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Abstract. The study of magnetic curves, seen as solutions of Lorentz equation, has been done mainly in
3-dimensional case, motivated by theoretical physics. Then it was extended in higher dimensions, as for
instance in Kählerian or Sasakian frame. This paper deals for the first time in literature with magnetic Frenet
curves in higher dimensional paracontact context. Several classifications are provided here for different
types of magnetic curves on para-Sasakian manifolds. Some relations between magnetic Frenet curves
and Lorenz force are obtained on these spaces and examples of magnetic curves associated to paracontact
magnetic fields are constructed. Some explicit equations of the paracontact magnetic curves on the classical
para-Sasakian manifold (R2n+1, φ, ξ, η, 1) are given at the end.

1. Introduction

The notion of magnetic field (see [22]) was first studied in physics, but now it is of interest for both
physics and mathematics. From mathematical point of view, a magnetic field on a (semi-)Riemannian
manifold (M, 1) of arbitrary dimension is defined as a closed 2-form F, and it gives rise to a (1,1)-tensor field
ϕ, which is called the Lorentz force associated to F (see [30]). In the particular case of the 3-dimensional
oriented Riemannian manifolds, the 2-forms can be identified with vector fields by using the Hodge star
operator and the volume form. Moreover, from physical point of view, a static magnetic field on the
Euclidian space E3 is a divergence-free vector field, since it can be identified with a closed 2-form, by
considering the orientation of E3 (see [4]).

The trajectory around which a charged particle spirals under the action of a magnetic field is called
magnetic curve (or magnetic trajectory) associated to the magnetic field. If on a (semi-)Riemannian manifold
(M, 1) a magnetic field F (which induces the Lorentz force ϕ) acts on a particle of charge q, then any
corresponding magnetic curve γ satisfies the Lorentz equation ∇γ′γ′ = qϕ(γ′), where ∇ is the Levi-Civita
connection of 1.

In the theory of surfaces, any nonzero constant multiple of the area form is a magnetic field, whose
associated magnetic curves are studied by Sunada [30] on compact Riemann surfaces of genus ≥ 2 and
Comtet [17] on the hyperbolic planeH2.
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Moreover, starting from the theory of Riemann surfaces, Adachi studied in [2], [3], [4], Kähler mag-
netic curves in non-flat complex space forms, by using the fact that any nonzero constant multiple of the
fundamental 2-form plays the role of magnetic field, called Kähler magnetic field. In [23], Kalinin charac-
terized the Kähler magnetic curves on complex space forms, using the fact that this type of manifolds is
H-projectively flat. He showed that in this case the Lorentz equation reduces to a second order differential
equation.

An important class of magnetic fields is given by the Killing vector fields, since their divergence vanish.
The magnetic trajectories associated to a Killing magnetic field are called Killing magnetic curves, which in
the 3-dimensional context may be seen as Kirchhoff elastic rods (see [6]), and also as solitons of the localized
induction equation (see [7]). For the characterization of Killing magnetic curves in several 3-dimensional
spaces see e.g. [6], [14], [16], [18], [19] and the references therein.

The study of magnetic curves is particularly interesting in odd dimensional Riemannian context, espe-
cially on almost contact metric manifolds, which are the odd dimensional analogous of almost Hermitian
manifolds, whose fundamental 2-form is not always closed. It was natural to study magnetic curves in
the context of contact metric manifolds and in particular on Sasakian manifolds, where the fundamental
2−form is exact, hence closed (see [5], [12], [13], [20]). In this case, the Reeb vector field (a particular
unitary Killing vector field), defines the so-called contact magnetic field. The Sasakian manifolds are
the odd dimensional analogous of Kähler manifolds, but the magnetic curves corresponding to contact
magnetic fields on Sasakian manifolds of arbitrary odd dimension are not only circles, like in the Kähler
context, but also geodesics obtained as integral curves of the Reeb vector field, Legendre φ-curves seen as
1-dimensional integral submanifolds of the contact distribution, and φ−helices of osculating order 3 (see
[20]). The magnetic trajectories associated to contact magnetic fields could be studied on cosymplectic
manifolds of arbitrary odd dimension, since the fundamental 2-form is closed. Such a study was done in
[21], where a classification result, similar to that from the Sasakian case, was obtained.

A notable correspondent of contact geometry (see e.g. [9], [10], [11]) is paracontact geometry, where a
huge number of papers was published. In dimension 3, several characterizations of magnetic curves were
obtained on quasi-para-Sasakian manifolds and in particular on para-Sasakian manifolds (see [14] and
[16]). In their paper, [1], Abbassi and Amri exposed several interesting results on the unit tangent bundle,
to show the importance of magnetic trajectories in the paracontact context.

The purpose of this paper is to fill a gap in the literature of magnetic fields theory, by classifying the
Frenet magnetic curves associated to paracontact magnetic fields on para-Sasakian manifolds of arbitrary
odd dimension. In Section 3, we classify in a unitary way both space-like magnetic curves (with space-like
or time-like acceleration) and time-like magnetic curves, corresponding to paracontact magnetic fields on
para-Sasakian manifolds of arbitrary odd dimension. The magnetic curves obtained in our classification are
geodesics given as integral curves of the Reeb vector field, non-geodesic φ-circles of constant paracontact
(hyperbolic) angle, Legendreφ−curves, and (hyperbolic)φ−helices of osculating order 3. Different from the
magnetic curves on Sasakian manifolds, which have constant contact angle, the magnetic space-like Frenet
curves with space-like acceleration and the magnetic time-like Frenet curves on para-Sasakian manifolds
have constant paracontact hyperbolic angle. Subsequently, different from the Sasakian case, the non-
geodesic magnetic curves of the mentioned types on para-Sasakian manifolds can be φ-circles of constant
paracontact hyperbolic angle and hyperbolic φ−helices of osculating order 3. In the last section, we give
the explicit equations of the paracontact magnetic curves on the para-Sasakian manifold (R2n+1, φ, ξ, η, 1).

2. Preliminaries

Firstly we recall some notions concerning the paracontact geometry, the magnetic and Frenet curves.

2.1. Paracontact manifolds

The notion of almost paracontact structure on a differentiable manifold of arbitrary dimension was
introduced by Sato, as follows:
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Definition 2.1. ([28]) A triple (φ, ξ, η) is called an almost paracontact structure on a differentiable manifold M, if φ
is a (1, 1)−tensor field, ξ is a vector field and η is a 1-form satisfying:

φ2 = I − η ⊗ ξ, η(ξ) = 1. (1)

In this case, (M, φ, ξ, η) is called an almost paracontact manifold. If, moreover, dη(ξ,−) = 0, then ξ is called the Reeb
vector field.

In the sequel we recall some consequences of the above definition, given for example in [8].

Remark 2.2. On a paracontact manifold (M, φ, ξ, η) the following items hold good:
(a) φξ = η ◦ φ = 0;
(b) The dimension m of the manifold may be either odd or even and rankφ = m − 1;
(c) Ker η = Imφ, Kerφ = span{ξ};
(d) The restriction of φ to the paracontact distribution Ker η is a product structure, whose eigen distributions

corresponding to the eigenvalues 1 and −1 may have different ranks.

When an almost paracontact manifold carries a (semi-)Riemannian metric, then two relations of metric
compatibility and anti-compatibility with the underlying structures are known in literature. Namely, the
notion of almost paracontact Riemannian manifold was introduced by Sato in [29] (requiring the Riemannian
metric compatibility with the almost paracontact structure), while the notion of paracontact metric manifold
was given by Kaneyuki, Kozai, Williams in [24], [25] (involving a semi-Riemannian metric anti-compatible
with the almost paracontact structure). Both above mentioned notions were generalized in [8]. Throughout
the paper we deal with the following new notion (a particular case of that given in [8]), which we introduce
as follows.

Definition 2.3. An almost paracontact manifold (M, φ, ξ, η) is called an ε-almost paracontact metric manifold if
it carries a semi-Riemannian metric 1, related with the underlying structure by the following metricity relation:

1(φX, φY) = εη(X)η(Y) − 1(X,Y), ∀X,Y ∈ X(M), (2)

where ε is 1 or −1, according as ξ is space-like or time-like, respectively.

Remark 2.4. Accordingly to [8], a ε-almost paracontact metric manifold (M, φ, ξ, η, 1) has the following properties:
(i) The manifold M has odd dimension m = 2n + 1;
(ii) The restriction φ to the distribution D = Ker η is a paracomplex structure (i.e., the eigen distributions D+

and D− of the product structure φ/Ker η have equal dimensions andD = D+ ⊕D−);
(iii) The metric 1 restricted to D is a semi-Riemannian structure of neutral signature (n,n), and therefore, the

signature of 1 on M is either (n,n + 1) or (n + 1,n) according as ξ is time-like (i.e. ε = −1) or ξ is space-like (i.e.
ε = 1), respectively;

(iv) (φ, 1) restricted to the distributionD is a para-Hermitian structure (see the survey [15] for this notion).
Moreover, for this type of manifolds one has
(v) η(X) = ε1(X, ξ), ∀X ∈ X(M).

Definition 2.5. The fundamental 2-form of the ε-almost paracontact metric manifold (M, φ, ξ, η, 1) is the 2-form
Ω on M, defined by

Ω(X,Y) = 1(X, φY),∀X,Y ∈ X(M). (3)

A ε-almost paracontact metric manifold (M, φ, ξ, η, 1) is said to be normal if the relation

N(X,Y) = 2dη(X,Y)ξ

holds for all X,Y ∈ X(M), where N is the Nijenhuis tensor field given by

N(X,Y) = φ2[X,Y] + [φX, φY] − φ[φX,Y] − φ[X, φY], ∀X,Y ∈ X(M).

Recall that the exterior differential of η is expressed as

dη(X,Y) =
1
2

[Xη(Y) − Yη(X) − η([X,Y])], ∀X,Y ∈ X(M).
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Definition 2.6. A ε-almost paracontact metric manifold (M, φ, ξ, η, 1) is called a ε-paracontact metric manifold if
Ω = dη. If, moreover, the ε-paracontact metric manifold is normal, then it is called a ε-para-Sasakian manifold.
A ε-paracontact metric manifold (M, φ, ξ, η, 1) is called ε-K-paracontact manifold if the Reeb vector field is Killing.

Remark 2.7. If in the above definition we consider that the Reeb vector field is space-like, i.e. ε = 1, we obtain the
almost paracontact metric manifolds, which were classified by S. Zamkovoy and G. Nakova [31] in twelve classes (see
also [27]).

Remark 2.8. A ε-para-Sasakian manifold (M, φ, ξ, η, 1) is characterized by the relation:

(∇Xφ)Y = εη(Y)X − 1(X,Y)ξ, ∀X,Y ∈ X(M), (4)

where ∇ is the Levi-Civita connection of 1. This relation yields

∇Xξ = −εφX, ∀X ∈ X(M). (5)

Remark 2.9. From (5) and the relation 1(φX,Y) = −1(X, φY) it follows that on a ε-para-Sasakian manifold
(M, φ, ξ, η, 1) the Reeb vector field ξ is a Killing vector field, i.e. the ε-para-Sasakian manifold (M, φ, ξ, η, 1) is
a K-paracontact manifold. The converse is not true in general, but a 3-dimensional paracontact metric manifold is
K-paracontact if and only if it is ε-para-Sasakian.

We introduce now the notion of ε-φ-basis on a ε-almost paracontact metric manifold, similar to that of
φ-basis on an almost paracontact metric manifold, for which we quote e.g. [14, p. 425].

Definition 2.10. Let (M, φ, ξ, η, 1) be a ε-almost paracontact metric manifold and let Up be a neighbourhood of a
point p ∈ M. A pseudo-orthonormal basis {Xi, φXi, ξ}, with i ∈ {1, . . . ,n}, in Up (where {Xi, ξ}i∈{1,...,n} are space-like
vector fields and {φXi}i∈{1,...,n} are time-like vector fields, or vice-versa) is called a ε-φ-basis.

Remark 2.11. Any ε-almost paracontact metric manifold admits at least locally a ε-φ-basis.

2.2. Frenet Curves on semi-Riemannian manifolds

Extending the Frenet equations for the Minkowski space [26, p. 35] to a semi-Riemannian manifold
(M, 1),with 1 of signature (n + 1,n), we define the Frenet curve of osculating order r ≥ 1 as follows:

Definition 2.12. Let γ : I → M be a pseudo-arc length parametrized space-like or time-like curve in a semi-
Riemannian manifold (M, 1), with the metric 1 of signature (n + 1,n). We say that γ is a Frenet curve of osculating
order r ≥ 1 if there exist some pseudo-orthonormal vector fields {γ̇, ν1, . . . , νr−1} along γ, such that

∇γ̇γ̇ = ε1κ1ν1,
∇γ̇ν1 = −ε0κ1γ̇ + ε2κ2ν2,
∇γ̇ν j = −ε j−1κ jν j−1 + ε j+1κ j+1ν j+1, for j ∈ {2, r − 2},
∇γ̇νr−1 = −εr−2κr−1νr−2,

(6)

where 1(γ̇, γ̇) = ε0 = ±1, 1(νi, νi) = εi = ±1, and κi is a positive C∞ function of the pseudo-arc length parameter s,
called the i−th curvature of γ, for each i ∈ {1, . . . , r − 1}.

In particular, a Frenet curve of osculating order 2 with constant curvature κ1 is a circle.
Further, a Frenet curve of osculating order r, such that all curvatures κ1, κ2, . . . , κr−1 are constant is called a helix

of order r.

Remark 2.13. The relation between the causalities of γ̇, ν1 and ν2 is given by ε2 = −ε0ε1 (see [26, p. 35]).

Example 2.14. A geodesic in a semi-Riemannian manifold (M, 1) is a Frenet curve of osculating order 1.
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Remark 2.15. The curvatures of a Frenet curve γ of osculating order r ≥ 2 in a semi-Riemannian manifold (M, 1),
with the metric 1 of signature (n + 1,n), have the expressions

κ1 = 1(∇γ̇γ̇, ν1) = −1(γ̇,∇γ̇ν1) > 0,

κi = 1(∇γ̇νi−1, νi) = −1(νi−1,∇γ̇νi) > 0, i ∈ {2, . . . , r − 2}.

Definition 2.16. Letγ be a Frenet curve of osculating order r on an almost paracontact metric manifold (M, φ, ξ, η, 1).
When r ≥ 2, we say γ to be a φ-curve in M if span{γ̇, ν1, . . . , νr−1} is φ-invariant.
A φ-curve γ in M is said to be Legendre φ-curve if η(γ̇) = 0.
A φ-curve of osculating order 2 with constant curvature κ1 is called a φ-circle.
A φ-curve of osculating order r > 2 with all curvatures κ1, κ2, . . . , κr−1 constant is called a φ-helix of order r.
The functions τi j = 1(νi, φν j) for 0 ≤ i < j ≤ r − 1, where ν0 = γ̇, are called the φ-torsions of a φ-curve γ.

Remark 2.17. In [20], a φ-curve of osculating order 2 was defined by the φ−invariance of span{γ̇, ν1, ξ}, but since
φξ = 0 and φ2 has the form (1), the φ−invariant space reduces to span{γ̇, ν1}, as in Definition 2.16.

2.3. Magnetic curves on semi-Riemannian manifolds
Let (M, 1) be a semi-Riemannian manifold, on which a particle of charge q moves under the action of

a magnetic field. In this case the magnetic field is identified with a closed 2-form Fq, to whom one can
associate a (1,1)-tensor field ϕq, called the Lorentz force, by the relation:

Fq(X,Y) = 1(ϕqX,Y), ∀X,Y ∈ X(M). (7)

A magnetic curve (or trajectory) associated to Fq is any curve γ on M, which satisfies the Lorentz equation (or
Newton equation):

∇γ̇γ̇ = ϕq(γ̇), (8)

where ∇ is the Levi-Civita connection of the metric 1.
When the particle moves under the action of gravity only, i.e. the magnetic field vanishes, the relation

(8) reduces to the equation of geodesics under pseudo-arc length parametrization, namely ∇γ̇γ̇ = 0.
A uniform magnetic field is a magnetic field Fq for which Fq is parallel with respect to ∇, i.e. ∇Fq = 0.
An important property of the magnetic trajectories is that their speed is constant. A magnetic trajectory

γ(s) is called normal magnetic curve if it is parametrized by the pseudo-arc length, i.e. 1(γ̇, γ̇) = ±1.
On a 3-dimensional semi-Riemannian manifold (M3, 1), where any closed 2-form may be identified

with a divergence-free vector field via the Hodge star operator and the volume form dv1, one can define a
magnetic field FV associated to a divergence-free vector field V on M3, by:

FV(X,Y) = dv1(V,X,Y), ∀X,Y ∈ X(M3). (9)

On the other hand, the cross product × on (X(M3), 1) can be defined by:

1(X × Y,Z) = dv1(X,Y,Z), ∀X,Y,Z ∈ X(M3). (10)

Next, from the relations (7), (9) and (10), it follows that the Lorentz force associated to FV can be expressed
as

ϕ(X) = V × X, ∀X ∈ X(M3),

and the Lorentz equation (8) takes the form

∇γ̇γ̇ = V × γ̇.

If, in particular, the divergence-free vector field V is Killing, then FV is called Killing magnetic field, and
its trajectories are called Killing magnetic curves.
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3. Magnetic curves on Para-Sasakian manifolds

Consider a ε-paracontact metric manifold (M, φ, ξ, η, 1) and its fundamental 2-form Ω. Due to the
skew-symmetry of φwith respect to 1, (3) becomes

Ω(X,Y) = −1(φX,Y), ∀X,Y ∈ X(M),

and then using (7) we can define the ε-paracontact magnetic field with strength q ∈ R∗ on M by

Fq(X,Y) = qΩ(X,Y), ∀X,Y ∈ X(M). (11)

From (3), (7) and (11) we can express the Lorentz force ϕq associated to the ε-paracontact magnetic field
Fq by the relation

ϕq = −qφ.

Then, the Lorentz equation (8) takes the form

∇γ̇γ̇ = −qφγ̇, (12)

where γ is a smooth curve parametrized by pseudo-arc length on M, called a ε-paracontact normal magnetic
curve of magnetism q or a trajectory of the magnetic field Fq.

Definition 3.1. Let γ be a curve on an almost paracontact manifold (M, φ, ξ, η, 1). The angle between γ̇ and ξ is
called the paracontact angle of the curve γ.

Lemma 3.2. Let γ be a trajectory of a ε-paracontact magnetic field Fq of magnetism q ∈ R \ {0} on a ε-para-Sasakian
manifold (M, φ, ξ, η, 1). The curve γ has constant speed and the paracontact angle is constant or, equivalently,
η(γ̇) = η0 ∈ R.

Proof: By considering a ε-paracontact magnetic curve on a ε-para-Sasakian manifold (M, φ, ξ, η, 1) and
by using relation (12), we obtain

d
ds
1(γ̇, γ̇) = 21(∇γ̇γ̇, γ̇) = −2q1(φγ̇, γ̇) = 0,

i.e. γ̇ has constant length.
By taking into account Definition 2.1 and relation (12), we have the following equalities:

d
ds
1(ξ, γ̇) = 1(∇γ̇ξ, γ̇) + 1(ξ,∇γ̇γ̇) = −ε1(φγ̇, γ̇) − qη(φγ̇) = 0,

which yield 1(ξ, γ̇) = const., i.e. η(γ̇) = const. □

Proposition 3.3. Let γ be a Frenet curve of osculating order r on a ε-para-Sasakian manifold (M, φ, ξ, η, 1). If γ is a
non-geodesic normal magnetic curve associated to a ε-paracontact magnetic field Fq of magnetism q ∈ R \ {0} on M,
then:

• i) The curve γ has osculating order r ≤ 3.

• ii) The Lorentz force satisfies:
ϕqγ̇ = ε1κ1ν1,

ϕqν1 = ε1(1 − ε0η
2
0)

q2

κ1
γ̇ + ε2η0q sgn(qη0 − ε0)ν2,

ϕqν2 = −ε1qη0 sgn(qη0 − ε0)ν1,

where sgn denotes the signum function.
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• iii) The Reeb vector field ξ is space-like (i.e. the manifold is para-Sasakian), given by:

ξ = ε0η0γ̇ + ε0 sgn(qη0 − ε0)
κ1

q
ν2. (13)

• iv) One has ε1(η2
0 − ε0) > 0 and the first curvature of γ is

κ1 = |q|
√
ε1(η2

0 − ε0).

In particular,

– If r = 2, then η0 =
ε0
q , and κ1 =

√
ε1(1 − ε0q2).

– If r = 3, then the second curvature of γ is κ2 = |qη0 − ε0|.

Proof: From the Lorentz equation (12) and the first Frenet formula in (6) we obtain

ε1κ1ν1 = −qφγ̇, (14)

and then, by using the metricity condition (2) and Lemma 3.2, it follows that

ε1κ
2
1 = q2(εη2

0 − ε0), (15)

hence one has ε1(εη2
0 − ε0) > 0, and

κ1 = |q|
√
ε1(εη2

0 − ε0). (16)

From (14), we have that the action of the Lorentz force on the tangent vector to γ is

ϕqγ̇ = ε1κ1ν1,

which yields

η(ν1) = 0. (17)

Next, applying to (14) the covariant derivative with respect to γ̇, using the relation (4), the Frenet
equations (6), Definition 2.1, and the expression (16) of κ1, we obtain the following identity:

ε2κ1κ2ν2 = ε1εq(qη0 − ε0)(ε0η0γ̇ − εξ). (18)

When γ has osculating order 2, i.e. κ2 = 0, the relation (18) yields two cases: η0 =
ε0
q or γ̇ = ε

ε0η0
ξ.

In the second case, γ is an integral curve of ξ, which implies that ∇γ̇γ̇ = 0, i. e. γ is a geodesic, which
must be excluded from the classification.

In the case when η0 =
ε0
q , the relation (15) yields ε1(ε − ε0q2) > 0 and then from (16) we obtain

κ1 =
√
ε1(ε − ε0q2).

When γ has osculating order r > 2, i.e. κ2 , 0, by taking the norm of the two hand sides of equation
(18), a simple calculation yields κ2

2 = ε(qη0 − ε0)2. It follows, on one hand, that ε = 1, i.e. ξ is space-like and,
on the other hand, that

κ2 = |qη0 − ε0|.

Next, from (18) we get that ξ has the expression (13) from the statement.
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Since we proved that the signature of ξ is 1, we obtain from (13) that

η2
0ε0 +

κ2
1

q2 ε2 = 1,

hence
κ2

1 = ε2q2(1 − η2
0ε0),

and replacing ε2 by −ε0ε1,we can write
κ2

1 = ε1q2(η2
0 − ε0).

Applying φ to (13) and using (14), we obtain that

φν2 = ε1η0 sgn(qη0 − ε0)ν1, (19)

which shows that the action of the Lorentz force on ν2 is the one given by the theorem.
Next, since κ1 , 0, by applying φ to (14) and replacing ξ from (13), we obtain

φν1 = ε1
q
κ1

(ε0η
2
0 − 1)γ̇ − ε2η0 sgn(qη0 − ε0)ν2, (20)

i.e. the action of ϕq on ν1 is that given in the statement.
If we take the covariant derivative with respect to γ̇, then (20) yields

∇γ̇ν2 = [q(ε0η
2
0 − 1)ν1 − (∇γ̇φ)ν1 − φ(∇γ̇ν1)]

ε2 sgn(qη0 − ε0)
η0

. (21)

From (2), (17) and 1(γ̇, ν1) = 0 we have that ∇γ̇(φν1) = 0. Moreover, by using the second Frenet formula
in (6), (14), (19), and the fact that ε2 = −ε0ε1, (21) becomes

∇γ̇ν2 = −ε1κ2ν1.

Comparing the above expression with the one given by the third Frenet equation from (6), we obtain
κ3 = 0, i.e. the Frenet magnetic curve has osculting order 3. □

Remark 3.4. Concerning the statement i) of Proposition 3.3, the curve γ is a helix, as we commented in Example
2.14.

In the geometry of manifolds, there is a concern to determine the shape, by using curvature.
In the sequel, we use the curvatures of a Frenet curve to determine the shape of normal magnetic curves

in the context of para-Sasakian manifolds. Thus, we now provide a classification result for the normal
paracontact magnetic curves, in the mentioned background.

Theorem 3.5. Let γ be a Frenet curve and let Fq be the paracontact magnetic field of magnetism q , 0 on a para-
Sasakian manifold (M, φ, ξ, η, 1). Then γ is a normal magnetic curve on M associated to Fq, if and only if it is one of
the following:

i) a geodesic obtained as an integral curve of ξ;

ii) a non-geodesic φ-circle of constant paracontact angle such that η0 =
ε0
q and 0 < ε1(1 − ε0q2) = κ2

1;

iii) a φ-(hyperbolic) helix of osculating order 3, with space-like axis ξ, and with curvatures satisfying

0 < q2ε1(η2
0 − ε0) = κ2

1 and κ2 = |qη0 − ε0|, where η0 = η(γ̇) = const ∈ R.
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Proof: Let us consider a normal magnetic curve γ associated to Fq.
If γ is a geodesic on (M, φ, ξ, η, 1), we have on one hand that ∇γ̇γ̇ = ϕqγ̇, where ∇ is the Levi-Civita

connection of 1 and on the other hand that ∇γ̇γ̇ = 0, hence ϕqγ̇ = 0. Since ϕqγ̇ = −qφγ̇, and on a para-
Sasakian manifold kerφ = span{ξ}, it follows that γ̇ ∈ span{ξ}. Then, the properties of γ̇ and ξ to be unitary,
yield γ̇ = ±ξ, i.e. γ is an integral curve of ξ up to a change of the sign of the parameter, which yields the
item i).

On the other hand, if γ is not a geodesic, then by i) of Proposition 3.3, γ is a circle (r = 2) or a hyperbolic
helix (r = 3). By ii) of Proposition 3.3, for r = 2 (respectively r = 3), {γ̇, ν1} (respectively {γ̇, ν1, ν2}) is
φ-invariant, i.e. γ is a φ-circle (respectively a φ-helix). Next, iv) Proposition 3.3 yields the items ii) and iii).

To prove the converse part of the statement we shall show that each curve described at items i), ii) and
iii) is a paracontact magnetic curve on the manifold.

Firstly, on a para-Sasakian manifold (M, φ, ξ, η, 1) we take a curve from item i), i.e. a geodesic γ obtained
as an integral curve of ξ, that is ∇γ̇γ̇ = 0 and γ̇ = ξ. Since on the para-Sasakian manifold we have φξ = 0,
by using the two previous equalities, we obtain ∇γ̇γ̇ = −qφγ̇, i.e. γ is a paracontact magnetic curve on
(M, φ, ξ, η, 1).

Next, we consider a curve from item iii), i.e. a φ-(hyperbolic) helix γ of osculating order 3, of space-

like axis ξ and of curvatures κ1 = |q|
√
ε1(η2

0 − ε0), κ2 = |qη0 − ε0|, where η0 = η(γ̇) = const. ∈ R. Since

η(γ̇) = 1(ξ, γ̇), it follows that d
ds1(ξ, γ̇) = 0, or equivalently 1(∇γ̇ξ, γ̇)+ 1(ξ,∇γ̇γ̇) = 0. By using (5) and the first

Frenet equation from (6), we obtain ε1κ1η(ν1) = 0, i.e. η(ν1) = 1(ξ, ν1) = 0, hence ξ ∈ span{γ̇, ν2}, which can
be written as

ξ = ε0η0γ̇ + ε2η(ν2)ν2. (22)

Since ξ is space-like and unitary, i.e. 1(ξ, ξ) = 1, and ε2 = −ε0ε1, it follows that |η(ν2)| =
√
ε1(η2

0 − ε0),
and taking into account the expression of κ1, we have:

|η(ν2)| =
κ1

|q|
.

Applying the covariant derivative with respect to γ̇ in the expression (22) of ξ and then using (5),
followed by the Frenet formulas (6) for osculating order 3, we obtain:

φγ̇ =
(
ε1ε2η(ν2)κ2 − ε0ε1η0κ1

)
ν1,

and it follows that

1(φγ̇, φγ̇) =
(
ε1ε2η(ν2)κ2 − ε0ε1η0κ1

)2 ε1. (23)

The relation (23) replaced into the metricity condition (2), yields:

ε1κ
2
2η(ν2)2

− 2ε0ε1ε2η0κ1κ2η(ν2) + (ε1κ
2
1 − 1)η2

0 + ε0 = 0. (24)

By solving the equation (24) with respect to η(ν2) and then replacing κ2 from the hypothesis, we obtain
two solutions:

η(ν2) =
κ1

|q|
ε1
−|q|η0 + ε0 sgn q
|qη0 − ε0|

= −
κ1

q
ε1 sgn(qη0 − ε0)

and

η(ν2) =
κ1

|q|
ε1
−|q|η0 − ε0 sgn q
|qη0 − ε0|

.

By substituting the first above expression of η(ν2) into (22), we obtain the Reeb vector field, given by:

ξ = ε0η0γ̇ − ε1ε2
κ1

q
sgn(qη0 − ε0)ν2.
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Then, applying ∇γ̇ and using the Frenet formulas from (6) with r = 3, we have

∇γ̇ξ = [ε0ε1η0κ1 + ε2
κ1

q
sgn(qη0 − ε0)κ2]ν1.

Next from (5) and the expressions of κ2 in the hypothesis, it follows that

−φγ̇ = ε1
κ1

q
ν1, i.e. ϕqγ̇ = ε1κ1ν1.

Finally, from the first Frenet formula we conclude that γ is a magnetic curve associated to Fq.
For the second expression of η(ν2) from above, by following the same directions as for the previous case,

we obtain a change of sign in the expression of ϕqγ̇, hence γ is a magnetic curve corresponding to −Fq. Since
the magnetism q can be either positive or negative, it follows that the magnetic curves corresponding to Fq
coincide with those associated to −Fq. Hence γ from item iii) is a magnetic curve corresponding to Fq.

In particular, the curves exposed in ii) are also paracontact magnetic curves. □

Remark 3.6. When the paracontact magnetic curve γ falls in case i) of Theorem 3.5, then γmust be space-like.

In the sequel, by considering each causality of the Frenet curve γ, from Theorem 3.5 and Remark 3.6,
we obtain, as consequences, the following characterizations of the paracontact magnetic curves.

Corollary 3.7. On a para-Sasakian manifold (M, φ, ξ, η, 1), a space-like Frenet curve γ with space-like acceleration
is a paracontact normal magnetic curve if and only if γ is one of the following:

a) a geodesic obtained as an integral curve of ξ;

b) a non-geodesic φ-circle of constant paracontact hyperbolic angle
θ = ± argcosh

(
1
|q|

)
with κ1 =

√
1 − q2, when the magnetism is q ∈ (−1, 1) \ {0};

c) a φ-hyperbolic helix of osculating order 3, with axis ξ, and with curvatures κ1 = |q sinhθ|, κ2 = |1− q ˜coshθ|,
where θ is the constant paracontact hyperbolic angle and ˜coshθ = ± coshθ.

Proof: Consider a Frenet paracontact normal magnetic curve γ on M, with ε0 = ε1 = 1.
Item a) is already proved by Theorem 3.5 i).
If in Theorem 3.5 iii) we take ε0 = ε1 = 1, we obtain η2

0 > 1, because κ1 > 0. Subsequently, there exists
θ ∈ R such that η0 = ± coshθ, which will be denoted in the sequel by ˜coshθ. In this case it follows that

κ1 = |q|
√

cosh2 θ − 1 = |q sinhθ|, κ2 = |1 − q ˜coshθ|, and thus item c) is proved.
When the osculating order is r = 2, by using Theorem 3.5 ii) we obtain that η0 =

1
q and κ2

1 = 1−q2 > 0, i.e.

|q| < 1 and η2
0 > 1. Thus we have again that there exists θ ∈ R such that η0 = ˜coshθ = 1

q . Since coshθ > 1 it

follows that coshθ = 1
|q| , or equivalently, θ = ± argcosh

(
1
|q|

)
. Thus the statement b) follows, which completes

the proof.
To prove the converse, we take into account that any curve γ from items a), b), c), is a curve described in

Theorem 3.5 at item i), ii), iii), respectively, and then γ is a paracontact magnetic curve on the manifold. □

Corollary 3.8. There do not exist space-like Legendre φ−curves with space-like acceleration, which are paracontact
normal magnetic curves in a para-Sasakian manifold (M, φ, ξ, η, 1).

Proof: If we suppose η(γ̇) = 0, it follows that coshθ = 0, but since coshθ ≥ 1 for every θ ∈ R, which
contradicts the assumption, and hence we conclude the statement. □

Corollary 3.9. On a para-Sasakian manifold (M, φ, ξ, η, 1), a space-like Frenet curve γ with time-like acceleration is
a paracontact normal magnetic curve if and only if γ is one of the following curves:



C.-L. Bejan et al. / Filomat 37:5 (2023), 1479–1496 1489

a) a geodesic obtained as an integral curve of ξ;

b) a non-geodesic φ-circle of constant paracontact angle θ = arccos 1
q ∈ [0, π], with κ1 =

√
q2 − 1, when |q| ≥ 1;

c) a Legendre φ-curve in M, with κ1 = |q|, κ2 = 1, i.e. a 1−dimensional integral submanifold of the paracontact
distribution. Moreover, in this case ξ = − sgn(q)ν2;

d) a φ-helix of osculating order 3, with axis ξ, and of curvatures κ1 = |q| sinθ, κ2 = |1− q cosθ|,where θ ∈ [0, π]
is the constant paracontact angle.

Proof: Let γ be a Frenet curve with ε0 = −ε1 = 1 on M. Item a) is already proved by Theorem 3.5 i).
Taking ε0 = 1 and ε1 = −1, we obtain from Theorem 3.5 iii) that η2

0 < 1, i.e. there exists θ ∈ [0, π] such
that η0 = cosθ and then κ1 = |q|

√

1 − cos2 θ = |q| sinθ, κ2 = |1 − q cosθ|, and thus any curve from item d) is
a paracontact magnetic curve.

For r = 2, we obtain from Theorem 3.5 ii) that η0 =
1
q and κ2

1 = q2
− 1 > 0, i.e. |q| > 1 and η2

0 < 1, hence
there exists θ ∈ [0, π] such that η0 = cosθ = 1

q , or equivalently, θ = arccos 1
q . Thus, any curve described at

b) is a paracontact magnetic curve.
To prove item c), we assume that η(γ̇) = 0, which yields cosθ = 0, i.e. θ = π2 . Then, by substituting this

particular value of θ, the expressions of κ1 and κ2 from item d) reduce to κ1 = |q| and κ2 = 1. Then, from
(13) it follows that ξ = − sgn(q)ν2, hence d) is proved.

The converse follows by the fact that any curve γ described at a), b), d), is a curve from items i), ii), iii)
of Theorem 3.5, respectively, and any curve from c) is obtained by particularizing d) for θ = π2 . □

Corollary 3.10. On a para-Sasakian manifold (M, φ, ξ, η, 1), a time-like Frenet curve γ is a paracontact normal
magnetic curve if and only if one of the following instances holds good:

a) γ is a non-geodesic φ-circle of constant paracontact hyperbolic angle θ = argsh
(
−

1
q

)
, and with κ1 =

√
q2 + 1;

b) γ is a Legendre φ-curve on M, with κ1 = |q|, κ2 = 1, i.e. a 1−dimensional integral submanifold of the
paracontact distribution. In this case ξ = sgn(q)ν2;

c) γ is aφ-hyperbolic helix of osculating order 3, with axis ξ, and of curvatures κ1 = |q| coshθ, κ2 = |1+q sinhθ|,
where θ is the constant paracontact hyperbolic angle and η0 = sinhθ.

Proof: By taking a time-like Frenet curve γ on a para-Sasakian manifold (M, φ, ξ, η, 1), from the first
Frenet equation, (12) and (2) we have that

1(ν1, ν1) =
1
κ2

1

1(∇γ̇γ̇,∇γ̇γ̇) =
q2

κ2
1

1(φγ̇, φγ̇) =
q2

κ2
1

(η2
0 − ε0) =

q2

κ2
1

(η2
0 + 1) > 0.

Since the first normal to a time-like curve is a space-like vector, we shall take a Frenet curve γ on M,
such that ε0 = −1 and ε1 = 1.

Taking into account Remark 3.6, we conclude that a time-like Frenet magnetic curve can fall either in
case ii) or iii), Theorem 3.5.

Then, by taking a non-geodesic Frenet curve with ε0 = −1 and ε1 = 1, we obtain from Theorem 3.5 iii),
that η0 is a real constant, hence there exists θ ∈ R such that η0 = sinhθ. In this case the curvatures become

κ1 = |q|
√

1 + η2
0 = |q| coshθ and κ2 = |1 + q sinhθ|, and the proof of item c) is concluded.

If the magnetic curve γ is a Legendre curve, i.e. η(γ̇) = 0, it follows that sinhθ = 0, or equivalently θ = 0.
Then, the above expressions of κ1 and κ2 reduce to κ1 = |q| and κ2 = 1.Moreover, the expression (13) of ξ
becomes ξ = sgn(q)ν2. Thus, item b) is proved.

When r = 2, by using Theorem 3.5 ii), we obtain that η0 = −
1
q and κ2

1 = 1 + q2, for all q , 0, hence there

exists θ ∈ R \ {0} such that η0 = sinhθ = − 1
q , or equivalently θ = argsh

(
−

1
q

)
.
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Conversely, since any curve γ described at a) and c), is a curve from items ii) and iii) of Theorem 3.5,
respectively, and any curve from b) is obtained from c) by taking θ = 0, it follows by Theorem 3.5, that γ is
a normal paracontact magnetic curve on the manifold. □

Proposition 3.11. A φ-helix γ of order 3 on a para-Sasakian manifold (M, φ, ξ, η, 1) has constant paracontact angle
if and only if τ02 = 0. In this case we have the following properties:

i) All φ−torsions are constant and τ01 , 0;
ii) The following relations hold good:

1(ν2, ξ) = ε0ε1(κ2τ01 − κ1τ12) and τ2
12 − ε1τ

2
01 = ε0; (25)

iii) γ is a paracontact magnetic curve of magnetism q = − κ1
τ01

, having constant paracontact angle given by
1(ξ, γ̇) = ε0

τ01τ12
κ1τ12−κ2τ01

;
iv) If τ12 = 0, then γ is space-like (respectively time-like) Legendre φ−curve given in Corollary 3.9 c) (or

respectively in Corollary 3.10 b)).

Proof: The Frenet equations for a φ−helix γ of osculating order 3 on a para-Sasakian manifold (M, φ, ξ, η, 1)
are

∇γ̇γ̇ = ε1κ1ν1,
∇γ̇ν1 = −ε0κ1γ̇ + ε2κ2ν2,
∇γ̇ν2 = −ε1κ2ν1.

(26)

The derivatives of the φ−torsions of γwith respect to the pseudo-arc length parameter s are

d
ds
τ01 =

d
ds
1(γ̇, φν1) = 1(∇γ̇γ̇, φν1) + 1(γ̇, (∇γ̇φ)ν1) + 1(γ̇, φ∇γ̇ν1),

d
ds
τ02 =

d
ds
1(γ̇, φν2) = 1(∇γ̇γ̇, φν2) + 1(γ̇, (∇γ̇φ)ν2) + 1(γ̇, φ∇γ̇ν2),

d
ds
τ12 =

d
ds
1(ν1, φν2) = 1(∇γ̇ν1, φν2) + 1(ν1, (∇γ̇φ)ν2) + 1(ν1, φ∇γ̇ν2).

By using (26) and the metricity condition (4), the three above derivatives reduce respectively to

d
ds
τ01 = ε0η(ν1) + ε2κ2τ02, (27)

d
ds
τ02 = ε1κ1τ12 + ε0η(ν2) − ε1κ2τ01, (28)

d
ds
τ12 = −ε0κ1τ02. (29)

From (26) and (5) we obtain the following relations:

d
ds
1(γ̇, ξ) = ε1κ11(ν1, ξ), (30)

d
ds
1(ν1, ξ) = −ε0κ11(γ̇, ξ) + ε2κ21(ν2, ξ) + τ01,

d
ds
1(ν2, ξ) = −ε1κ21(ν1, ξ) + τ02.

With respect to the Frenet frame, the Reeb vector field ξ decomposes as follows:

ξ = ε01(γ̇, ξ)γ̇ + ε11(ν1, ξ)ν1 + ε21(ν2, ξ)ν2,
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and since φξ = 0 we have that

φξ = ε01(γ̇, ξ)φγ̇ + ε11(ν1, ξ)φν1 + ε21(ν2, ξ)φν2 = 0.

Then, from the above relation and 1(γ̇, φξ) = 1(ν1, φξ) = 1(ν2, φξ) = 0,we obtain the following equalities:

ε11(ν1, ξ)τ01 + ε21(ν2, ξ)τ02 = 0, (31)

−ε01(γ̇, ξ)τ01 + ε21(ν2, ξ)τ12 = 0, (32)

−ε01(γ̇, ξ)τ02 − ε11(ν1, ξ)τ12 = 0. (33)

We suppose that γ has constant paracontact angle θ and the curvatures κ1, κ2 are nonzero constants. It
follows that 1(γ̇, ξ) = constant, and from (30) we have that 1(ν1, ξ) = 0,which together with (33) yield either
i) τ02 = 0, or ii) 1(γ̇, ξ) = 0. In Case i) the relation (27) (respectively (29)) leads to τ01 = constant (respectively
to τ12 = constant). In Case ii), since 1(γ̇, ξ) = 1(ν1, ξ) = 0, it follows that ξ is collinear to ν2, hence 1(ν2, ξ) , 0.
Then from (31) (respectively (32)) one obtains τ02 = 0 (respectively τ12 = 0), i.e. ii) is a particular case of i).

Conversely, if τ02 = 0, the relations (31) and (33) lead respectively to

1(ν1, ξ)τ01 = 0, 1(ν1, ξ)τ12 = 0,

from which we have either Case I) 1(ν1, ξ) , 0 and τ01 = τ12 = 0, or Case II) 1(ν1, ξ) = 0. Since in Case I) we
obtain that all φ−torsions vanish, which is a contradiction, we conclude that Case II) is the only possible
case. Consequently, 1(ν1, ξ) = 0, and then from (30) it follows that d

ds1(γ̇, ξ) = 0, i.e. the paracontact angle θ
is constant.

Next, if the paracontact angle is constant, or equivalently τ02 = 0, the relation (28) leads to

1(ν2, ξ) = ε0ε1(κ2τ01 − κ1τ12), (34)

i.e. the first relation in (25) is proved.
In this case, as proven before, 1(ν1, ξ) = 0, hence the expression of ξ reduces to

ξ = ε01(γ̇, ξ)γ̇ + ε21(ν2, ξ)ν2,

and then

φξ = ε01(γ̇, ξ)φγ̇ + ε21(ν2, ξ)φν2 = 0. (35)

Moreover, since φγ̇ and ν1 are both orthogonal to γ̇, it follows that φγ̇ is collinear to ν1 and one has

φγ̇ = −τ01ν1, (36)

hence τ01 , 0. Similarly, we can write

φν2 = τ12ν1 (37)

and then from (35) and (34) we obtain

1(γ̇, ξ) = ε0(κ1τ12 − κ2τ01)τ12/τ01. (38)

By using (36), (37), and the metricity relation (2) we obtain

1(γ̇, ξ)2 = ε0 + ε1τ
2
01, (39)

1(ξ, ν2)2 = ε2 + ε1τ
2
12, (40)

1(φγ̇, φν2) = −ε1τ01τ12 = 1(γ̇, ξ)1(ξ, ν2).
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Then, from (40), (34) and (38) we have the following relation involving theφ−torsions and the curvatures
of γ:

(κ2τ01 − κ1τ12)2τ12/τ01 = τ01τ12. (41)

Moreover, (38) and (39) yield

(κ2τ01 − κ1τ12)2τ2
12/(τ

2
01) = ε0 + ε1τ

2
01. (42)

By replacing (41) into (42) we obtain

τ2
12 = ε0 + ε1τ

2
01, (43)

and thus the second relation in (25) is proved.
If τ12 , 0, since τ01 , 0, then (41) and (38) become respectively

κ1τ12 − κ2τ01

τ01
=

τ01

κ1τ12 − κ2τ01
,

and
1(ξ, γ̇) = ε0

τ01τ12

κ1τ12 − κ2τ01
,

which prove the first relation in (25).
When τ12 = 0, (43) yields τ2

01 = −ε0ε1, and then from (39) it follows that 1(γ̇, ξ) = 0, i.e. γ is a Legendre
φ−helix and (40) becomes 1(ξ, ν2)2 = ε2. This relation holds only when ε2 = 1, more precisely when ε0 = −ε1.
Moreover, the relations τ12 = 0, (34) and (40) yield ε2 = κ2

2τ
2
01, and since τ2

01 = ε2, it follows that κ2 = 1, and
the last part of the proposition is proved. □

Remark 3.12. The space-like and time-like Frenet magnetic curves on para-Sasakian manifolds of dimension 2n+ 1,
characterized in the corollaries 3.7, 3.9, 3.10, yield (for n=1) the helices obtained in [14] on β−para-Sasakian manifolds
with β = −1.

4. Examples of magnetic curves associated to paracontact magnetic fields

We construct first a para-Sasaki structure (φ, ξ, η, 1) on R2n+1 and then we provide the magnetic curves
corresponding to the paracontact magnetic field on (R2n+1, φ, ξ, η, 1), which for n = 1 can be particularized
to those obtained in [14] on the hyperbolical Heisenberg group H3

h.
We denote by (xi, yi, z)i∈{1,...,n} the canonical coordinates of R2n+1, on which we consider a vector field

ξ = 2
∂
∂z
,

and a 1-form η, defined by

η =
1
2

dz +
n∑

h=1

(xhdyh
− yhdxh).

As the distribution Ker η is parallelizable, let {Xi,Yi}i∈{1,...,n} be a basis of vector fields, which gives a
parallelization of Ker η. If we take a (1, 1)−tensor field φ on R2n+1, such that

φXi = Yi, φYi = Xi, φξ = 0, i ∈ {1, . . . ,n}, (44)

then the structure (φ, ξ, η) turns out to be an almost paracontact structure on R2n+1.
From now on, we take, in particular,

Xi =
∂

∂xi + 2yi ∂
∂z
, Yi =

∂

∂yi − 2xi ∂
∂z
, i ∈ {1, . . . ,n}, (45)



C.-L. Bejan et al. / Filomat 37:5 (2023), 1479–1496 1493

which have the Lie brackets

[Xi,X j] = [Yi,Y j] = 0, [Xi,Y j] = −2δi jξ, [Xi, ξ] = [Yi, ξ] = 0, i, j ∈ {1, . . . ,n},

where δi j is the Kronecker delta.
The structure (φ, ξ, η, 1) on R2n+1 is almost paracontact metric, where

1 = η ⊗ η +
n∑

h=1

(
(dxh)2

− (dyh)2
)
. (46)

Moreover, since dη = 1(·, φ), i.e. dη = Ω, it follows that this structure is a paracontact metric one on
R2n+1.

By appling the Koszul formula to the metric 1, given by (46), we obtain the components of the Levi-Civita
connection with respect to the φ−basis {Xi,Yi, ξ}i∈{1,...,n}:

∇Xi X j = ∇Yi Y j = ∇ξξ = 0, ∇Yi X j = −∇Xi Y j = δi jξ
∇Xiξ = ∇ξXi = −Yi, ∇Yiξ = ∇ξYi = −Xi, i, j ∈ {1, . . . ,n}. (47)

The relations (44)-(47) imply (4), which based on Proposition 3.3 iii) shows that (R2n+1, φ, ξ, η, 1) is a
para-Sasakian manifold.

On this para-Sasakian manifold (R2n+1, φ, ξ, η, 1), we classify in the sequel the magnetic curves corre-
sponding to the paracontact magnetic field Fq, and we give their explicit parameterizations.

Theorem 4.1. A smooth curve γ on the para-Sasakian manifold (R2n+1, φ, ξ, η, 1), parameterized by the pseudo-arc
length s, is a normal magnetic curve associated to the paracontact magnetic field Fq if and only if γ is one of the
following curves:

a) a straight line parameterized as

γ(s) =

ci
1s + xi

0, ci
2s + yi

0, 2

η0 +

n∑
h=1

(ch
1yh

0 − ch
2xh

0)

 s + z0


i∈{1,...,n}

,

where ci
1, ci

2 ∈ R and xi(0) = xi
0 ∈ R, yi(0) = yi

0 ∈ R, and 1(ξ, γ̇) = η0 ∈ R.

b) a φ-helix with axis ξ parameterized as

γ(s) =
(
αi

1

2η0 − q
sinh[(2η0 − q)s] +

αi
2

2η0 − q
cosh[(2η0 − q)s] + xi

0, (48)

αi
1

2η0 − q
cosh[(2η0 − q)s] +

αi
2

2η0 − q
sinh[(2η0 − q)s] + yi

0,

2

η0 +

n∑
h=1

(
(αh

1)2
− (αh

2)2
)

2η0 − q

 s+

+
2

2η0 − q

n∑
h=1

(αh
1 yh

0 − α
h
2xh

0) sinh[(2η0 − q)s]+

+
2

2η0 − q

n∑
h=1

(αh
2 yh

0 − α
h
1xh

0) cosh[(2η0 − q)s] + z0

)
i∈{1,...,n}

,

where αi
1, α

i
2 ∈ R and xi(0) = xi

0 ∈ R, yi(0) = yi
0, z(0) = z0 ∈ R and 1(ξ, γ̇) = η0 ∈ R.

c) a φ-circle of constant paracontact angle, whose equation is (48), in which η0 =
ε0
q .
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Proof: Let γ be a curve parameterized by pseudo-arc length, given by

γ(s) = (xi(s), yi(s), z(s))i∈{1,...,n}.

Let us write the speed γ̇with respect to the φ-basis {Xi,Yi, ξ}i∈{1,...,n} in the form

γ̇(s) = αi(s)Xi + β
i(s)Yi + c(s)ξ, i ∈ {1, . . . ,n}, (49)

where αi(s), βi(s) and c(s) = η(γ̇(s)) are smooth functions.
On the other hand, from γ̇ = ẋi ∂

∂xi + ẏi ∂
∂yi + ż ∂∂z and (45), we obtain

γ̇ = ẋiXi + ẏiYi +

2
n∑

i=1

xi ẏi
− 2

n∑
i=1

ẋiyi + ż

 ∂∂z ,
which, compared with (49), yields

ẋi = αi, ẏi = βi, ż = 2
(
c −

n∑
i=1

xi ẏi +

n∑
i=1

ẋiyi
)
. (50)

The curve γ is a magnetic curve associated to the paracontact magnetic field Fq = qΩ = −q1(φX,Y) if it
satisfies the Lorentz equation (12). By replacing (49) and using (47), then (12) becomes

(α̇i
− 2cβi)Xi + (β̇i

− 2cαi)Yi + ċξ = −qβiXi − qαiYi,

which is equivalent to the following ordinary differential equations system:
α̇i = (2c − q)βi

β̇i = (2c − q)αi

ċ = 0.
(51)

Since the third above equation has the solution c(s) = const ∈ R, i.e. η(γ̇) = const ∈ R, we use the notation
c(s) = η0 ∈ R.

Now we distinguish two cases which lead to the equations in the statement.

Case I) When q = 2η0, the system (51) has the solution

αi(s) = ci
1 = const ∈ R, βi(s) = ci

2 = const ∈ R, c = η0 ∈ R. (52)

Next, from (50) and (52), we obtain that

xi = ci
1s + xi

0, yi = ci
2s + yi

0, z = 2
(
η0 +

n∑
h=1

(ch
1yh

0 − ch
2xh

0)
)

s + z0,

i.e. in this case the magnetic curve is a straight line with the equation from a).

Since ε0 = 1(γ̇, γ̇) = η2
0 +

n∑
h=1

(
(ch

1)2
− (ch

2)2
)

and the curve is parametrized by pseudo-arc length, then the

line is either space-like (respectively time-like) according as ε0 = 1 (respectively ε0 = −1), or light-like when

η2
0 =

n∑
h=1

(
(ch

2)2
− (ch

1)2
)
.

Case II) When q , 2η0, the system (51) is equivalent to
α̈i(s) = (2η0 − q)2αi

β̇i(s) = (2η0 − q)αi

c(s) = η0 = const ∈ R,
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which has the solution
αi(s) = αi

1 cosh[(2η0 − q)s] + αi
2 sinh[(2η0 − q)s],

βi(s) = αi
1 sinh[(2η0 − q)s] + αi

2 cosh[(2η0 − q)s],
c(s) = η0 = const ∈ R,

(53)

where αi
1, α

i
2 ∈ R and xi(0) = xi

0 ∈ R, yi(0) = yi
0,∈ R, for all i ∈ {1, . . . ,n} and 1(ξ, γ̇) = η0 ∈ R.

By replacing (53) into (50) and integrating, we obtain the following equations for the coordinates of the
points of the magnetic curve:

xi(s) =
αi

1
2η0−q sinh[(2η0 − q)s] +

αi
2

2η0−q cosh[(2η0 − q)s] + xi
0,

yi(s) =
αi

1
2η0−q cosh[(2η0 − q)s] +

αi
2

2η0−q sinh[(2η0 − q)s] + yi
0,

z(s) = 2

η0 +

n∑
h=1

((αh
1)2
−(αh

2)2)
2η0−q

 s

+ 2
2η0−q

n∑
h=1

(αh
1yh

0 − α
h
2xh

0) sinh[(2η0 − q)s]

+ 2
2η0−q

n∑
h=1

(αh
2yh

0 − α
h
1xh

0) cosh[(2η0 − q)s] + z0,

(54)

where αi
1, α

i
2 ∈ R and xi(0) = xi

0 ∈ R, yi(0) = yi
0, z(0) = z0 ∈ R, for all i ∈ {1, . . . ,n}.

Subsequently, in Case II) the magnetic curve is the helix given at item b) of the Theorem. Since the
curve is parametrized by pseudo-arc length and ε0 = 1(γ̇, γ̇) = η2

0 +
∑n

h=1

(
(αh

1)2
− (αh

2)2
)
, then the helix is

either space-like (respectively time-like) accordingly as ε0 = 1 (respectively ε0 = −1), or light-like when
η2

0 =
∑n

h=1

(
(αh

2)2
− (αh

1)2
)
.

If in (54) we take η0 =
ε0
q , we obtain, according to Theorem 3.5 ii), that the magnetic curve is that given

at item c).
Conversely, one can easily verify that the curves from items a), b) and c) of the Theorem satisfy the

Lorentz equation (12), where φ is the (1,1) tensor field on R2n+1 given by (44). □

Remark 4.2. The normal paracontact magnetic curves on the para-Sasakian manifold (R2n+1, φ, ξ, η, 1), described
in Theorem 4.1, at items a), c), b), are respectively of the types i), ii), iii) of Theorem 3.5. The curvatures of these three
classes of curves have the constant values mentioned in Theorem 3.5 at each item.
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[13] J.L. Cabrerizo, M. Fernández and J.S. Gómez, The contact magnetic flow in 3D Sasakian manifolds, J. Phys. A: Math. Theor. 42

(2009) 19, 195201, 10.
[14] G. Calvaruso, M.I. Munteanu and A. Perrone, Killing magnetic curves in the three-dimensional almost paracontact manifolds, J.

Math. Anal. Appl. 426 (2015) 423–439.
[15] V. Cruceanu, P. Fortuny and P.M. Gadea, A survey on paracomplex geometry, Rocky Mt. J. Math. 26 (1) (1996) 83–115.
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