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Abstract. In this paper, we present some derivative-free methods for solving system of nonlinear equations
based on approximating the Jacobian matrix via acceleration and correction parameters. Furthermore, we
compute the step length using inexact line search procedure. Under appropriate conditions, we proved that
the proposed methods are globally. We also present some numerical results to show the efficiency of the
proposed methods by comparing them with some existing derivative-free methods in the recent literature.

1. Introduction

Problems involving system of nonlinear equations usually arise in areas of human endeavor such as
sciences and engineering, and as such, researchers are tasked with developing efficient and robust iterative
methods to solve them. Typically, a system of nonlinear equations is represented as

F(x) = 0, (1)

where F : Rn
−→ Rn is a continuously differentiable mapping. As stated above, systems of nonlinear

equations have wide applications, and a clear case is presented in [49, 50], where an economic equilibrium
problem is reformulated as (1). Hayat et al. [38] discussed the impact of Cattaneo-Christov heat flow in the
stagnation point flow of rate type fluids, which is a phenomena that is modeled in the form of (1). Also,
Hayat et al. [37] considered the characteristics of variable thermal conductivity and thermal relaxation in
stagnation flow over a variable thickness stretched surface with chemical reaction. The study described
involves a mathematical model in the form of (1). In [45], the authors discussed variable separation solutions
from positive-power ansatz, by constructing nonlinear models, which involves equations in the form of
(1). In the same vain, non-linear difference equations, which appear in modern textile engineering, and
are used to describe phenomena in engineering are usually solved by discretizing into the form of (1) as
presented in [44]. Studies similar to [44, 45] can be found in [46–48]. Several iterative methods for solving
(1) include, derivative-free methods [6, 14, 23, 34, 51], double step length methods [12, 21, 22, 33, 43], double
direction methods [13, 20, 29], Newton’s methods and its improved version, i.e., the quasi-Newton methods
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[3, 4, 8, 15]. But the prominent among them is the Newton’s method due to its attractive features such as
easy implementation and rapid convergence. However, it requires the computation of the Jacobian matrix
at each iteration and generates a sequence of points using the recursive formula:

xk+1 = xk + αkdk, (2)

where k=0,1,2,.., αk is a step length to be computed by a suitable line search technique, xk+1 represents a
current iterate and xk is the previous iterate, while dk is the search direction that can be calculated by solving
the following system of linear equation,

F′(xk)dk = −F(xk), (3)

where F′(xk) is the Jacobian matrix of F(xk) at xk.
Furthermore, (1) can come from an unconstrained optimization problem, a saddle point and equality

constrained problem [3]. Let f be a merit function defined by

f (x) =
1
2
||F(x)||2. (4)

The nonlinear system in (1) is equivalent to the following global optimization problem

min f (x), x ∈ Rn, f : Rn
−→ R.

Generally, the search direction dk is required to satisfy the descent condition

▽ f (xk)Tdk < 0.

The step length αk can be determined in different ways either by exact or inexact line search technique. The
most commonly used line search in practice is the inexact line search as proposed in [6, 9, 15, 17], which
sufficiently decreases the function values i.e to establish

∥F(xk + αkdk)∥ ≤ ∥F(xk)∥. (5)

However, it is known that in Newton’s method, the computation of partial derivatives of some functions
are very expensive in practice and sometimes are not even available. In such cases, Newton’s method
cannot be used directly [8]. To overcome these shortcomings, some methods have been proposed over the
years. This includes the spectral gradient method proposed in [27], which is easy to implement and also
efficient for large-scale problems. The method in [27] was extended by Cruz and Raydan [38] to large-
scale systems of nonlinear equations by introducing a spectral algorithm known in short as(SANE). The
scheme converges globally by means of a variation of the nonmonotone line search strategy of Grippo et
al. [39]. Similarly, Zhang and Zhou [41] developed a method for solving nonlinear monotone equations by
combining the spectral gradient method [27] with the projection method by Solodov and Svaiter [40]. The
method converges globally, when the nonlinear equations are Lipschitz continuous. Only recently, Waziri
et al. [28, 42] proposed two conjugate gradient (CG) methods for systems of nonlinear equations. They
generate descent search directions and the authors proved their global convergence under mild conditions.

To improve the performance of some CG methods, hybrid aproaches have been studied by many
researchers in the past decade (see Refs. [52–54] for instances). One type of hybrid CG methods are
obtained by constructing a new update parameter as a linear combination of two or more classical or
modified CG update parameters. By employing the classical Fletcher-Reeves (FR) [55] method and the
method by Wei et al (WYL) [57] as a linear combination, Gonglin [58] proposed a hybrid method for
unconstrained optimization, which is defined as

βH
k = λ1β

WYL
k + λ2β

FR
k , λ1 ≥ 0, λ2 ≥ 0. (6)
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Here, βWYL
k =

1T
k+1

(
1k+1−

(
∥1k+1∥
∥1k∥

)
1k

)
∥1k∥

2 , βFR
k =

∥1k+1∥
2

∥1k∥
2 with 1k = ▽ f (xk).

In [59], Xu and Kong presented a hybrid method by implementing a linear combination of the update
parameters by Dai and Yuan (DY) [65] and Hestenes and Stiefel (HS) [63], i.e.,

βk = α1β
DY
k + α2β

HS
k , (7)

where

βDY
k =

∥1k+1∥
2

dT
k yk

, βHS
k =

1T
k+1yk

dT
k yk

, (8)

and α1 and α2 are nonnegative numbers with both or at least one not equal to zero. In addition, they satisfy
the following

0 < α1 < 2α2 <
1

1 + σ2
< 1, 0 ≤ σ2 < 1. (9)

Another type of hybrid CG methods are developed as convex combinations of other CG methods. In [56],
Liu and Li proposed a hybrid CG method for unconstrained optimization, where the parameter is a convex
combination of the classical Liu and Storey (LS) [61] and Dai and Yuan (DY) [65] update parameters, namely

βk = (1 − θk)βLS
k + θkβ

DY
k , (10)

where βDY
k is as defined in (8) and

βLS
k = −

1T
k+1yk

dT
k 1k

, yk = 1k+1 − 1k, θk ∈ [0, 1]. (11)

Appropriate value of the parameterθk in the convex combination is chosen and search direction dk generated
by the method turns out to be the Newton direction, which also satisfies the popular Dai-Liao (DL) [64]
conjugacy condition and the sufficient descent condition, namely

dT
k yk = −tsT

k 1k+1, t ≥ 0, (12)

and

dT
k 1k = −c∥1k∥

2, c ≥ 0, (13)

where (13) is independent of the line search procedure employed.

The importance and contribution of this article is to develop hybrid derivative-free methods for solving
(1) since such methods for systems of nonlinear equations are rare in the literature. In [18], an accelerated
gradient descent method (SM) method, is presented with the iterative scheme given by

xk+1 = xk − γ
−1
k tk1k (14)

where 1k is the gradient of the function F at xk and γk represent the acceleration parameter which is a scaler
approximation of the Hessian and given by

γk+1 = 2γk
γk[ f (xk+1) − f (xk)] + tk||1k||

2

t2
k ||1k||

2
, (15)

where the step length tk is computed by the Armijo’s backtracking inexact line search technique. Accelerated
double step size scheme is primarily proposed in [21], where, the Hessian matrix is approximated with
diagonal matrix via acceleration parameter. The authors proved global convergence of the scheme under
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suitable conditions. In, the addition preliminary numerical result has shown that the method in [21]
is very effective. Consequently, the authors in [12], incorporated the idea used in [21], and presented a
transformed double step length method for solving large-scale systems of nonlinear equations. This is made
possible by approximating the Jacobian with diagonal matrix via acceleration parameter. This method is
a new approach that reduces the two step lengths into a single one. Furthermore, the scheme employs a
derivative-free line search technique proposed in [3], to compute the step length. The proposed acceleration
parameter presented in [12] is defined as

γk+1 =
yT

k yk

(αk +
1
2αkγk)yT

k dk
. (16)

However, an improved derivative-free double direction method for systems of nonlinear equations has
been presented in [13], where the Jacobian matrix is approximated via acceleration parameter given as

γk+1 =
yT

k yk

(αk + α2
kγk)yT

k dk
. (17)

This paper is organized as follows: In the next section, the hybrid optimization models are presented.
Section 3 deals with derivation of the schemes and their algorithms. In Section 4, we analyze global
convergence of the methods, while numerical results of some experiments conducted are presented in
section 5. Concluding remarks are made in section 6.

2. Hybrid optimization models

In this section, we consider Picard-Mann hybrid iterative process presented in [7], where the Picard-
Mann hybrid iterative process is defined as

x1 = x ∈ Rn

wk = (1 − βk)xk + βkTxk,

xk+1 = Twk,

(18)

where T : C −→ C is a mapping defined on nonempty convex subset C of a normed space E, xk and wk are
sequences determined by the iteration (18) and βk is the sequence of positive numbers in (0,1). In this paper,
βk is denoted as correction parameter.

The authors in [7] choose a constant value β = βk ∈ (0, 1) as the correction parameter, ∀k, and also
showed that the process converges faster than the Picard, Mann and Ishikawa iterative process [10, 11, 26].
These three mentioned schemes are defined with the next sets of relations, respectively:
The Picard iterative process [26] is defined by the sequence {uk} asu1 = u ∈ C

uk+1 = Tuk, k ∈N.

The Mann iterative process [11] is defined by the sequence {vk} asv1 = v ∈ C
vk+1 = (1 − αk)vk + αkTvk, k ∈N.

where {αk} ∈ (0, 1) and
z1 = 1 ∈ C
zk+1 = (1 − αk)zk + αkTyk,

yk = (1 − βk)zk + βkTzk, k ∈N.
where, yk and zk are the sequences defined by the proposed expressions and {βk} and {αk} are the sequences
of positive numbers [10] which satisfy the conditions
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• 0 ≤ αk ≤ βk ≤ 1, k ≥ 0

• lim
k→∞

βk = 0

•
∞∑

k=0

αkβk = ∞

In [19], the hybridization of the (SM) method [18] with the Picard-Mann hybrid iterative process is
presented. In addition, the authors determined the accelerated parameter γk using the Taylor’s series
expansion of the second order as

γk+1 = 2γk
γk[ f (xk+1) − f (xk)] + (βk + 1)αk||1k||

2

(βk + 1)2α2
k ||1k||

2
, {αk}, {βk} ∈ (0, 1). (19)

Moreover, the step length tk is computed using the inexact backtracking line search technique. The numer-
ical results presented in [19], have shown that the proposed method is more efficient than the SM method
[18], because it has the least number of iterations, CPU time, and number of function evaluation. More-
over, in order to improve the numerical performance of the scheme in [21], it was hybridized [1] with the
Picard-Mann hybrid approach [7]. The proposed hybrid method [1] was shown to be numerically effective
by comparing it with the double direction method [21] existing in the literature. In [2], the Picard-Mann
hybrid approach was also applied to a transformation of accelerated double step size method for uncon-
strained optimization presented in [5]. In addition, the proposed method [2] was shown to be globally
convergent under the assumption that the gradient of the objective function is Lipschitz continuous in an
open convex set. Furthermore, the numerical experiments reported in [2] have shown that the proposed
method produced much better results than the method in [5].

Motivated by [19], we incorporate the idea to system of nonlinear equations in order to develop a
derivative-free method with the Picard-Mann hybrid iterative process via

F′(xk) ≈ γkI,

where I is an identity matrix and F′(xk) is the Jacobian matrix of F(xk) at xk. The presented method has
a norm descent property without computing the Jacobian matrix with less number of iterations and CPU
time that is globally convergent.

3. Derivation of the Methods and their Algorithms

In this section, we present algorithms of our proposed methods. By using (18) and the mapping T is
defined as Txk = xk − αkγ−1

k F(xk), we have

x1 = x ∈ Rn. (20)

wk = (1 − βk)xk + βkTxk. (21)

xk+1 = Twk. (22)

Therefore,

wk = xk − βkαkγ
−1
k F(xk), (23)

by substituting (23) in (22), we obtain

xk+1 = xk − αk(βk + 1)γ−1
k F(xk), (24)



M. Y. Waziri et al. / Filomat 37:5 (2023), 1461–1478 1466

where γk and βk are acceleration and correction parameters respectively. From (24) we can define our first
proposed direction as:

d(1)
k = −βγ

−1
k F(xk), (25)

where β = (βk + 1) ∈ (1, 2).
From (24) and (25) we present the general scheme as:

xk+1 = xk + αkd(1)
k . (26)

Now, to find γk+1, we consider the Taylor’s series expansion of order 1 at xk+1 as

F(xk+1) = F(xk) + F′(ξ)(xk+1 − xk), (27)

where ξk ∈ (xk, xk+1). The distance between xk and xk+1 is small enough and ξk = xk + ρ(xk+1 − xk), ρ ∈ [0, 1],
we take ρ = 1 such that ξk = xk+1. Therefore, we assume that

F′(ξ) ≈ γk+1I. (28)

By substituting (28) in (27), we obtain

F(xk+1) − F(xk) = γk+1(xk+1 − xk), (29)

where yk = F(xk+1) − F(xk) and sk = (xk+1 − xk) = −αk(βk + 1)γ−1
k F(xk) such that

yk = γk+1sk (30)

by multiplying both side of (30) by yT
k , we obtain the proposed acceleration parameter as

γk+1 =
yT

k yk

yT
k sk

. (31)

To compute the step-length αk, we use the derivative-free line search proposed in [3]. Let ω1 > 0, ω2 > 0
and r ∈ (0, 1) be constants and let ηk be a given positive sequence such that

∞∑
k=0

ηk < η < ∞ (32)

and

f (xk + αkdk) − f (xk) ≤ −ω1||αkF(xk)||2 − ω2||αkdk||
2 + ηk f (xk). (33)

Let ik be the smallest non negative integer i such that (33) holds for α = ri . Let αk = ri
k.

Algorithm 1: (HDAP1)
Input: Given x0, γ0 = 1, ϵ > 0, β ∈ (1, 2), set k = 0.
Step 1: Compute F(xk).
Step 2: If ∥F(xk)∥ ≤ ϵ, stop, else goto Step 3.
Step 3: Compute d(1)

k (using (25) ).
Step 4: Compute step length αk (using (33)).
Step 5: Set xk+1 = xk + αkd(1)

k .
Step 6: Compute F(xk+1).

Step 7: Determine γk+1 =
yT

k yk

yT
k sk

.

Step 8: Set k = k + 1, and go to Step 2.
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The Proposed second choice of the correction parameter
Going by Barzilai and Borwein [27], and considering

γBB
k =

sT
k yk

sT
k sk

, (34)

we adopt (34) to be our correction parameter βk i.e

βk =
sT

k yk

sT
k sk

, (35)

where yk = F(xk+1) − F(xk) and sk = xk+1 − xk. Substituting (35) in (24) gives

xk+1 = xk − αk

 sT
k yk

sT
k sk
+ 1

γ−1
k F(xk), (36)

and we propose a second search direction as

d(2)
k = −

 sT
k yk

sT
k sk
+ 1

γ−1
k F(xk), (37)

where, γk =
yT

k yk

yT
k sk

.

Algorithm 2: (HDAP2)
Input: Given x0, γ0 = 1, ϵ > 0, β0 = 0.5, set k = 0.
Step 1: Compute F(xk).
Step 2: If ∥F(xk)∥ ≤ ϵ, then stop, else goto Step 3.
Step 3: Compute d(2)

k (using (37) ).
Step 4: Compute step length αk (using (33)).
Step 5: Compute xk+1 = xk + αkd(2)

k .
Step 6: Compute F(xk+1).

STEP 7: Determine βk+1 =
sT

k yk

sT
k sk

.

STEP 8: Determine γk+1 =
yT

k yk

yT
k sk

.

STEP 9: Set k = k + 1, and go to Step 2.

Remark 3.1. For the correction parameter , if in some iterations the value for βk is not in (0,1), then we take βk to be
equal to 0.5.

4. Convergence Analysis

In this section, we present the global convergence of our methods. First, we define the level set

Ω = {x : ∥F(x)∥ ≤ ∥F(x0)∥}. (38)

where x0 is some available point.
To analyze the convergence of Algorithms 1 and 2, we need the following assumptions:
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Assumption 4.1.
(1) There exists x∗ ∈ Rn such that F(x∗) = 0.
(2) F is continuously differentiable in some neighborhood say N of x∗ containing Ω.
(3) The Jacobian of F is bounded and positive definite on N. i.e there exists a positive constants M > m > 0
such that

∥F′(x)∥ ≤M ∀x ∈ N, (39)

and

m∥d∥2 ≤ dTF′(x)d ∀x ∈ N, d ∈ Rn. (40)

Remark 4.1. We give the following remarks.
Assumption 3.1 implies that there exists a constants M > m > 0 such that

m∥d∥ ≤ ∥F′(x)d∥ ≤M∥d∥ ∀x ∈ N, d ∈ Rn. (41)

m∥x − y∥ ≤ ∥F(x) − F(y)∥ ≤M∥x − y∥ ∀x, y ∈ N. (42)

In particular, ∀x ∈ N we have

m∥x − x∗∥ ≤ ∥F(x)∥ = ∥F(x) − F(x∗)∥ ≤M∥x − x∗∥, (43)

where x∗ stands for the unique solution of (1) in N.

Lemma 4.1. Suppose that Assumption 4.1 holds and {xk} is generated by Algorithm 2. Then there exists a
constant m > 0 such that for all k.

sT
k [F(xk + αkd(2)

k ) − F(xk)] ≥ m∥sk∥
2. (44)

Proof. By mean-value theorem and (40) we have,

sT
k [F(xk + αkd(2)

k ) − F(xk)] = sT
k F′(ξ)sk ≥ m∥sk∥

2, (45)

where, ξk = xk + ζ(xk+1 − xk) , ζ ∈ (0, 1). The proof is complete.

Using yT
k sk ≥ m∥sk∥

2 > 0, γk+1 is always generated by the update formula (31), and we can deduce that γk+1I
inherits the positive definiteness of γkI. By the above lemma and (42), we obtained

yT
k sk

∥sk∥
2 ≥ m,

∥yk∥
2

yT
k sk
≤

M2

m
. (46)

Lemma 4.2. Suppose that Assumption 4.1 holds and {xk} is generated by algorithm 2. Then we have

lim
k→∞
∥αkd(2)

k ∥ = 0, (47)

and

lim
k→∞
∥αkF(xk)∥ = 0. (48)

Proof. By (33) we have for all k > 0

ω2∥αkd(2)
k ∥

2
≤ ω1∥αkF(xk)∥2 + ω2∥αkd(2)

k ∥
2

≤ ∥F(xk)∥2 − ∥F(xk+1)∥2 + ηk∥F(xk)∥2.
(49)
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By summing the above inequality, we have

ω2

k∑
i=0

∥αid
(2)
i ∥

2
≤

k∑
i=0

(
∥F(xi)∥2 − ∥F(xi+1)∥2

)
+

k∑
i=0

ηi∥F(xi)∥2

= ∥F(x0)∥2 − ∥F(xk+1)∥2 +
k∑

i=0

ηi∥F(xi)∥2

≤ ∥F(x0)∥2 + ∥F(x0)∥2
k∑

i=0

ηi

≤ ∥F(x0)∥2 + ∥F(x0)∥2
∞∑

i=0

ηi.

(50)

So, from the level set and the fact that {ηk} satisfies (32) then the series
∞∑

i=0

∥αid
(2)
i ∥

2 is convergent. This

implies (47). By similar argument we can prove that (48) holds.
Lemma 4.3. Suppose that Assumption 4.1 holds and {xk} is generated by Algorithm 2. Then there exists
some positive constants m2 such that for all k > 0,

∥d(2)
k ∥ ≤ m2. (51)

Proof. From (37) and(42), we have

∥d(2)
k ∥ =

∥∥∥∥∥∥− (βk + 1)F(xk)yT
k sk

∥yk∥
2

∥∥∥∥∥∥
≤
|βk + 1|∥F(xk)∥∥sk∥∥yk∥

m2∥sk∥
2

(52)

But, from (34) we have

|βk| =

∣∣∣∣∣∣ sT
k yk

sT
k sk

∣∣∣∣∣∣ ≤ ∥sk∥∥yk∥

∥sk∥∥sk∥
≤

M∥sk∥

∥sk∥
=M, (53)

which leads to

|βk + 1| ≤ (M + 1). (54)

Therefore,

∥d(2)
k ∥ ≤

(M + 1)∥F(xk)∥M∥sk∥

m2∥sk∥

=
(M + 1)∥F(xk)∥M

m2

≤
(M + 1)∥F(x0)∥M

m2 .

(55)

Setting m2 =
(M+1)∥F(x0)∥M

m2 , we have (51), which completes the proof.

Since γkI approximates F′(xk) along direction sk, we can give the following assumption.
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Assumption 4.2.
γkI is a good approximation to F′(xk), i.e

∥(F′(xk) − γkI)d(2)
k ∥ ≤ ϵ∥F(xk)∥, (56)

where ϵ ∈ (0, 1) is a small quantity [15].

Lemma 4.4. Let Assumption 4.2 hold and {xk} be generated by Algorithm 2. Then dk is a descent di-
rection for f (xk) at xk i.e

▽ f (xk)Td(2)
k < 0. (57)

Proof. From (37) and (46) we have

▽ f (xk)Td(2)
k = F(xk)TF′(xk)d(2)

k

= F(xk)T[(F′(xk) − γkI)d(2)
k − (βk + 1)F(xk)]

= F(xk)T(F′(xk) − γkI)d(2)
k − (βk + 1)∥F(xk)∥2,

(58)

Using Cauchy-Schwartz inequality, we have,

▽ f (xk)Td(2)
k ≤ ∥F(xk)∥∥(F′(xk) − γkI)d(2)

k ∥ − (m + 1)∥F(xk)∥2

≤ ∥F(xk)∥ϵ∥F(xk)∥ − (m + 1)∥F(xk)∥2

≤ −((m + 1) − ϵ)∥F(xk)∥2.

(59)

Hence for ϵ ∈ (0, 1) this Lemma is true.
Lemma 4.5. Let Assumption 4.2 hold and {xk} be generated by Algorithm 2. Then {xk} ⊂ Ω.
Proof. By Lemma 4.4 we have ∥F(xk+1)∥ ≤ ∥F(xk)∥. Moreover, we have for all k.

∥F(xk+1)∥ ≤ ∥F(xk)∥ ≤ ∥F(xk−1)∥ ≤ . . . ≤ ∥F(x0)∥.

This implies that {xk} ⊂ Ω.
Now we are going to establish the following global convergence theorem to show that under some

suitable conditions,there exist an accumulation point of {xk}which is a solution of problem (1).

Theorem 4.1.
Suppose that Assumption 4.1 holds,{xk} is generated by Algorithm 2. Assume further for all k > 0,

αk ≥ c
|F(xk)Td(2)

k |

∥d(2)
k ∥

2
, (60)

where c is some positive constant. Then

lim
k→∞
∥F(xk)∥ = 0. (61)

Proof. From lemma 4.2 we have (51). Therefore by (47) and the boundedness of {∥dk∥
(2)
}, we have

lim
k→∞

αk∥d
(2)
k ∥

2 = 0. (62)

From (60) and (62) we have

lim
k→∞
|F(xk)Td(2)

k | = 0. (63)
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On the other hand from (37) we have,

F(xk)Td(2)
k = −λkγ

−1
k ∥F(xk)∥2 (64)

∥F(xk)∥2 = ∥ − F(xk)Td(2)
k γkλ

−1
k ∥

≤ |F(xk)Td(2)
k ||γk||λ

−1
k |.

(65)

But from (46) we have,

γk ≤
M2

m
.

Also, from (46) we have,
λk = (βk + 1) ≥ (m + 1),

λ−1
k <

1
m + 1

.

So from (65) we have,

∥F(xk)∥2 ≤ |F(xk)Td(2)
k |

(
M2

m

) ( 1
m + 1

)
. (66)

Thus,

0 ≤ ∥F(xk)∥2 ≤ |F(xk)Td(2)
k |

(
M2

m

) ( 1
m + 1

)
−→ 0. (67)

Therefore,

lim
k→∞
∥F(xk)∥ = 0. (68)

This completes the proof.

Remark 4.2. If the correction parameter (βk + 1) = β ∈ (1, 2), ∀k, then the convergence result of Algorithm 1
(HDAP1) follows.

5. Numerical Results

In this section, we carry out some numerical experiments to highlight the effectiveness of the (HDAP1)
and (HDAP2) methods by comparing them with an improved derivative-free method via double direction
approach for solving systems of nonlinear equations (IDFDD) [13] and a transformed double step-length
method for solving large-scale systems of nonlinear equations [12]. For all the algorithms, the following

parameters are set ω1 = ω2 = 10−4, r = 0.2 and ηk =
1

(k + 1)2 . We however set β = 1.9, in Algorithm

1 (HDAP1). The computational codes were written in Matlab (8.3.0 532) R2014a and run on a personal
computer 1.60 GHz CPU processor and 4 GB RAM memory. The iteration is set to terminate if the total
number of iterations exceed 1000 or when ∥F(xk)∥ ≤ 10−4. We claim that the method fails, and use the
symbol ”-” to indicate failure due to; (1) Memory requirement (2) Number of iterations exceed 1000. (3) If
∥F(xk)∥ is not a number.

Problem 1 [28] (The discretized Chandrasekhar’s H-equation)

Fi(x) = xi − (1 − c
2n

∑n
j=1

µix j

µi+µ j
)−1, i = 1, 2, . . . ,n,

with c ∈ [0, 1) and µi =
i−0.5

n , for 1 ≤ i ≤ n. (In our experiment we take c = 0.1).
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x0 = (0.3, 0.3, , ..., 0.3)T

Problem 2 [32]

Fi(x) = x2
i − 4, i = 1, 2, ...,n,

x0 = (0.2, 0.2, , ..., 0.2)T.

Problem 3 [31]

Fi(x) = x2
i + xi − 2, i = 1, 2, 3, ...,n,

x0 = (0.2, 0.2, , ..., 0.2)T.

Problem 4[32]

Fi(x) = x2
i − cos(xi − 1), i = 1, 2, ...,n,

x0 = (0.5, 0.5, ..., 0.5)T.

Problem 5 [13]

Fi(x) = (1 − x2
i ) + xi(1 + xixn−2xn−1xn) − 2, i = 1, 2, ...,n,

x0 = (0.1, 0.1, ..., 0.1)T.

Problem 6 [31]

Fi(x) = xi − 3xi

(
sin xi

3 − 0.66
)
+ 2, i = 1, 2, ...,n,

x0 = (0.4, 0.4, ..., 0.4)T.

Problem 7 [13]

F1(x) = x1(x2
1 + x2

2) − 1,

Fi(x) = xi(x2
i−1 + 2x2

i + x2
i+1) − 1,

Fn(x) = xn(x2
n−1 + x2

n), i = 2, 3, ...n − 1.

x0 = (0.8, 0.8, ..., 0.8)T.

Problem 8 [13]

F3i−2(x) = x3i−2 − x3i−1 − x2
3i − 1,

F3i−1(x) = x3i−2x3i−1x3i − x2
3i−2 + x2

3i−1 − 2,

F3i(x) = e−x3i−2 − e−x3i−1 , i = 1, ..., n
3 .

x0 = (1.5, 1.5, ..., 1.5)T



M. Y. Waziri et al. / Filomat 37:5 (2023), 1461–1478 1473

Problem 9 [12]

F(x) =



2 −1
−1 2 −1

. . .
. . .

. . .
. . .

. . . −1
−1 2


x + (ex1 − 1, ..., exn − 1)T.

x0 = (0.01, 0.01, ..., 0.01)T.

Problem 10 [12]

F(x) =



2 −1
0 2 −1

. . .
. . .

. . .
. . .

. . . −1
−1 2


x + (sin x1 − 1, ..., sin xn − 1)T.

x0 = (0.9, 0.9, ..., 0.9)T.

The numerical results of the two methods are reported in the table below, where ’NI’ and ’Time’ stand
for the total number of all iterations and the CPU time in seconds respectively, while ∥F(xk)∥ is the norm of
the residual at the stopping point.
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Table 1: The numerical results of HDAP1, HDPA2, IDFDD and TDS for problems 1 to 10

HDAP1 HDAP2 IDFDD TDS
Problems Dim NI CPU ∥F(xk)∥ NI CPU ∥F(xk)∥ NI CPU ∥F(xk)∥ NI CPU ∥F(xk)∥

1 100 7 0.00593 3.67E-05 5 0.009751 6.47E-05 16 0.026014 7.90E-05
1000 9 0.01448 5.36E-05 8 0.015088 3.38E-05 13 0.047095 5.11E-05

10000 11 0.120445 3.43E-05 9 0.152764 8.79E-05 17 0.621718 1.81E-07
2 100 13 0.017995 6.25E-05 7 0.004315 4.62E-05 29 0.03988 7.69E-05 15 0.03735 4.32E-05

1000 15 0.011562 3.90E-05 8 0.008266 2.89E-05 31 0.033866 9.96E-05 16 0.043527 5.46E-05
10000 16 0.081123 9.76E-05 9 0.052476 1.81E-05 34 0.195773 8.26E-05 17 0.342734 6.91E-05

3 100 13 0.006577 2.59E-05 9 0.005491 6.91E-05 32 0.02234 7.89E-05 19 0.027275 5.05E-05
1000 14 0.013497 6.49E-05 10 0.010782 7.69E-05 35 0.037172 7.85E-05 20 0.042639 7.98E-05

10000 16 0.088598 4.05E-05 11 0.070012 8.54E-05 38 0.253204 7.81E-05 22 0.331333 6.31E-05
4 100 11 0.005111 6.78E-05 8 0.005696 9.16E-05 19 0.013456 9.52E-05 14 0.013993 9.60E-05

1000 13 0.013599 4.25E-05 10 0.012767 5.73E-05 23 0.033748 8.09E-05 17 0.041219 6.56E-05
10000 15 0.095024 2.65E-05 12 0.080011 3.59E-05 26 0.208599 9.55E-05 19 0.561042 7.46E-05

5 100 13 0.007775 7.00E-05 5 0.004141 2.16E-05 16 0.013096 7.78E-05 12 0.024931 8.78E-05
1000 15 0.017883 4.37E-05 6 0.008767 1.34E-05 19 0.026529 6.45E-05 14 0.04753 4.44E-05

10000 17 0.111422 2.73E-05 7 0.062109 8.37E-06 21 0.184433 8.35E-05 15 0.318188 5.62E-05
6 100 12 0.006542 8.98E-05 8 0.006284 1.17E-05 28 0.022538 9.84E-05 15 0.035392 4.65E-05

1000 14 0.017078 5.61E-05 9 0.014304 7.32E-06 31 0.040581 8.16E-05 16 0.038844 5.88E-05
10000 16 0.12225 3.51E-05 9 0.072386 7.32E-05 34 0.320728 6.77E-05 17 0.390777 7.45E-05

7 100 18 0.010192 7.81E-05 13 0.010736 5.59E-05 35 0.021717 8.69E-05 25 0.031415 9.82E-05
1000 18 0.023018 9.50E-05 14 0.03174 4.12E-05 38 0.054704 9.46E-05 26 0.045267 6.35E-05

10000 19 0.132834 6.90E-05 14 0.128105 7.90E-05 38 0.349107 7.72E-05 25 0.40698 6.32E-05
8 100 14 0.013666 8.02E-05 9 0.009669 2.33E-05 32 0.02833 9.75E-05 19 0.026912 7.15E-05

1000 16 0.027242 2.24E-05 10 0.019057 8.02E-06 35 0.06221 9.67E-05 21 0.063626 5.59E-05
10000 18 0.139498 2.54E-05 10 0.091141 8.02E-05 38 0.33641 9.54E-05 22 0.393686 8.77E-05

9 100 4 0.064565 6.38E-05 3 0.056732 3.28E-05 24 0.259925 8.99E-05 12 0.812017 6.69E-05
1000 6 0.255465 6.10E-05 4 0.198266 2.45E-05 27 1.112368 7.63E-05 12 0.506232 7.35E-05

10000 6 20.9957 5.09E-05 5 21.00411 5.58E-05 32 132.6868 8.92E-05 15 60.66498 7.83E-05
10 100 14 0.132477 3.07E-05 10 0.109129 1.85E-05 34 0.370885 9.51E-05 24 0.272104 6.32E-05

1000 14 0.533679 5.06E-05 11 0.41393 3.32E-05 37 1.699962 9.11E-05 27 1.15811 9.31E-05
10000 16 56.86448 8.47E-05 14 47.5293 1.62E-05 41 171.0149 7.69E-05 28 119.5646 9.24E-05

Table 2: Summary of results from Table 1 for HDAP1, HDAP2, IDFDD and TDS methods
Method NI Percentage CPU time Percentage

Number of Problems and HDAP1 0 0% 6 20%
percentage for each method with HDAP2 30 100% 24 80%
respect to iterations and CPU time. IDFDD 0 0% 0 0%

TDS 0 0% 0 0%

In addition, a summary of the test results reported in Table 1 are presented in Table 2. Also, using the
performance profile of Dolan and Moré as an evaluation tool, we present two figures to approximately
assess the performance and efficiency of each of the methods.

It can be observed from Table 1 that, for the exception of the IDFDD method, which fails to solve
problem 1, all the methods attempted to solve all the problems. In Table 2, the summarized results exhibits
the performance of each of the four methods with respect to number of iterations and CPU time respectively.
It can be observed from the summary table that the HDAP2 method represents the most efficient scheme
among the four methods as it solves 100% of the problems with the least number of iterations compared
to the remaining three methods. The summary table also shows that the HDAP2 scheme outperforms the
other three methods with respect to CPU time as it solves 80% of the problems with least CPU time as
against the HDAP1 method, which solves 20% and the IDFDD and TDS methods, which both record 0%
respectively. It is worth nothing at this juncture that of the two proposed methods, the HDAP2 method
exhibits better performance against the HDAP1 method as a result of updating the correction parameter βk
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in each iteration which leads to faster convergence when compared with HDAP1 method that has a fixed
value for the correction parameter through out the work.

Furthermore, we present the performance profiles of all the four methods in Figures 1 − 2 with respect
to number of iterations and CPU time by using results reported in Tables 1 and the idea introduced by
Dolan and Moré [30]. We achieved this by plotting the fraction p(µ) of the problems for which each method
is within µ of the smallest number of iterations and CPU time respectively. We observed from Figure 1
that the HDAP2 method exhibits the best performance and has an edge over the other methods with least
number of iteration. This can be seen from the curve representing the HDAP2 scheme, which stays above
the other curves representing other methods. Fig 1 also shows that the HDAP1 method is more efficient
than the IDFDD and TDS methods as indicated by the curve representing the HDAP1 scheme, which stays
top of the curve representing the IDFDD and TDS methods. From Figure 2, it is observed that HDAP2
method performs better than HDAP1 method in terms of least CPU time, and in turn, the HDAP1 method
exhibits better performance compared to the IDFDD and TDS methods. All these can be seen from the
curves representing the four methods. Hence, the HDAP1 and HDAP2 methods are more efficient as they
all outperforms the IDFDD and TDS methods with respect to least number of iterations and CPU time.

In addition, to explain the accuracy of our results, we take the average of the norm of the residuals
recorded at the stopping point for each of the four methods, and the HDAP2 scheme tops the list with
4.33 × 10−5, HDAP1 5.42 × 10−5, TSD 6.67 × 10−5, and IDFDD 8.54 × 10−5. This clearly shows that our
proposed methods converge faster to the solution than the other methods. As a further insight into the
importance of this research, it can be seen that our proposed methods can be applied to solve the decritized
form of the popular Chandrasekhar Integral equation presented in problem 1. This is important because
of the role played by the Chandrasekhar Integral equation in radiactive transfer and transport theory [67].
The Chandrasekhar Integral equation is given by

H(µ) = 1 +H(µ)
∫ 1

0

µ

µ + t
ψ(t)H(t)dt. (69)

The most common approach of finding approximate solution of (69) is discretizing it by a vector x̄ ∈ Rn,
and then replacing the integrals by quadrature sums and the derivatives by difference quotients involving
only the component of x̄ ∈ Rn (see[66]). And so, (69) becomes a problem of finding the solution of system
of n nonlinear equations with n unknowns as presented in problem 1.

Therefore, considering results reported in Tables 1, its summary in Table 2 and Figures 1 − 2, we con-
clude that the proposed HDAP1 and HDAP2 methods are more effective for solving large-scale nonlinear
equations than the IDFDD and TDS methods.
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Figure 1: Performance profile of HDAP1, HDAP2, TDS and IDFDD methods with respect to the number of iteration for the problems
1-10.
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Figure 2: Performance profile of HDAP1, HDAP2, TDS and IDFDD methods with respect to the CPU time for the problems 1-10.
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6. Conclusion

In this paper, two derivative-free decent methods via acceleration parameter for solving systems of
nonlinear equations are presented. The methods are obtained by approximating the Jacobian matrix
via acceleration and correction parameters. Attractive features of the methods includes derivative-free,
generating descent search direction and easy implementation. By using basic assumptions, we prove global
convergence of the schemes proposed. Numerical comparisons using a set of large-scale test problems show
that the proposed methods are promising. Future research include, modification of the proposed method
to solve convex constrained monotone nonlinear equation with applications ℓ1 norm problems arising in
signal and image processing.
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