L^{p}-Inequalities and Parseval-type relations for the index ${ }_{2} F_{1}$-transform

B. J. González ${ }^{\text {a }}$, E. R. Negrín ${ }^{\text {b }}$
${ }^{a}$ Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna (ULL).
Campus de Anchieta. ES-38271 La Laguna (Tenerife), Spain
${ }^{b}$ Instituto de Matemáticas y Aplicaciones (IMAULL), Universidad de La Laguna (ULL), ULL Campus de Anchieta, ES-38271 La Laguna (Tenerife), Spain

Abstract

In this paper we consider a systematic study of several new L^{p}-boundedness properties for the index ${ }_{2} F_{1}$-transform over the spaces $L_{\gamma, p}\left(\mathbb{R}_{+}\right), 1 \leq p<\infty, \gamma \in \mathbb{R}$, and $L^{\infty}\left(\mathbb{R}_{+}\right)$. We also obtain Parseval-type relations over these spaces.

1. Introduction and preliminaries

This paper deals with the integral transform

$$
\begin{equation*}
F(y)=\int_{0}^{\infty} f(x) \mathbf{F}(\mu, \alpha, y, x) d x, \quad y>0 \tag{1.1}
\end{equation*}
$$

where

$$
\mathbf{F}(\mu, \alpha, y, x)={ }_{2} F_{1}\left(\mu+\frac{1}{2}+i y, \mu+\frac{1}{2}-i y ; \mu+1 ;-x\right) x^{\alpha}
$$

and ${ }_{2} F_{1}\left(\mu+\frac{1}{2}+i y, \mu+\frac{1}{2}-i y ; \mu+1 ;-x\right)$ is the Gauss hypergeometric function. Here μ and α are complex numbers with $\mathfrak{R} \mu>-1 / 2$.

The Gauss hypergeometric function [3, p. 57] is defined for $|z|<1$ as

$$
{ }_{2} F_{1}(a, b ; c ; z):=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{z^{n}}{n!}, \quad(\lambda)_{n}:=\lambda(\lambda+1) \cdots(\lambda+n-1), n=1,2 \ldots(\lambda)_{0}:=1 .
$$

see also [2]. For $|z| \geq 1$ is defined as its analytic continuation [18, p. 431] as

$$
{ }_{2} F_{1}(a, b ; c ; z):=\frac{\Gamma(c)}{\Gamma(b) \Gamma(c-b)} \int_{0}^{1} t^{b-1}(1-t)^{c-b-1}(1-t z)^{-a} d t, \quad \mathfrak{R} c>\mathfrak{R} b>0 ;|\arg (1-z)|<\pi
$$

For more general definitions of the hypergeometric function ${ }_{p} F_{q}(p, q \in \mathbb{N} \cup\{0\})$ see [21]. Also for several important developments concerning the hypergeometric and other higher transcendental functions see [22].

[^0]The Gauss hypergeometric function satisfies the following differential equation [3, p. 56]

$$
z(1-z) \frac{d^{2} w}{d z^{2}}+[c-(a+b+1) z] \frac{d w}{d z}-a b w=0
$$

where

$$
w=w(z)={ }_{2} F_{1}(a, b ; c ; z) .
$$

The integral transform (1.1) was first mentioned in [28] as a particular case of a more general integral transform with the Meijer G-function as the kernel. Later in [1] it was also considered. In a series of papers Hayek, González and Negrín have considered several properties of the index ${ }_{2} F_{1}$-transform both from a classical point of view and over spaces of generalized functions (cf. [8], [9], [10], [12], [13] and [14]).

First, we study L^{p}-boundedness properties for the index ${ }_{2} F_{1}$-transform (1.1) over the space $L_{\gamma, p}\left(\mathbb{R}_{+}\right)$, $\gamma \in \mathbb{R}, 1 \leq p<\infty$ considered by Srivastava et al. in [20] and over the space $L^{\infty}\left(\mathbb{R}_{+}\right)$. In this sense we make use of the notation considered in [20] and therefore we denote by $L_{\gamma, p}\left(\mathbb{R}_{+}\right)$the space of the complex-valued measurable functions defined on \mathbb{R}_{+}such that

$$
\begin{equation*}
\|f\|_{\gamma, p}=\left(\int_{0}^{\infty}|f(x)|^{p}(1+x)^{\gamma} d x\right)^{1 / p}<\infty \tag{1.2}
\end{equation*}
$$

for $1 \leq p<\infty$ and $\gamma \in \mathbb{R}$, and we denote by $L^{\infty}\left(\mathbb{R}_{+}\right)$the space of the complex-valued measurable functions defined on \mathbb{R}_{+}such that

$$
\|f\|_{\infty}=\underset{x \in(0, \infty)}{\operatorname{ess} \sup }\{|f(x)|\}<\infty .
$$

We also consider the integral operator

$$
\begin{equation*}
\left((\mathfrak{F g})(x)=\int_{0}^{\infty} g(y) \mathbf{F}(\mu, \alpha, y, x) d y, \quad x>0\right. \tag{1.3}
\end{equation*}
$$

which is related to the Olevskiĭ transform (see [16] and [27]).
According to the results and formulas in previous papers [4] and [6], we obtain L^{p}-boundedness properties for the index ${ }_{2} F_{1}$-transform over the spaces $L_{\gamma, p}\left(\mathbb{R}_{+}\right), 1 \leq p<\infty, \gamma \in \mathbb{R}$, and $L^{\infty}\left(\mathbb{R}_{+}\right)$.

Weighted norm inequalities for similar integral operators have been studied in several articles (see [4], [19] and [20], amongst others).

By using results of section 2 of [4] we prove that the operator \mathfrak{F} is bounded from the space $L_{\gamma, p}\left(\mathbb{R}_{+}\right)$into $L_{\gamma, p^{\prime}}\left(\mathbb{R}_{+}\right), 1<p<\infty, p+p^{\prime}=p p^{\prime}$, whenever $\gamma>p-1$ and $-1 / p^{\prime}<\mathfrak{R} \alpha<-1 / p^{\prime}+\mathfrak{R} \mu+1 / 2-\gamma / p^{\prime}$. Also, for $\gamma \geq 0$ and $0 \leq \mathfrak{R} \alpha<\mathfrak{R} \mu+1 / 2$, the operator \mathfrak{G} is bounded from $L_{\gamma, 1}\left(\mathbb{R}_{+}\right)$into $L^{\infty}\left(\mathbb{R}_{+}\right)$.

One has that under these conditions, if $f, g \in L_{\gamma, p}\left(\mathbb{R}_{+}\right), 1 \leq p<\infty$, then one obtains the Parseval-type relation

$$
\begin{equation*}
\int_{0}^{\infty}(\mathfrak{F} f)(x) g(x) d x=\int_{0}^{\infty} f(x)(\mathfrak{G g})(x) d x \tag{1.4}
\end{equation*}
$$

Let \mathfrak{F}^{\prime} be the adjoint of the operator \mathfrak{Q}, i.e.,

$$
\begin{equation*}
\left\langle\mathfrak{F}^{\prime} f, g\right\rangle=\langle f, \mathfrak{G} g\rangle . \tag{1.5}
\end{equation*}
$$

The aforementioned Parseval-type relation (1.4) allows us to obtain an interesting connection between the operator \mathfrak{F}^{\prime} and the operator \mathfrak{F}.

We conclude that the operator \mathfrak{G}^{\prime} is the natural extension of the integral operator \mathfrak{F}, i.e.,

$$
\mathfrak{F}^{\prime} T_{f}=T_{\tilde{X} f}
$$

where T_{f} is given by:

$$
\begin{equation*}
\left\langle T_{f}, g\right\rangle=\int_{0}^{\infty} f(x) g(x) d x . \tag{1.6}
\end{equation*}
$$

We also point out relevant connections of our work with various earlier related results (see [7], [15], [19], [20], [25] and [26]).

From [3, (7), p. 122 and (6), p. 155], we obtain

$$
\begin{align*}
& \mathbf{F}(\mu, \alpha, y, x)= \\
& =\frac{\Gamma(\mu+1) x^{\alpha}}{\sqrt{\pi} \Gamma\left(\mu+\frac{1}{2}\right)} \int_{0}^{\pi}(1+2 x+2 \sqrt{x(x+1)} \cos \xi)^{-\mu-1 / 2-i y}(\sin \xi)^{2 \mu} d \xi \tag{1.7}
\end{align*}
$$

which is valid for

$$
x>0, y>0, \mathfrak{R} \mu>-\frac{1}{2}, \alpha \in \mathbb{C} .
$$

Observe that one has

$$
\begin{aligned}
\sin \xi \geq 0, & \xi \in[0, \pi], \\
1+2 \sqrt{x+2 x(x+1)} \cos \xi \geq 0, & x>0, \xi \in[0, \pi],
\end{aligned}
$$

and hence, it follows from (1.7) that

$$
\begin{align*}
& |\mathbf{F}(\mu, \alpha, y, x)| \\
& \leq \frac{|\Gamma(\mu+1)| x^{\mathfrak{R} \alpha}}{\sqrt{\pi}\left|\Gamma\left(\mu+\frac{1}{2}\right)\right|} \int_{0}^{\pi}(1+2 x+2 \sqrt{x(x+1)} \cos \xi)^{-\mathfrak{R} \mu-\frac{1}{2}}(\sin \xi)^{2 \mathfrak{R} \mu} d \xi \\
& =\frac{|\Gamma(\mu+1)| x^{\mathfrak{R} \alpha}}{\sqrt{\pi}\left|\Gamma\left(\mu+\frac{1}{2}\right)\right|} \int_{0}^{\pi}(1+2 x+2 \sqrt{x(x+1)} \cos \xi)^{-\mathfrak{R} \mu-\frac{1}{2}}(\sin \xi)^{2 \mathfrak{R} \mu} d \xi \\
& =\frac{|\Gamma(\mu+1)| \Gamma\left(\mathfrak{R} \mu+\frac{1}{2}\right)}{\sqrt{\pi}\left|\Gamma\left(\mu+\frac{1}{2}\right)\right| \Gamma(\mathfrak{R} \mu+1)} \mathbf{F}(\mathfrak{R} \mu, \mathfrak{R} \alpha, 0, x), \quad \mathfrak{R} \mu>-1 / 2 . \tag{1.8}
\end{align*}
$$

Also, from [3, (7), p. 122] and [17, p.171, Entry (12.08) and p. 172, Entry (12.20)], for $\mathfrak{R} \mu>-1 / 2$ we have

$$
\begin{align*}
& \mathbf{F}(\mathfrak{R} \mu, \mathfrak{R} \alpha, 0, x)=O\left(x^{\mathfrak{R} \alpha}\right), \quad x \rightarrow 0^{+}, \tag{1.9}\\
& \mathbf{F}(\mathfrak{R} \mu, \mathfrak{R} \alpha, 0, x)=O\left(x^{\mathfrak{R} \alpha-\mathfrak{R} \mu-\frac{1}{2}} \ln x\right), \quad x \rightarrow+\infty . \tag{1.10}
\end{align*}
$$

2. The operator \mathbb{F} over the space $L_{\gamma, p}\left(\mathbb{R}_{+}\right), 1<p<\infty$

In this section we study the behaviour of the operator \mathscr{F} over the space $L_{\gamma, p}\left(\mathbb{R}_{+}\right), 1<p<\infty, \gamma \in \mathbb{R}$, $\alpha, \mu \in \mathbb{C}$. Indeed, by following [5, Proposition 2.1], we derive Theorem 2.1 below

Theorem 2.1. Let $1<p<\infty, p+p^{\prime}=p p^{\prime}$. Then, for all $\gamma<-1,-1 / p^{\prime}<\mathfrak{R} \alpha<\mathfrak{R} \mu-1 / 2+(\gamma+1) / p$, and all $q, 0<q<\infty$, the operator \mathfrak{F} given by (1.3) is bounded from $L_{\gamma, p}\left(\mathbb{R}_{+}\right)$into $L_{\gamma, q}\left(\mathbb{R}_{+}\right)$. Furthermore, for all $\gamma \in \mathbb{R}$ and $-1 / p^{\prime}<\mathfrak{R} \alpha<\mathfrak{R} \mu-1 / 2+(\gamma+1) / p$, then the operator \mathfrak{F} is bounded from $L_{\gamma, p}\left(\mathbb{R}_{+}\right)$into $L^{\infty}\left(\mathbb{R}_{+}\right)$.

Proof. By applying the Hölder inequality we get

$$
\begin{align*}
|(\mathfrak{F} f)(y)| & =\left|\int_{0}^{\infty} f(x) \mathbf{F}(\mu, \alpha, y, x) d x\right| \\
& \leq \int_{0}^{\infty}|f(x)||\mathbf{F}(\mu, \alpha, y, x)| d x \\
& =\int_{0}^{\infty}|f(x)|(1+x)^{\gamma / p}|\mathbf{F}(\mu, \alpha, y, x)|(1+x)^{-\gamma / p} d x \\
& \leq\left(\int_{0}^{\infty}|f(x)|^{p}(1+x)^{\gamma} d x\right)^{1 / p} \cdot\left(\int_{0}^{\infty}|\mathbf{F}(\mu, \alpha, y, x)|^{p^{\prime}}(1+x)^{-\gamma p^{\prime} / p} d x\right)^{1 / p^{\prime}} \\
& =\|f\|_{\gamma, p}\left(\int_{0}^{\infty}|\mathbf{F}(\mu, \alpha, y, x)|^{p^{\prime}}(1+x)^{-\gamma p^{\prime} / p} d x\right)^{1 / p^{\prime}}, \tag{2.1}
\end{align*}
$$

which, from (1.8) and taking into account that $\mathfrak{R} \mu>-1 / 2$, leads us to the following inequality

$$
\begin{align*}
& \int_{0}^{\infty}|(\mathfrak{F} f)(y)|^{q}(1+y)^{\gamma} d y \\
& \quad \leq\|f\|_{\gamma, p}^{q} \int_{0}^{\infty}\left(\int_{0}^{\infty}|\mathbf{F}(\mu, \alpha, y, x)|^{p^{\prime}}(1+x)^{-\gamma p^{\prime} / p} d x\right)^{q / p^{\prime}}(1+y)^{\gamma} d y \\
& \quad \leq \frac{|\Gamma(\mu+1)| \Gamma\left(\mathfrak{R} \mu+\frac{1}{2}\right)}{\sqrt{\pi}\left|\Gamma\left(\mu+\frac{1}{2}\right)\right| \Gamma(\Re \mu+1)}\|f\|_{\gamma, p}^{q}\left(\int_{0}^{\infty} \mathbf{F}(\mathfrak{R} \mu, \mathfrak{R} \alpha, 0, x)^{p^{\prime}}(1+x)^{-\gamma p^{\prime} / p} d x\right)^{q / p^{\prime}} \cdot \int_{0}^{\infty}(1+y)^{\gamma} d y \tag{2.2}\\
& \quad \leq \frac{|\Gamma(\mu+1)| \Gamma\left(\mathfrak{R} \mu+\frac{1}{2}\right)}{\sqrt{\pi}\left|\Gamma\left(\mu+\frac{1}{2}\right)\right| \Gamma(\mathfrak{R} \mu+1)}\|f\|_{\gamma, p}^{q}\left(\int_{0}^{\infty} \mathbf{F}(\mathfrak{R} \mu, \mathfrak{R} \alpha, 0, x)^{p^{\prime}}(1+x)^{-\gamma p^{\prime} / p} d x\right)^{q / p^{\prime}} \cdot(-1-\gamma)^{-1} \tag{2.3}
\end{align*}
$$

Now from (1.9) and (1.10), the integral in (2.3) converges under the conditions for this Theorem. So, we have that the operator \mathfrak{F} is bounded from $L_{\gamma, p}\left(\mathbb{R}_{+}\right)$into $L_{\gamma, q}\left(\mathbb{R}_{+}\right)$.

Analogously, one has

$$
\begin{align*}
& \underset{x \in(0, \infty)}{\operatorname{ess} \sup }\{|\mathfrak{F} f(x)|\} \tag{2.4}\\
& \leq\|f\|_{\gamma, p} \underset{x \in(0, \infty)}{\operatorname{ess} \sup }\left\{\left(\int_{0}^{\infty}|\mathbf{F}(\mu, \alpha, y, x)|^{p^{\prime}}(1+x)^{-\gamma p^{\prime} / p} d x\right)^{1 / p^{\prime}}\right\} \tag{2.5}\\
& \leq \frac{|\Gamma(\mu+1)| \Gamma\left(\Re \mu+\frac{1}{2}\right)}{\sqrt{\pi}\left|\Gamma\left(\mu+\frac{1}{2}\right)\right| \Gamma(\Re \mu+1)}\|f\|_{\gamma, p}^{q}\left(\int_{0}^{\infty}|\mathbf{F}(\mathfrak{R} \mu, \mathfrak{R} \alpha, 0, x)|^{p^{\prime}}(1+x)^{-\gamma p^{\prime} / p} d x\right)^{1 / p^{\prime}} . \tag{2.6}
\end{align*}
$$

We next observe that, under the conditions of this Theorem and by virtue of (1.9) and (1.10), the integral in (2.6) converges. So, clearly, we have

$$
\|\mathfrak{F} f\|_{\infty} \leq C\|f\|_{\gamma, p}
$$

where C is a real constant depending on p and γ. Consequently, the operator \mathfrak{F} is bounded from $L_{\gamma, p}\left(\mathbb{R}_{+}\right)$ into $L^{\infty}\left(\mathbb{R}_{+}\right)$.

3. The operator \mathscr{F} on the space $L_{\gamma, 1}\left(\mathbb{R}_{+}\right)$

In this section we study the behaviour of the operator \mathfrak{F} over the space $L_{\gamma, 1}\left(\mathbb{R}_{+}\right), \gamma \in \mathbb{R}, \alpha, \mu \in \mathbb{C}$. Indeed, by following [5, Proposition 3.1], we derive Theorem 3.1 below

Theorem 3.1. For all $\gamma<-1$ and $0 \leq \mathfrak{R} \alpha<\mathfrak{R} \mu+1 / 2+\gamma$, and any $q, 0<q<\infty$, the operator \mathfrak{F} given by (1.3) is bounded from $L_{\gamma, 1}\left(\mathbb{R}_{+}\right)$into $L_{\gamma, q}\left(\mathbb{R}_{+}\right)$. Also, for all $\gamma \in \mathbb{R}$ and $0 \leq \mathfrak{R} \alpha<\mathfrak{R} \mu+1 / 2+\gamma$, then the operator \mathfrak{F} is bounded from $L_{\gamma, 1}\left(\mathbb{R}_{+}\right)$into $L^{\infty}\left(\mathbb{R}_{+}\right)$.

Proof. Note that

$$
\begin{align*}
& |(\mathcal{F} f)(y)|=\left|\int_{0}^{\infty} f(x) \mathbf{F}(\mu, \alpha, y, x) d x\right| \\
& \leq \int_{0}^{\infty}|f(x)||\mathbf{F}(\mu, \alpha, y, x)| d x \\
& =\int_{0}^{\infty}|f(x)|(1+x)^{\gamma}|\mathbf{F}(\mu, \alpha, y, x)|(1+x)^{-\gamma} d x \\
& \leq \int_{0}^{\infty}|f(x)|(1+x)^{\gamma} d x \cdot \sup _{x \in(0, \infty)}\left\{\frac{|\mathbf{F}(\mu, \alpha, y, x)|}{(1+x)^{\gamma}}\right\} \\
& =\|f\|_{\gamma, 1} \cdot \sup _{x \in(0, \infty)}\left\{\frac{|\mathbf{F}(\mu, \alpha, y, x)|}{(1+x)^{\gamma}}\right\}, \tag{3.1}
\end{align*}
$$

which, from (1.8) and taking into account that $\Re \mu>-1 / 2$, leads us to the following inequality

$$
\begin{aligned}
& \int_{0}^{\infty}|(\widetilde{F} f)(y)|^{q}(1+y)^{\gamma} d y \\
& \leq\|f\|_{\gamma, 1}^{q} \int_{0}^{\infty}\left(\sup _{x \in(0, \infty)}\left\{\frac{|\mathbf{F}(\mu, \alpha, y, x)|}{(1+x)^{\gamma}}\right\}\right)^{q}(1+y)^{\gamma} d y \\
& \leq\|f\|_{\gamma, 1}^{q} \frac{|\Gamma(\mu+1)| \Gamma\left(\mathfrak{R} \mu+\frac{1}{2}\right)}{\sqrt{\pi}\left|\Gamma\left(\mu+\frac{1}{2}\right)\right| \Gamma(\mathfrak{R} \mu+1)}\left(\sup _{x \in(0, \infty)}\left\{\frac{\mathbf{F}(\mathfrak{R} \mu, \mathfrak{R} \alpha, 0, x)}{(1+x)^{\gamma}}\right\}\right)^{q} \int_{0}^{\infty}(1+y)^{\gamma} d y \\
& =\|f\|_{\gamma, 1}^{q} \frac{|\Gamma(\mu+1)| \Gamma\left(\mathfrak{R} \mu+\frac{1}{2}\right)}{\sqrt{\pi}\left|\Gamma\left(\mu+\frac{1}{2}\right)\right| \Gamma(\mathfrak{R} \mu+1)}\left(\sup _{x \in(0, \infty)}\left\{\frac{\mathbf{F}(\mathfrak{R} \mu, \mathfrak{R} \alpha, 0, x)}{(1+x)^{\gamma}}\right\}\right)^{q} \cdot(-1-\gamma)^{-1} .
\end{aligned}
$$

Therefore, in view of (1.9) and (1.10), we obtain

$$
\|\mathfrak{F} f\|_{\gamma, q} \leq C \mid f \|_{\gamma, 1},
$$

where C is a real constant depending on q and γ. Consequently, the operator \mathfrak{F} is bounded from $L_{\gamma, 1}\left(\mathbb{R}_{+}\right)$ into $L_{\gamma, q}\left(\mathbb{R}_{+}\right)$.

Similarly, by using (1.8), we get

$$
\begin{aligned}
& \|\mathfrak{r} f\|_{\infty} \leq\|f\|_{\gamma, 1} \cdot \operatorname{ess} \sup _{y \in(0, \infty)} \sup _{x \in(0, \infty)}\left\{\frac{|\mathbf{F}(\mu, \alpha, y, x)|}{(1+x)^{\gamma}}\right\} \\
& \leq\|f\|_{\gamma, 1} \cdot \frac{|\Gamma(\mu+1)| \Gamma\left(\Re \mu \mu+\frac{1}{2}\right)}{\sqrt{\pi}\left|\Gamma\left(\mu+\frac{1}{2}\right)\right| \Gamma(\Re \mu+1)} \sup _{x \in(0, \infty)}\left\{\frac{\mathbf{F}(\mathfrak{R} \mu, \mathfrak{R} \alpha, 0, x)}{(1+x)^{\gamma}}\right\},
\end{aligned}
$$

which, in light of (1.9) and (1.10), yields to

$$
\|\mathfrak{F} f\|_{\infty} \leq C\|f\|_{\gamma, 1}
$$

for a certain real constant C depending on γ. Thus, clearly, the operator \mathfrak{F} is bounded from $L_{\gamma, 1}\left(\mathbb{R}_{+}\right)$into $L^{\infty}\left(\mathbb{R}_{+}\right)$, which evidently completes the proof of Theorem 3.1.

4. The operator \mathscr{F} on the space $L^{\infty}\left(\mathbb{R}_{+}\right)$

In this section we study the behaviour of the operator \mathfrak{F} over the space $L^{\infty}\left(\mathbb{R}_{+}\right), \alpha, \mu \in \mathbb{C}$. Indeed, by following [5, Proposition 4.1], we derive Theorem 4.1 below.

Theorem 4.1. For $\gamma<-1$ and $-1<\mathfrak{R} \alpha<\mathfrak{R} \mu-1 / 2$, and any $q, 0<q<\infty$, the operator \mathfrak{F} given by (1.1) is bounded from $L^{\infty}\left(\mathbb{R}_{+}\right)$into $L_{\gamma, q}\left(\mathbb{R}_{+}\right)$. Moreover, for $\gamma \in \mathbb{R}$ and $-1<\mathfrak{R} \alpha<\mathfrak{R} \mu-1 / 2$, the operator \mathfrak{F} is bounded from $L^{\infty}\left(\mathbb{R}_{+}\right)$into $L^{\infty}\left(\mathbb{R}_{+}\right)$.

Proof. One has

$$
|(\mathfrak{F} f)(y)| \leq \int_{0}^{\infty}\left|f (x) \left\|\mathbf{F}(\mu, \alpha, y, x)\left|d x \leq\|f\|_{\infty} \cdot \int_{0}^{\infty}\right| \mathbf{F}(\mu, \alpha, y, x) \mid d x\right.\right.
$$

so that, for any $q, 0<q<\infty$, we get

$$
|(\mathfrak{F} f)(y)|^{q} \leq\|f\|_{\infty}^{q} \cdot\left(\int_{0}^{\infty}|\mathbf{F}(\mu, \alpha, y, x)| d x\right)^{q}
$$

We thus find that

$$
\int_{0}^{\infty}|(\mathscr{F} f)(y)|^{q}(1+y)^{\gamma} d y \leq\|f\|_{\infty}^{q} \cdot \int_{0}^{\infty}\left(\int_{0}^{\infty}|\mathbf{F}(\mu, \alpha, y, x)| d x\right)^{q}(1+y)^{\gamma} d y
$$

and, therefore, that

$$
\|\mathfrak{F} f\|_{\gamma, q} \leq\|f\|_{\infty} \cdot\left(\int_{0}^{\infty}\left(\int_{0}^{\infty}|\mathbf{F}(\mu, \alpha, y, x)| d x\right)^{q}(1+y)^{\gamma} d y\right)^{1 / q}
$$

In view of (1.8), we have

$$
\|\mathfrak{r} f\|_{\gamma, q} \leq\|f\|_{\infty} \cdot \frac{|\Gamma(\mu+1)| \Gamma\left(\mathfrak{R} \mu+\frac{1}{2}\right)}{\sqrt{\pi}\left|\Gamma\left(\mu+\frac{1}{2}\right)\right| \Gamma(\mathfrak{R} \mu+1)}\left(\int_{0}^{\infty} \mathbf{F}(\mathfrak{R} \mu, \mathfrak{R} \alpha, 0, x) d x\right)\left(\int_{0}^{\infty}(1+y)^{\gamma} d y\right)^{1 / q}
$$

$$
\begin{equation*}
=\|f\|_{\infty} \cdot \frac{|\Gamma(\mu+1)| \Gamma\left(\mathfrak{R} \mu+\frac{1}{2}\right)}{\sqrt{\pi}\left|\Gamma\left(\mu+\frac{1}{2}\right)\right| \Gamma(\mathfrak{R} \mu+1)}\left(\int_{0}^{\infty} \mathbf{F}(\mathfrak{R} \mu, \mathfrak{R} \alpha, 0, x) d x\right)(-1-\gamma)^{-1 / q} . \tag{4.1}
\end{equation*}
$$

Thus, by applying (1.9) and (1.10), we see that the integral in (4.1) converges. So, we have

$$
\|\mathfrak{F} f\|_{\gamma, q} \leq C\|f\|_{\infty}
$$

for certain real constant C depending on γ and q. Therefore, the operator \mathfrak{F} is bounded from $L^{\infty}\left(\mathbb{R}_{+}\right)$into $L_{\gamma, 9}\left(\mathbb{R}_{+}\right)$.

Also, in view of (1.8), we get

$$
\begin{align*}
& \|\mathfrak{F} f\|_{\gamma, q} \leq\|f\|_{\infty} \cdot \underset{y \in(0, \infty)}{\operatorname{ess} \sup }\left\{\int_{0}^{\infty}|\mathbf{F}(\mu, \alpha, y, x)| d x\right\} \\
& \leq \frac{|\Gamma(\mu+1)| \Gamma\left(\mathfrak{R} \mu+\frac{1}{2}\right)}{\sqrt{\pi}\left|\Gamma\left(\mu+\frac{1}{2}\right)\right| \Gamma(\mathfrak{R} \mu+1)}\|f\|_{\infty} \cdot \int_{0}^{\infty} \mathbf{F}(\mathfrak{R} \mu, \mathfrak{R} \alpha, 0, x) d x . \tag{4.2}
\end{align*}
$$

Thus, by applying (1.9) and (1.10), we see that the integral in (4.1) converges. Hence we have

$$
\|\mathfrak{F} f\|_{\infty} \leq C\|f\|_{\infty}
$$

for certain real constant C. Consequently, the operator \mathfrak{F} is bounded from $L^{\infty}\left(\mathbb{R}_{+}\right)$into $L^{\infty}\left(\mathbb{R}_{+}\right)$.
5. The operator \mathfrak{G} over the space $L_{\gamma, p}\left(\mathbb{R}_{+}\right), 1<p<\infty$

In this section we deal with the behaviour of the operator \mathfrak{F} on the spaces $L_{\gamma, p}\left(\mathbb{R}_{+}\right), \gamma \in \mathbb{R}$ and $1<p<\infty$.
Theorem 5.1. Set $1<p<\infty$ and $p+p^{\prime}=p p^{\prime}$. Then for all $\gamma>p-1$ and $-1 / p^{\prime}<\mathfrak{R} \alpha<-1 / p^{\prime}+\mathfrak{R} \mu+1 / 2-\gamma / p^{\prime}$, the operator $\mathfrak{5}$ given by (1.3) is bounded from $L_{\gamma, p}\left(\mathbb{R}_{+}\right)$into $L_{\gamma, p^{\prime}}\left(\mathbb{R}_{+}\right)$.

Proof. Taking into account the hypothesis of this Theorem, using (1.8), (1.9) and (1.10), one has that $\mathbf{F}(\mathfrak{R} \mu, \mathfrak{R} \alpha, 0, x) \in L_{\gamma, p}\left(\mathbb{R}_{+}\right)$and moreover, since

$$
\int_{0}^{\infty}(1+y)^{-\gamma p^{\prime} / p} d y=\frac{p}{\gamma p^{\prime}}
$$

from Proposition 2.1 in [4] the result holds.
As a consequence of Proposition 2.2 in [4] one has
Theorem 5.2. Assume $1<p<\infty$ and $p+p^{\prime}=p p^{\prime}$, then for $\gamma>p-1$ and $-1 / p^{\prime}<\mathfrak{R} \alpha<-1 / p^{\prime}+\mathfrak{R} \mu+1 / 2-\gamma / p^{\prime}$, the following mixed Parseval-type relation holds

$$
\int_{0}^{\infty}(\mathfrak{F} f)(x) g(x) d x=\int_{0}^{\infty} f(x)(\mathfrak{F} g)(x) d x
$$

for $f, g \in L_{\gamma, p}\left(\mathbb{R}_{+}\right)$.
Also, as a consequence of Corollary 2.1 in [4] one has
Corollary 5.3. Assume $1<p<\infty$ and $p+p^{\prime}=p p^{\prime}$, then for $\gamma>p-1$ and $-1 / p^{\prime}<\mathfrak{R} \alpha<-1 / p^{\prime}+\mathfrak{R} \mu+1 / 2-\gamma / p^{\prime}$, one has for $f \in L_{\gamma, p}\left(\mathbb{R}_{+}\right)$

$$
\mathfrak{5}^{\prime} T_{f}=T_{\overparen{F} f}
$$

on $\left(L_{\gamma, p}\left(\mathbb{R}_{+}\right)\right)^{\prime}$.

6. The operator $\left(\mathscr{G}\right.$ over the spaces $L_{\gamma, 1}\left(\mathbb{R}_{+}\right)$

This section is devoted to the study of the behaviour of the operator \mathfrak{F} on the spaces $L_{\gamma, 1}\left(\mathbb{R}_{+}\right)$.
Theorem 6.1. If $\gamma \geq 0$ and $0 \leq \mathfrak{R} \alpha<\mathfrak{R} \mu+1 / 2$, then the operator \mathfrak{F} given by (1.3) is bounded from $L_{\gamma, 1}\left(\mathbb{R}_{+}\right)$into $L^{\infty}\left(\mathbb{R}_{+}\right)$.

Proof. Observe that for $\gamma \geq 0$ and $0 \leq \mathfrak{R} \alpha<\mathfrak{R} \mu+1 / 2$, and using (1.8), (1.9) and (1.10), we get that $\mathbf{F}(\mathfrak{R} \mu, \mathfrak{R} \alpha, 0, x)$ is essentially bounded of $(0, \infty)$. Then from Proposition 2.1 in [4] the result holds.

As a consequence of Proposition 2.1 in [4] we get the following mixed Parseval relation
Theorem 6.2. The following mixed Parseval relation holds

$$
\begin{equation*}
\int_{0}^{\infty}(\mathfrak{F} f)(x) g(x) d x=\int_{0}^{\infty} f(x)(\mathfrak{F} g)(x) d x \tag{6.1}
\end{equation*}
$$

for $f, g \in L_{\gamma, 1}\left(\mathbb{R}_{+}\right)$with $\gamma \geq 0$ and $0 \leq \mathfrak{R} \alpha<\mathfrak{R} \mu+1 / 2$.
Also, as a consequence of Corollary 3.1 in [4] we have the following
Corollary 6.3. For $f \in L_{\gamma, 1}\left(\mathbb{R}_{+}\right)$with $\gamma \geq 0$ and $0 \leq \mathfrak{R} \alpha<\mathfrak{R} \mu+1 / 2$ is holds that

$$
\mathfrak{F}^{\prime} T_{f}=T_{\overparen{F} f}
$$

on $\left(L_{\gamma, 1}\left(\mathbb{R}_{+}\right)\right)^{\prime}$.

7. Conclusions

Starting from the properties of the Gaussian hypergeometric function and considering suitable conditions on the parameters μ and α, we have deduced some boundedness properties between L^{p} spaces with different weights for the operator \mathfrak{F} defined by the index ${ }_{2} F_{1}$-transform (1.1). Analogous boundedness have been obtained for the operator \mathfrak{F} given by (1.3) and related to the Olevskir integral transform.

In addition, Parseval-type relations have been derived for the operators \mathfrak{F} and \mathfrak{F} over the L^{p} spaces considered.

References

[1] Yu. A. Brychkov, Kh.-Yu. Gleske and O. I. Marichev, Factorization of integral transformations of convolution type, (Russian) Mathematical analysis, 21 Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, (1983), 3-41; English transl. in J. Soviet Math. 30 (3) (1985).
[2] M. A. Chaudhry, A. Qadir, H. M. Srivastava and R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput. 159 (2) (2004), 589-602.
[3] A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi, Higher Transcendental Functions, Vol. I, McGraw-Hill Book Company, New York, Toronto and London, 1953.
[4] B. J. González and E. R. Negrín, Weighted L^{p} inequalities for a class of integral operators including the classical index transforms, J. Math. Anal. Appl. 258 (2) (2001), 711-719.
[5] B. J. González and E. R. Negrín, Boundedness properties for a class of integral operators including the index transforms and the operators with complex Gaussians kernels, J. Math. Anal. Appl. 293 (1) (2004), 219-226.
[6] B. J. González and E. R. Negrín, Le-inequalities and Parseval-type relations for the Mehler-Fock transform of general order, Ann. Funct. Anal. 8 (2) (2017) 231-239.
[7] D. Gorbachev, E. Liflyand and S. Tikhonov, Weighted norm inequalities for integral transforms, Indiana Univ. Math. J. 67 (5) (2018), 1949-2003.
[8] N. Hayek, B.J. González and E.R. Negrín, Abelian theorems for the index ${ }_{2} F_{1}$-transform, Rev. Técn. Fac. Ingr. Univ. Zulia 15 (3) (1992), 167-171.
[9] N. Hayek and B.J. González, Abelian theorems for the generalized index ${ }_{2} F_{1}$-transform, Rev. Acad. Canaria Cienc. 4 (1-2) (1992), 23-29.
[10] N. Hayek and B.J. González, A convolution theorem for the index ${ }_{2} F_{1}$-transform, J. Inst. Math. Comput. Sci. Math. Ser. 6 (1) (1993), 21-24.
[11] N. Hayek and B.J. González, The index ${ }_{2} F_{1}$-transform of generalized functions, Comment. Math. Univ. Carolin. 34 (4) (1993), 657-671.
[12] N. Hayek and B.J. González, On the distributional index ${ }_{2} F_{1}$-transform, Math. Nachr. 165 (1994), 15-24.
[13] N. Hayek and B.J. González, An operational calculus for the index ${ }_{2} F_{1}$-transform, Jñānābha 24 (1994), 13-18.
[14] N. Hayek and B.J. González, A convolution theorem for the distributional index ${ }_{2} F_{1}$-transform, Rev. Roumaine Math. Pures Appl. 42 (7-8) (1997), 567-578.
[15] N. Hayek, H. M. Srivastava, B. J. González and E. R. Negrín, A family of Wiener transforms associated with a pair of operators on Hilbert space, Integral Transforms Spec. Funct. 24 (1) (2013), 1-8.
[16] M. N. Olevskiĭ, On the representation of an arbitrary function by integral with the kernel involvig the hypergeometric function, Dockl. AN SSSR 69 (1) (1949), 11-14, (in Russian).
[17] F.W.J. Olver, Asymptotics and special functions, Computer Science and Applied Mathematics, Academic Press, 1974.
[18] A.P. Prudnikov, Y.A. Brychkov and O.I. Marichev, Integrals and Series, vol. 3, Gordon and Breach Science Publishers, New York, 1990.
[19] H. M. Srivastava, Yu. V.Vasil'ev and S. B. Yakubovich, A class of index transforms with Whittaker's function as the kernel, Quart. J. Math. Oxford Ser. (2) 49 (195) (1998), 37-394.
[20] H. M. Srivastava, B. J. González and E. R. Negrín, New Lp-boundedness properties for the Kontorovich-Lebedev and Mehler-Fock transforms, Integral Transforms Spec. Funct. 27 (10) (2016), 835-845.
[21] H. M. Srivastava, An Introductory Overview of Fractional-Calculus Operators Based Upon the Fox-Wright and Related Higher Transcendental Functions, J. Adv. Engrg. Comput. 5 (2021), 135-166.
[22] H. M. Srivastava, A Survey of Some Recent Developments on Higher Transcendental Functions of Analytic Number Theory and Applied Mathematics, Symmetry, 13 (12) (2021), Article ID 2294, 1-22.
[23] S.B. Yakubovich and Y.F. Luchko, The hypergeometric approach to integral transforms and convolutions, Mathematics and its Applications, 287, Kluwer Academic Publishers Group, Dordrecht, 1994.
[24] S. B. Yakubovich, Index Transforms (with a Foreword by H. M. Srivastava), World Scientific, River Edge, NJ, 1996.
[25] S.B. Yakubovich and M. Saigo, On the Mehler-Fock Transform in Lp-space, Math. Nachr. 185 (1997), 261-277.
[26] S.B. Yakubovich, L_{p}-Boundedness of general index transforms, Lithuanian Math. J. 45 (1) (2005), 102-122.
[27] S.B. Yakubovich, On the Plancherel theorem for the Olevskiŭ transform, Acta Math. Vietnam. 31 (3) (2006), 249-260.
[28] J. Wimp, A Class of Integral Transforms, Proc. Edinburgh Math. Soc. 14 (2) (1964), 33-40.

[^0]: 2020 Mathematics Subject Classification. Primary 44A15; Secondary 33C05
 Keywords. Index ${ }_{2} F_{1}$-transform; Gauss hypergeometric function; L^{p}-inequalities; Parseval-type relations; Hölder inequality.
 Received: 19 February 2022; Revised: 23 August 2022; Accepted: 05 October 2022
 Communicated by Hari M. Srivastava
 Email addresses: bjglez@ull. edu. es (B. J. González), enegrin@ull. edu. es (E. R. Negrín)

