( f ; x) = f j+1,n, j,qn (x).

Then C(M)
n,qn

( f ; x) = max{ f j,n, j,qn (x), f j+1,n, j,qn (x)} and from Lemma 4.3,we get

∣∣∣C(M)
n,qn

( f ; x) − f (x)
∣∣∣ ≤ 3ω1

(
f ;

bn

[n]qn

)
.

If C(M)
n,qn

( f ; x) = f j−1,n, j,qn (x), then C(M)
n,qn

( f ; x) = max{ f j−1,n, j,qn (x), f j,n, j,qn (x)} and from Lemma 4.4,we get

∣∣∣C(M)
n,qn

( f ; x) − f (x)
∣∣∣ ≤ 2ω1

(
f ;

bn

[n]qn

)
which completes the proof.

Lemma 4.6 (see [7]). Let f : [0, bn]→ [0,∞) be a concave function. Then the following properties hold:

(a) the function 1 : (0, bn]→ [0,∞), 1(x) = f (x)
x is nonincreasing,

(b) the function h : [0, bn)→ [0,∞), h(x) = f (x)
bn−x is nondecreasing.
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Corollary 4.7. Let f : [0, bn]→ [0,∞) be a concave function. Then

∣∣∣C(M)
n,qn

( f ; x) − f (x)
∣∣∣ ≤ 3ω1

(
f ;

bn

[n]qn

)
for all n ∈N, x ∈ [0, bn].

Proof. Suppose that x ∈ [0, bn] and for i, j ∈ {0, 1, 2, ...,n}, x ∈
[

[ j]qn bn

[n+1]qn
,

[ j+1]qn bn

[n+1]qn

]
. If i ≥ j, then

fi+1,n, j,qn (x) =

[
n

i+1

]
qn

(
x
bn

)i+1 n−i−1∏
s=1

(1 − qs
n

x
bn

)

[
n
j

]
qn

(
x
bn

) j n− j∏
s=1

(1 − qs
n

x
bn

)

f
(

[i + 1]qn bn

[n]qn

)

=

[
n
i

]
qn[

n
j

]
qn

[n − i]qn

[i + 1]qn

( x
bn

)i− j
(

x
bn − qn−i

n x

)
f
(

[i + 1]qn bn

[n]qn

)
.

From Lemma 4.6(a),we shall write

f
(

[i + 1]qn bn

[n]qn

)
/

[i + 1]qn bn

[n]qn

≤ f
(

[i]qn bn

[n]qn

)
/

[i]qn bn

[n]qn

,

i.e.,

f
(

[i + 1]qn bn

[n]qn

)
≤

[i + 1]qn

[i]qn

f
(

[i]qn bn

[n]qn

)
,

and since

x
bn − qn−i

n x
≤

[ j + 1]qn

[n + 1]qn − qn−i
n [ j + 1]qn

,

we get the following inequality:

fi+1,n, j,qn (x) ≤

[
n
i

]
qn[

n
j

]
qn

[n − i]qn

[i + 1]qn

[ j + 1]qn [i + 1]qn

([n + 1]qn − qn−i
n [ j + 1]qn )[i]qn

( x
bn

)i− j
f
(

[i]qn bn

[n]qn

)

= fi,n, j,qn (x)
[ j + 1]qn

[i]qn

.

For i ≥ j + 1 and qn ∈ (0, 1), from the above inequality, we obtain fi,n, j,qn (x) ≥ fi+1,n, j,qn (x). Hence

f j+1,n, j,qn (x) ≥ f j+2,n, j(x) ≥ ... ≥ fn,n, j(x). (11)

We can use a similar method for i ≤ j. Then we find the inequality

fi−1,n, j,qn (x) ≤ fi,n, j,qn (x)
[n]qn − [i − 1]qn

[n]qn − [i]qn

.

For i ≤ j − 1 and qn ∈ (0, 1), from the above inequality, we can write fi,n, j,qn (x) ≥ fi−1,n, j,qn (x). Hence

f j−1,n, j,qn (x) ≥ f j−2,n, j(x) ≥ ... ≥ f0,n, j(x). (12)
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Consequently, by using (11) and (12),we get

C(M)
n,qn

( f ; x) = max{ f j−1,n, j,qn (x), f j,n, j,qn (x), f j+1,n, j,qn (x)},

and finally from Lemma 4.5∣∣∣C(M)
n,qn

( f ; x) − f (x)
∣∣∣ ≤ 3ω1

(
f ;

bn

[n]qn

)
which proves the corollary.

5. Conclusions

In recent years, the nonlinear max-product type operators have been studied by some authors (see,
[4]–[13],[15]–[18]). In the present paper, nonlinear max-product type q-Bernstein-Chlodowsky operators
are introduced. Moreover, the degree of approximation and the rate of convergence of the operators are
investigated by using the modulus of continuity. Later, some upper estimates of approximation error for
some subclasses of functions are obtained. As a result, the max-product type q-Bernstein-Chlodowsky
operators approximate better than the classical linear q-Bernstein-Chlodowsky operators. In addition, until
now, there is no such study in nonlinear max-product type operators based on q-integers. The purpose
of this study is to fill this gap in the literature. As future work, the shape-preserving properties for these
operators may be investigated and similar studies may be integrated into other convenient operators.

Finally, note that there is a clear connection between the classical q-calculus used in this study and the
so-called (p, q)-calculus. The results of the q-analogues (0 < q < 1) which we have discussed in this article
can be easily translated into the corresponding results for the (p, q)-analogues (0 < q < p ≤ 1) with some
parametric and argument variations. Therefore, the additional p parameter is unnecessary. Moreover, in
[33] (see, pp. 340), the authors clearly discourage some authors’ tendency to trivially use the so-called
(p, q)-calculus (see, also, pp. 1511-1512, in [34]).

6. Appendix

Proof of Lemma 3.5. (a) From (5) and (7), it is obvious that the inequality
−

Mi,n, j,qn (x) ≤ Mi,n, j,qn (x). Also,
we have

Mi,n, j,qn (x)
−

Mi,n, j,qn (x)
=

[i]qn bn

[n]qn

− x

[i]qn bn

[n + 1]qn

− x
≤

[i]qn bn

[n]qn

−
[ j]qn bn

[n + 1]qn

[i]qn bn

[n + 1]qn

−
[ j + 1]qn bn

[n + 1]qn

.

Now, using the fact that [n + 1]qn = [n]qn + qn
n and [i]qn ≤ [n]qn we can write

Mi,n, j,qn (x)
−

Mi,n, j,qn (x)
≤

[i]qn [n]qn + [i]qn qn
n − [ j]qn [n]qn

[n]qn

(
[i]qn − [ j + 1]qn

)
≤

[i]qn + qn
n − [ j]qn

[i]qn − [ j + 1]qn

≤
[i]qn + qn

n − [ j]qn

[i]qn − [ j]qn − q j
n

= 1 +
q j

n + qn
n

[i]qn − [ j]qn − q j
n

≤ 1 +
2

[i]qn − [ j]qn − q j
n

and since i ≥ j + 2, j ≤ n,we get

[i]qn − [ j]qn − q j
n ≥ [ j + 2]qn − [ j]qn − q j

n ≥ q j+1
n ≥ qn+1

n .
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Therefore, we obtain that

Mi,n, j,qn (x)
−

Mi,n, j,qn (x)
≤ 1 +

2
qn+1

n
,

which proves (a).

(b) By (6) and (8), we easily Mi,n, j,qn (x) ≤
∼
Mi,n, j,qn (x). Additionally, similarly to (a),we observe that

Mi,n, j,qn (x)
∼
Mi,n, j,qn (x)

≤ 1 +
2

[i]qn − [ j]qn − qn
n

and since i ≤ j − 2, j ≤ n, we may write that

[i]qn − [ j]qn − qn
n ≥ [i]qn − [ j − 2]qn − qn

n

= q j−2
n + q j−1

n − qn
n

≥ qn
n.

Hence, we get

Mi,n, j,qn (x)
∼
Mi,n, j,qn (x)

≤ 1 +
2
qn

n
,

which completes the proof.

Proof of Lemma 3.7. (a) Let i ∈ { j + 2, j + 3, ...,n − 1} and [i + 1]qn −

√
qi

n[i + 1]qn ≥ [ j + 1]qn .

−

Mi,n, j,qn (x)
−

Mi+1,n, j,qn (x)
=

[i + 1]qn

[n − i]qn

bn − qn−i
n x

x

[i]qn bn

[n+1]qn
− x

[i+1]qn bn

[n+1]qn
− x
.

Since the function α(x) = bn−qn−i
n x

x ·
[i]qn bn−x[n+1]qn

[i+1]qn bn−x[n+1]qn
is nonincreasing on the interval

[
[ j]qn bn

[n+1]qn
,

[ j+1]qn bn

[n+1]qn

]
,we get

−

Mi,n, j,qn (x)
−

Mi+1,n, j,qn (x)
≥

[i + 1]qn

[n − i]qn

bn − qn−i
n

[ j+1]qn bn

[n+1]qn

[ j+1]qn bn

[n+1]qn

[i]qn bn − [ j + 1]qn bn

[i + 1]qn bn − [ j + 1]qn bn

≥
[i + 1]qn

[n − i]qn

[n + 1]qn bn − qn−i
n [i + 1]qn bn

[ j + 1]qn bn

[i]qn bn − [ j + 1]qn bn

[i + 1]qn bn − [ j + 1]qn bn

=
[i + 1]qn

[ j + 1]qn

[i]qn − [ j + 1]qn

[i + 1]qn − [ j + 1]qn

.

The hypothesis [i + 1]qn −

√
qi

n[i + 1]qn ≥ [ j + 1]qn is equivalent to

[i + 1]qn −

√
[i + 1]2

qn
− [i]qn [i + 1]qn ≥ [ j + 1]qn ,

which implies that [i + 1]qn ([i]qn − [ j + 1]qn ) ≥ [ j + 1]qn ([i + 1]qn − [ j + 1]qn ). Consequently,

−

Mi,n, j,qn (x)
−

Mi+1,n, j,qn (x)
≥ 1.
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(b) Let i ∈ {1, 2, ..., j − 2} and [i]qn +
√

qi−1
n [i]qn ≥ [ j]qn . Then we may easily write

∼
Mi,n, j,qn (x)
∼
Mi−1,n, j,qn (x)

=
[n − i + 1]qn

[i]qn

x
bn − qn−i+1

n x

x − [i]qn bn

[n+1]qn

x − [i−1]qn bn

[n+1]qn

.

Since the function β(x) = x
bn−qn−i+1

n x .
x[n+1]qn−[i]qn bn

x[n+1]qn−[i−1]qn bn
is nondecreasing on the interval

[
[ j]qn bn

[n+1]qn
,

[ j+1]qn bn

[n+1]qn

]
,we get

∼
Mi,n, j,qn (x)
∼
Mi−1,n, j,qn (x)

≥
[n − i + 1]qn

[i]qn

[ j]qn bn

[n + 1]qn bn − qn−i+1
n [ j]qn bn

[ j]qn bn − [i]qn bn

[ j]qn bn − [i − 1]qn bn

=
[ j]qn

[i]qn

[ j]qn − [i]qn

[ j]qn − [i − 1]qn

.

The hypothesis [i]qn +
√

qi−1
n [i]qn ≥ [ j]qn is equivalent to [i]qn +

√
[i]2

qn
− [i]qn [i − 1]qn ≥ [ j]qn ,which implies that

[ j]qn ([ j]qn − [i]qn ) ≥ [i]qn ([ j]qn − [i − 1]qn ),we obtain
∼
Mi,n, j,qn (x)
∼
Mi−1,n, j,qn (x)

≥ 1.

Proof of Lemma 3.8. We claim that for fixed n ∈N and 0 ≤ i < i + 1 ≤ n,we have

0 ≤ sn,i+1,qn (x) ≤ sn,i,qn (x)

if and only if

0 ≤ x ≤ [i+1]qn bn

[n+1]qn
.

In this case, from the
[

n
i+1

]
qn
+ qn−i

n

[
n
i

]
qn
=

[
n+1
i+1

]
qn

equation after some simplification,we can write

0 ≤

[ n
i + 1

]
qn

( x
bn

)i+1 n−i−1∏
s=1

(1 − qs
n

x
bn

) ≤
[n

i

]
qn

( x
bn

)i n−i∏
s=1

(1 − qs
n

x
bn

)

and we can reduce the above inequality to

0 ≤ x ≤ [i+1]qn bn

[n+1]qn
.

Hence, by taking i = 0, 1, 2, ...,n − 1 in the inequality above, we get

sn,1,qn (x) ≤ sn,0,qn (x) if and only if x ∈
[
0, bn/[n + 1]qn

]
,

sn,2,qn (x) ≤ sn,1,qn (x) if and only if x ∈
[
0, bn[2]qn/[n + 1]qn

]
,

...

sn,i+1,qn (x) ≤ sn,i,qn (x) if and only if x ∈
[
0, bn[i + 1]qn/[n + 1]qn

]
,

...

sn,n,qn (x) ≤ sn,n−1,qn (x) if and only if x ∈
[
0, bn[n]qn/[n + 1]qn

]
.

As a result, for all i = 0, 1, 2, ...,n, we obtain

if 0 ≤ x ≤ bn
[n+1]qn

then sn,i,qn (x) ≤ sn,0,qn (x),

if bn
[n+1]qn

≤ x ≤ [2]qn bn

[n+1]qn
then sn,i,qn (x) ≤ sn,1,qn (x),

...

if [n]qn bn

[n+1]qn
≤ x ≤ bn[n + 1]qn then sn,i,qn (x) ≤ sn,n,qn (x).
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The proof is completed.
Proof of Theorem 4.1. Let i ∈ {0, 1, 2, ...,n} and j ∈ {1, 2, ...,n} .We claim that the inequality

Mi,n, j,qn (x) ≤

(
1 + 2

qn+1
n

)
bn√

[n + 1]qn

holds for x ∈
[

[ j]qn bn

[n+1]qn
,

[ j+1]qn bn

[n+1]qn

]
. The proof will be divided into the following five possible cases:

(a) i ∈ { j − 1, j, j + 1},

(b) i ≥ j + 2 and [i + 1]qn −

√
qi

n[i + 1]qn < [ j + 1]qn ,

(c) i ≥ j + 2 and [i + 1]qn −

√
qi

n[i + 1]qn ≥ [ j + 1]qn ,

(d) i ≤ j − 2 and [i]qn +
√

qi−1
n [i]qn ≥ [ j]qn ,

(e) i ≤ j − 2 and [i]qn +
√

qi−1
n [i]qn < [ j]qn .

Case a. If i = j − 1, then it follows from Lemma 3.6 and (6)

M j−1,n, j,qn (x) ≤
[ j + 1]qn bn

[n + 1]qn

−
[ j − 1]qn bn

[n]qn

≤
(q j−1

n + q j
n)bn

[n + 1]qn

≤
2bn

[n + 1]qn

.

If i = j, by Lemma 3.6 , we obtain that

M j,n, j,qn (x) =

∣∣∣∣∣∣ [ j]qn bn

[n]qn

− x

∣∣∣∣∣∣ ≤ bn

[n + 1]qn

.

If i = j + 1, then using again Lemma 3.6 and (5), we have

M j+1,n, j,qn (x) ≤
[n + 1]qn [ j + 1]qn bn − [n]qn [ j]qn bn

[n]qn [n + 1]qn

=

(
qn

n[ j]qn + q j
n[n]qn + qn+ j

n

)
bn

[n]qn [n + 1]qn

≤

(
qn

n + qi
n + qn+ j

n

)
bn

[n + 1]qn

≤
3bn

[n + 1]qn

.

Case b. Let i ≥ j + 2 and [i + 1]qn −

√
qi

n[i + 1]qn < [ j + 1]qn , then

−

Mi,n, j,qn (x) = mi,n, j,qn (x)
(

[i]qn bn

[n + 1]qn

− x
)
≤

[i]qn bn

[n + 1]qn

−
[ j]qn bn

[n + 1]qn

.

By hypothesis, since

qn[i]qn −

√
qi

n[i + 1]qn < qn[ j]qn ,

we get

−

Mi,n, j,qn (x) ≤

√
qi−2

n [i + 1]qn bn

[n + 1]qn

≤

√
qi−2

n [n + 1]qn bn

[n + 1]qn

.
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since i − 2 ≥ 0,we can write

−

Mi,n, j,qn (x) ≤
bn√

[n + 1]qn

.

Also using Lemma 3.5(a),we obtain that

Mi,n, j,qn (x) ≤

(
1 + 2

qn+1
n

)
bn√

[n + 1]qn

.

Case c. i ≥ j + 2 and [i + 1]qn −

√
qi

n[i + 1]qn ≥ [ j + 1]qn . In this case, we first show that the function

h(i) = [i + 1]qn −

√
qi

n[i + 1]qn is increasing with respect to i. Indeed, we may write that

h(i + 1) − h(i) ≥ [i + 2]qn − [i + 1]qn +

√
qi

n[i + 1]qn −

√
qi

n[i + 2]qn

= qi+1
n −

q
i
2
n qi+1

n√
[i + 1]qn +

√
[i + 2]qn

≥ qi+1
n

1 −
1√

[i + 1]qn +
√

[i + 2]qn

 > 0.

Hence, there exists
∼

i ∈ {0, 1, 2, ...,n} of maximum value such that

[
∼

i + 1]qn −

√
q
∼
i
n[
∼

i + 1]qn < [ j + 1]qn .

Then for
−

i =
∼

i + 1, we get [
−

i + 1]qn −

√
q
−

i
n[
−

i + 1]qn ≥ [ j + 1]qn and

−

M−

i ,n, j,qn
(x) = m−

i ,n, j,qn
(x)

 [
−

i]qn bn

[n + 1]qn

− x


≤

[
∼

i + 1]qn bn

[n + 1]qn

−
[ j]qn bn

[n + 1]qn

.

Since [
∼

i + 1]qn − q j
n −

√
q
∼
i
n[
∼

i + 1]qn < [ j]qn ,we see that

−

M−

i ,n, j,qn
(x) ≤

[
∼

i + 1]qn bn

[n + 1]qn

−

(
[
∼

i + 1]qn − q j
n −

√
q
∼
i
n[
∼

i + 1]qn

)
bn

[n + 1]qn

≤

(
1 +

√
[n + 1]qn

)
bn

[n + 1]qn

≤
2bn√

[n + 1]qn

.

Also, we have
−

i ≥ j + 2. Indeed, this is a consequence of the fact that h(i) is increasing and it is easy to see

that h( j+1) < [ j+1]qn . By Lemma 3.7(a), it follows that
−

M−

i ,n, j,qn
(x) ≥

−

M−

i+1,n, j,qn
(x) ≥ ... ≥

−

Mn,n, j,qn (x).We obtain
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−

Mi,n, j,qn (x) ≤ 2bn√
[n+1]qn

for any i ∈ {
−

i ,
−

i + 1, ...,n}. Thus, for the same i’s, it follows from Lemma 3.5(a) that

Mi,n, j,qn (x) ≤
2
(
1 + 2

qn+1
n

)
bn√

[n + 1]qn

.

Case d. Let i ≤ j − 2 and [i]qn +
√

qi−1
n [i]qn ≥ [ j]qn . Then

∼
Mi,n, j,qn (x) = mi,n, j,qn (x)

(
x −

[i]qn bn

[n + 1]qn

)
≤

[ j + 1]qn bn

[n + 1]qn

−
[i]qn bn

[n + 1]qn

=

(
[ j]qn + q j

n

)
bn

[n + 1]qn

−
[i]qn bn

[n + 1]qn

.

Using Lemma 3.5(b) and from hypothesis, we conclude that

Mi,n, j,qn (x) ≤

(√
qi−1

n [i]qn + q j
n

)
bn

[n + 1]qn

≤
2bn√

[n + 1]qn

.

Case e. Let i ≤ j − 2 and [i]qn +
√

qi−1
n [i]qn < [ j]qn . Let

∼

i ∈ {0, 1, 2, ...,n} be the minimum value such that

[
∼

i]qn +

√
q
∼
i−1
n [

∼

i]qn ≥ [ j]qn . Then
−

i =
∼

i − 1 satisfies [
∼

i − 1]qn +

√
q
∼
i−2
n [

∼

i − 1]qn < [ j]qn and

∼
M∼

i−1,n, j,qn
(x) = m∼

i−1,n, j,qn
(x)

x −
[
∼

i − 1]qn bn

[n + 1]qn


≤

(
[ j]qn + q j

n

)
bn

[n + 1]qn

−
[
∼

i − 1]qn bn

[n + 1]qn

.

Since [
∼

i]qn +

√
q
∼
i−1
n [

∼

i]qn ≥ [ j]qn ,we see that

∼
M−

i−1,n, j,qn
(x) ≤

(
[
∼

i]qn +

√
q
∼
i−1
n [

∼

i]qn + q j
n

)
bn

[n + 1]qn

−
[
∼

i − 1]qn bn

[n + 1]qn

=

(
q
∼
i−1
n +

√
q
∼
i−1
n [

∼

i]qn + q j
n

)
bn

[n + 1]qn

≤

(
2 +

√
[n + 1]qn

)
bn

[n + 1]qn

≤
3bn√

[n + 1]qn

.
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Moreover, in this case, we have j ≥ 2, which implies
−

i ≤ j − 2. By Lemma 3.7(b), we get
∼
M−

i−1,n, j,qn
(x) ≥

∼
M−

i−2,n, j,qn
(x) ≥ ... ≥

∼
M0,n, j,qn (x) which implies, for the same i’s, that

Mi,n, j,qn (x) ≤
3bn√

[n + 1]qn

due to Lemma 3.5(b).
As a result, if we combine all the results obtained above, the truth of the claim is shown.
Proof of Lemma 4.3. We have two cases:
Case a. Let x ∈

[
[ j]qn bn

[n+1]qn
,

[ j+1]qn bn

[n+1]qn

]
be fixed such that C(M)

n,qn
( f ; x) = f j,n, j,qn (x). Since

−
bn

[n + 1]qn

≤ x −
[ j]qn bn

[n]qn

≤
2bn

[n + 1]qn

and f j,n, j,qn (x) = f
(

[ j]qn bn

[n]qn

)
,

we have∣∣∣C(M)
n,qn

( f ; x) − f (x)
∣∣∣ = ∣∣∣∣∣∣ f

(
[ j]qn bn

[n]qn

)
− f (x)

∣∣∣∣∣∣ ≤ 2ω1

(
f ;

bn

[n + 1]qn

)
.

Case b. Let x ∈
[

[ j]qn bn

[n+1]qn
,

[ j+1]qn bn

[n+1]qn

]
be fixed such that C(M)

n,qn
( f ; x) = f j+1,n, j,qn (x).We have two subcase:

Subcase b1. If C(M)
n,qn

( f ; x) ≤ f (x), then f j,n, j,qn (x) ≤ f j+1,n, j,qn (x) ≤ f (x) and we clearly get∣∣∣C(M)
n,qn

( f ; x) − f (x)
∣∣∣ = f (x) − f j+1,n, j,qn (x)
≤ f (x) − f j,n, j,qn (x)

≤ 2ω1

(
f ;

bn

[n + 1]qn

)
.

Subcase b2. If C(M)
n,qn

( f ; x) > f (x), then∣∣∣C(M)
n,qn

( f ; x) − f (x)
∣∣∣ = f j+1,n, j,qn (x) − f (x) = m j+1,n, j(x) f

(
[ j + 1]qn bn

[n]qn

)
− f (x)

≤ f
(

[ j + 1]qn bn

[n]qn

)
− f (x).

For qn ∈ (0, 1), since

0 ≤
[ j + 1]qn bn

[n]qn

− x ≤
[ j + 1]qn bn

[n]qn

−
[ j]qn bn

[n + 1]qn

=

(
[n]qn q j

n + [ j]qn qn
n + qn+ j

n

)
bn

[n]qn [n + 1]qn

<
3bn

[n]qn

,

then

f
(

[ j + 1]qn bn

[n]qn

)
− f (x) ≤ 3ω1

(
f ;

bn

[n]qn

)
which completes the proof.

Proof of Lemma 4.4. We have two cases:
Case a. Let x ∈

[
[ j]qn bn

[n+1]qn
,

[ j+1]qn bn

[n+1]qn

]
be fixed such that C(M)

n,qn
( f ; x) = f j−1,n, j,qn (x).We have two subcase:

Subcase a1. If C(M)
n,qn

( f ; x) ≤ f (x), then following the proof of Lemma 4.3, we get∣∣∣C(M)
n,qn

( f ; x) − f (x)
∣∣∣ ≤ 2ω1

(
f ;

bn

[n + 1]qn

)
.
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Subcase a2. If C(M)
n,qn

( f ; x) > f (x), then∣∣∣C(M)
n,qn

( f ; x) − f (x)
∣∣∣ = f j−1,n, j,qn (x) − f (x) = m j−1,n, j(x) f

(
[ j − 1]qn bn

[n]qn

)
− f (x)

≤ f
(

[ j − 1]qn bn

[n]qn

)
− f (x).

Since
0 ≤ x − [ j−1]qn bn

[n]qn
≤

[ j+1]qn bn

[n+1]qn
−

[ j−1]qn bn

[n]qn
≤

[ j+1]qn bn

[n+1]qn
−

[ j−1]qn bn

[n+1]qn
=

q j−1
n (1+qn)bn

[n+1]qn
≤

2bn
[n]qn
,

then

f
(

[ j − 1]qn bn

[n]qn

)
− f (x) ≤ 2ω1

(
f ;

bn

[n]qn

)
.

Case b. Let x ∈
[

[ j]qn bn

[n+1]qn
,

[ j+1]qn bn

[n+1]qn

]
be fixed such that C(M)

n,qn
( f ; x) = f j,n, j,qn (x). As in the proof of Lemma 4.3, we

get

∣∣∣C(M)
n,qn

( f ; x) − f (x)
∣∣∣ ≤ 2ω1

(
f ;

bn

[n + 1]qn

)
.

This completes the proof.

Remark 6.1. The computations in this paper were performed by using Maple2021.
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