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Abstract. In this paper, we study the following quasilinear Schrödinger equation

−∆u + V(x)u − [∆(1 + u2)1/2]
u

2(1 + u2)1/2 = h(u), x ∈ RN,

where N ≥ 3, 2∗ = 2N
N−2 , V(x) is a potential function. Unlike V ∈ C2(RN), we only need to assume that

V ∈ C1(RN). By using a change of variable, we prove the non-existence of ground state solutions with
Berestycki-Lions conditions, which contain the superliner case:

lim
s→+∞

h(s)
s
= +∞

and asymptotically linear case:

lim
s→+∞

h(s)
s
= η.

Our results extend and complement the results in related literature.

1. Introduction

This article is concerned with a class of generalized quasilinear Schrödinger equation

−∆u + V(x)u − [∆(1 + u2)1/2]
u

2(1 + u2)1/2
= h(u), x ∈ RN, (1)

where N ≥ 3, 2∗ = 2N
N−2 , V(x) satisfies the following conditions:

(V1) V ∈ C1(RN,R);
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(V2) 0 < V∞ = lim
|x|→∞

V(x) ≤ V(x);

(V3) ∇V(x) · x ≤ 0 for all x ∈ RN, with the strict inequality holding on a subset of positive Lebesgue
measure of RN, and the mapping t 7→ NV(tx) + ∇V(tx) · (tx) is non-increasing on (0,∞).

Standing wave of the following quasi-linear Schrödinger equation is a hot problem

i∂tz = −∆z +W(x)z − k(x, |z|) − ∆l(|z|2)l′(|z|2)z (2)

where z : R × RN
→ C, W : RN

→ R is a given potential, l : R → R and k : RN
× R → R are suitable

functions. For various types of l, the quasilinear equation of the form (1) has been derived from models of
several physical phenomenon. For more physical background, we can refer to [2, 8, 10, 12] and references
therein.

Set z(t, x) = exp(−iEt)u(x), where E ∈ R and u is a real function, (2) can be reduce to the corresponding
equation of elliptic type (see [7]):

−∆u + V(x)u − ∆l(u2)l′(u2)u = h(x,u) x ∈ RN. (3)

If we take 12(u) = 1 + [(l2(u))′]2

2 , then (3) turns into quasilinear elliptic equations (see [15])

−div(12(u)∇u) + 1(u)1′(u)|∇u|2 + V(x)u = h(x,u), x ∈ RN. (4)

For (4), there are many papers (see [6, 15–17]) studying the existence of standing wave solutions. If we set

12(u) = 1 + 2u2,

then (4) reduces to the following well-known quasilinear Schrödinger equation

−∆u + V(x)u − u∆(u2) = h(x,u).

Many recent studies have focused on the above quasilinear equation, see for example [3, 9, 20] and references
therein.

For (1), Shen et al. [18] proved the existence of positive solutions with asymptotically linear nonlinearity.
In [13], Miyagaki et al. studied the first eigenvalue for (1) and the existence of nonnegative solutions on
bound domain. As far as we know, there are few paper focused on the nonexistence of ground state solutions
for (1). In general, many scholars [4, 11, 14, 21] considered the nonexistence of ground state solutions with
V ∈ C2(RN) and asymptotically linear growth as [11]. But in this paper, motivated by [5, 11, 19, 21], we
consider nonexistence of ground state solutions for (1) with Berestycki-Lions conditions and we only need
to assume that V ∈ C1(RN). So the method in [4, 11] do not work in our problem and we used some new
ideas come from [5, 19, 21], which was used to deal with semilinear problems and quasilinear problems,
respectively. Next, we assume h(t) = 0 for t ≤ 0 and also give the following assumptions on h :

(h1) h ∈ C(R,R), and there exists C > 0 and p ∈ (2, 2∗) such that |h(t)| ≤ C(1 + |t|p−1);
(h2) h(t) = o(t) as t→ 0;
(h3) there exists L0 > 0 such that

∫
L0

0 (h(s) − V∞s)ds > 0;
Remark 1.1. Note that (h′3):

there exists β > 0 such that h(t) ≥ β|t|q−2t f or 2 < q < 2∗

is stronger than the condition (h3), which was first established by Berestyski and Lions in [1]. Indeed, in view of (h′3),
we infer that

1(t)
t
≥ β|t|q−2,

which shows that (h4) holds. Moreover, (h3) contains the superlinear and asymptotically linear case. Indeed, the
following conditions (h′3) and (h′′3 ) all satisfy (h3), where

(h′′3 ) lim
s→+∞

h(s)
s
= +∞
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and

(h′′′3 ) lim
s→+∞

h(s)
s
= η > V∞

for some η ∈ R. So, our results extend and complement [4, 11, 14, 18, 22].
As [7], we deduce that the Euler-Lagrange functional associated with (1) is

I(u) =
1
2

∫
RN
12(u)|∇u|2 +

1
2

∫
RN

V(x)u2
−

∫
RN

H(u),

where H(u) =
∫ u

0 h(s)ds. Due to the appearance of the nonlocal term
∫
RN 1

2(u)|∇u|2dx, I may be not well
defined. To overcome this difficulty, a variable substitution as follows: for any v ∈ H1(RN), Shen and Wang
[15] make a change of variable as u = G−1(v) and G(u) =

∫ u

0 1(t)dt, and then the functional I in form can be
transformed into

J(v) =
1
2

∫
RN

(|∇v|2 + V(x)|G−1(v)|2) −
∫
RN

H(G−1(v)), x ∈ RN. (5)

In addition, the limit energy functional of (5) is

J
∞(v) =

1
2

∫
RN

(|∇v|2 + V∞|G−1(v)|2) −
∫
RN

H(G−1(v)), x ∈ RN. (6)

From our hypotheses, it is clear that J and J∞ are well defined in H1(RN) and J ,J∞ ∈ C1(RN,R).
To state our result, we need define

M =
{
v ∈ H1(RN)\{0} : P(v) = 0

}
,

where

P(v) =
N − 2

2

∫
RN
|∇v|2 +

N
2

∫
RN

V(x)|G−1(v)|2

+
1
2

∫
RN

(∇V(x) · x)|G−1(v)|2 −N
∫
RN

H(G−1(v)).
(7)

Moreover, let

M∞ = {v ∈ H1(RN)\{0} : P∞(v) = 0},

where

P∞(v) =
N − 2

2

∫
RN
|∇v|2 +

N
2

∫
RN

V(x)|G−1(v)|2 −N
∫
RN

H(G−1(v)). (8)

Now, we are ready to state the main result of this paper.
Theorem 1.2. Assume that (V1)-(V3) and (h1)-(h3) are satisfied. Then c := infMJ is not a critical level for the
functional J . In particular, the infimum c is not achieved.

The remainder of this paper is organized as follows. In section 2, we prove Theorem 1.2.
Notations: Throughout this paper, we make use of the following notations:
•

∫
RN ♣ denotes

∫
RN ♣dx and C denotes the different constants;

• Lp(RN) denotes the usual Lebesgue space with norms ∥u∥p =
(∫
RN |u|p

) 1
p , where 1 ≤ p < ∞;

• For any v ∈ H1(RN)\{0}, vt(x) = v(x/t) for t > 0.
• Let H1(RN) =

{
u ∈ L2(RN) : ∇u ∈ L2(RN)

}
with the norm

∥u∥H1 =

(∫
RN

(|∇u|2 + u2)
) 1

2

.

• The weak convergence in H1(RN) is denoted by⇀, and the strong convergence by→.
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2. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. At first, we present some useful lemmas and corollaries.
Lemma 2.1 ([22]) For the function G−1, the following properties hold:

(1) 1 ≤ 1(G−1(s)) ≤
√

3
2 for all s ∈ R;

(2) |G−1(s)| ≤ |s| for all s ∈ R;
(3) |G−1(s)|

1(G−1(s)) ≤ |s| for all s ∈ R;

(4) G−1(s)s
1(G−1(s)) ≤ |G

−1(s)|2 for all s ∈ R;

(5) lim
|s|→0

G−1(s)
s = 1 and lim

|s|→+∞

G−1(s)
s =

√
2
3 .

By (V3), we can conclude that

NtN [V(x) − V(tx)] +
(
tN
− 1

)
(∇V(x) · x) ≥ 0. (9)

In (9), letting t→ +∞, then we have

NV(x) + ∇V(x) · x ≥ NV∞. (10)

In (10), it is easy to check that ∇V(x) · x→ 0 as |x| → +∞.
Lemma 2.2. Assume that (V1)-(V3), (h1) and (h2) hold. Then

J(v) ≥ J(vt) +
1 − tN

N
P(v) +

2 −NtN−2 + (N − 2)tN

2N

∫
RN
|∇v|2, ∀ v ∈ H1(RN), t > 0.

Proof. By (5) and (9), we have

J(v) −J(vt)

=
1 − tN−2

2

∫
RN
|∇v|2 +

1
2

∫
RN

[
V(x) − tNV(tx)

]
|G−1(v)|2

−

(
1 − tN

) ∫
RN

H(G−1(v))

=
1 − tN

N

{N − 2
2

∫
RN
|∇v|2 +

1
2

∫
RN

[NV(x) + ∇V(x) · x] |G−1(v)|2

−N
∫
RN

H(G−1(v))
}

+
2 −NtN−2 + (N − 2)tN

2N

∫
RN
|∇v|2

+
1

2N

∫
RN

(
NtN [V(x) − V(tx)] + (tN

− 1)∇V(x) · x
)
|G−1(v)|2

≥
1 − tN

N
P(v) +

2 −NtN−2 + (N − 2)tN

2N

∫
RN
|∇v|2.

This completes the proof. □
In view of Lemma 2.2, we get the following corollary.

Corollary 2.3. If (V1)-(V3), (h1) and (h2) hold, then for v ∈ M, J(v) = maxt>0J(vt).
To proveM , ∅, we set

Θ =

{
v ∈ H1(RN) :

∫
RN

[1
2

V∞|G−1(v)|2 −H(G−1(v))
]
< 0

}
.
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Similar to the proof in [5, 19, 21], we can get the following important lemma.
Lemma 2.4. Assume that (V1)-(V3), (h1), (h2) and (h3) hold, then Θ , ∅ and{

v ∈ H1(RN)\{0} : P∞(v) ≤ 0 or P(v) ≤ 0
}
⊂ Θ.

Proof. By the proof of Theorem 2 in [1], and (h3), it is easy to see that Θ , ∅. Next, we prove the following
conclusion into the two cases:

Case 1: if v ∈ H1(RN)\{0} and P∞(v) ≤ 0, then it follows from Lemma 2.2 that v ∈ Θ.
Case 2: if v ∈ H1(RN)\{0} and P(v) ≤ 0, then it follows from (10) that

N
∫
RN

[1
2

V∞|G−1(v)|2 −H(G−1(v))
]

= P(v) −
N − 2

2

∫
RN
|∇v|2 −

N
2

∫
RN

[
(V(x) − V∞) +

∇V(x) · x
N

]
|G−1(v)|2

≤ −
N − 2

2

∫
RN
|∇v|2 −

1
2

∫
RN

(NV(x) −NV∞ + ∇V(x) · x) |G−1(v)|2

≤ −
N − 2

2

∫
RN
|∇v|2 < 0.

which shows that v ∈ Θ. This completes the proof. □
Lemma 2.5. Assume that (V1)-(V3) and (h1)-(h3) hold, then for any v ∈ Θ, there exists a unique tv > 0 such that
vtv ∈ M.
Proof. Let v ∈ Θ be fixed. Assume that

Υ(t) : = J(vt) =
tN−2

2

∫
RN
|∇v|2 +

tN

2

∫
RN

V(tx)|G−1(v)|2 − tN
∫
RN

H(G−1(v)).

Set

Υ′(t) =
N − 2

2
tN−3

∫
RN
|∇v|2 +

N
2

tN−1
∫
RN

V(tx)|G−1(v)|2

+
tN−1

2

∫
RN

(∇V(tx) · (tx))|G−1(v)|2 −NtN−1
∫
RN

H(G−1(v)) = 0.

Then

N − 2
2

tN−2
∫
RN
|∇v|2 +

tN

2

∫
RN

[NV(tx) + (∇V(tx) · (tx))] |G−1(v)|2

= NtN
∫
RN

H(G−1(v)),

which implies that P(vt) = 0⇔ vt ∈ M. It is easy to check that lim
t→0
Υ(t) = 0, Υ(t) > 0 for t > 0 enough small.

From (V2) and Lebesgue Dominated Convergence Theorem, we have

lim
t→+∞

∫
RN

(1
2

V(tx)|G−1(v)|2 −H(G−1(v))
)
=

∫
RN

(1
2

V∞|G−1(v)|2 −H(G−1(v))
)

and

lim
t→+∞

∫
RN

(∇V(tx) · (tx))|G−1(v)|2 = 0.
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Moreover, one has

Υ′(t) = tN−3
(N − 2

2

∫
RN
|∇v|2 +

N
2

t2
∫

RN
V(tx)|G−1(v)|2

+
t2

2

∫
RN

(∇V(tx) · (tx))|G−1(v)|2 −Nt2
∫

RN
H(G−1(v))

)
= tN−3

[N − 2
2

∫
RN
|∇v|2 +Nt2

(∫
RN

1
2

V∞|G−1(v)|2 −H(G−1(v)) + ot(1)
) ]

and thus Υ(t) < 0 for t large. Thus max
t>0
Υ(t) is achieved at some tv > 0 such that Υ′(tv) = 0 and vtv ∈ M.

Next, we prove the uniqueness. Let α(t) = 2 − NtN−2 + (N − 2)tN. For any given v ∈ Θ, if there exist
t1, t2 > 0 such that vt1 , vt2 ∈ M. Thus P(vt1 ) = P(vt2 ) = 0. Therefore, we have

J(vt1 ) ≥ J(vt2 ) +
tN
1 − tN

2

NtN
1

P(vt1 ) +
α(t2/t1)

2N
∥∇vt1∥

2
2 = J(vt2 ) +

α(t2/t1)
2N

∥∇vt1∥
2
2

and

J(vt2 ) ≥ J(vt1 ) +
tN
2 − tN

1

NtN
2

P(vt2 ) +
α(t1/t2)

2N
∥∇vt2∥

2
2 = J(vt1 ) +

α(t1/t2)
2N

∥∇vt2∥
2
2,

which shows that t1 = t2. Thus tv > 0 is unique for v ∈ Θ. The proof is completed. □
By Corollary 2.3, Lemma 2.4 and Lemma 2.5, we can get the following lemma.

Lemma 2.6. Assume that (V1)-(V3) and (h1)-(h3) hold, then inf
M

J := c = inf
v∈Θ

maxt>0J(vt). Furthermore,

inf
M∞

J
∞ := c∞ = inf

v∈Θ
maxt>0J

∞(vt).

Lemma 2.7. Assume that (V1)-(V3) hold. Then
(i) there exists ρ > 0 such that ∥∇v∥2 ≥ ρ for any v ∈ M;
(ii) c = inf

M

J > 0.

Proof. (i) For any v ∈ M, we have that P(v) = 0. By Lemma 2.1, (h1)-(h2) and Sobolev embedding theorem,
we get

N − 2
2

∫
RN
|∇v|2 +

NV∞
2

∫
RN
|G−1(v)|2

≤
N − 2

2

∫
RN
|∇v|2 +

1
2

∫
RN

[NV(x) + ∇V(x) · x]|G−1(v)|2

=

∫
RN

H(G−1(v)) ≤ ε
∫
RN
|G−1(v)|2 + Cε∥∇v∥2

∗

2 .

If we choose ε = NV∞
4 , then there exists ρ > 0 such that ∥∇v∥2 ≥ ρ for any v ∈ M.

(ii) For any v ∈ M, by (V3), we have

J(v) = J(v) −
1
N

P(v)

=
1
N

∫
RN
|∇v|2 −

1
2N

∫
RN

(∇V(x), x)|G−1(v)|2

≥
1
N

∫
RN
|∇v|2 > 0.

(11)

This completes the proof. □
Lemma 2.8. For any v ∈ M∞, there exists a unique t ≥ 1 such that vt ∈ M.
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Proof. For any v ∈ M∞ ⊂ Θ, by Lemma 2.5, there exists a unique t > 0 such that vt ∈ M. Next, we show
t ≥ 1. In fact, it follows from P∞(v) = 0 that

N − 2
2

∫
RN
|∇v|2 −N

∫
RN

H(G−1(v)) = −
N
2

∫
RN

V∞|G−1(v)|2, (12)

which shows that P(v) ≥ 0. Moreover, by vt ∈ M, one has

N − 2
2

tN−2
∫
RN
|∇v|2 −NtN

∫
RN

H(G−1(v))

= −
tN

2

∫
RN

[NV(tx) + (∇V(tx) · (tx))]|G−1(v)|2

≤ −
NtN

2

∫
RN

V∞|G−1(v)|2.

(13)

It follows from (12) and (13) that

t2
≥

1
2∗

∫
RN |∇v|2∫

RN H(G−1(v)) − 1
2

∫
RN V∞|G−1(v)|2

= 1.

The proof is completed. □
Lemma 2.9. For any v ∈ M, there exists a unique t ∈ (0, 1] such that vt ∈ M∞.
Proof. For any v ∈ M ⊂ Θ, similar to Lemma 2.5, we have that there exists a unique t > 0 such that vt ∈ M∞.
Next, we show t ≥ 1. In fact, it follows from P(v) = 0 and (10) that

1
2∗

∫
RN
|∇v|2 −

∫
RN

H(G−1(v)) = −
1
2

∫
RN

[
V(x) +

∇V(x) · x
N

]
|G−1(v)|2

≤ −
1
2

∫
RN

V∞|G−1(v)|2,
(14)

which shows that P∞(v) ≤ 0. Moreover, by vt ∈ M∞, one has

N − 2
2

tN−2
∫
RN
|∇v|2 +

NtN

2

∫
RN

V∞|G−1(v)|2 −NtN
∫
RN

H(G−1(v)) = 0. (15)

It follows from (14) and (15) that

t2 =

1
2∗

∫
RN |∇v|2∫

RN H(G−1(v)) − 1
2

∫
RN V∞|G−1(v)|2

≤ 1.

The proof is completed. □
Lemma 2.10. If v ∈ M∞, then v(· − y) ∈ M∞, for all y ∈ RN. Moreover, there exists θy > 1 such that v( ·−y

θy
) ∈ M

and lim|y|→∞ θy = 1.
Proof. Since v ∈ M∞, by the translation invariance, we have that v(· − y) ∈ M∞ for all y ∈ RN. By Lemma
2.8, there exists θy ≥ 1 such that v( ·−y

θy
) ∈ M. Suppose by contradiction that there exists a sequence {yn} ⊂ RN

such that |yn| → +∞ and θyn → θ̄ > 1 or +∞ as n→ +∞. Next, let

Z(θyn x + yn) := V(θyn x + yn) +
(∇V(θyn x + yn) · (θyn x + yn))

N
.

It follows that

H(G−1(v)) −
1
2
Z(θyn x + yn)|G−1(v)|2 ≤ H(G−1(v)) −

1
2

V∞|G−1(v)|2

≤ C
(
|G−1(v)|2 + |G−1(v)|p

)
∈ L1(RN).
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Thus by the Lebesgue Dominated Convergence Theorem, one has

lim
|yn |→+∞

∫
RN

(
H(G−1(v)) −

1
2
Z(θyn x + yn)|G−1(v)|2

)
=

∫
RN

(
H(G−1(v)) −

1
2

V∞|G−1(v)|2
)
.

Moreover, for each yn ∈ RN, we have that v( ·−yn

θyn
) ∈ Mwith θyn ≥ 1. Thus we know

N − 2
2

∫
RN
|∇v|2 = Nθ2

yn

∫
RN

H(G−1(v)) −
Nθ2

yn

2

∫
RN
Z(θyn x + yn)|G−1(v)|2,

which implies that the right hand side of the above inequality goes to +∞ or

Nθ̄2
∫
RN

[
H(G−1(v)) −

1
2

V∞|G−1(v)|2
]
,

however, the left right hand side is fixed on N−2
2

∫
RN |∇v|2 > 0. Since v ∈ M∞ and θ̄ > 1 or +∞, this is a

contradiction. This completes the proof. □

Lemma 2.11. c = c∞.

Proof. Let ϑ ∈ H1(RN) be the ground state solution (which is positive and radially symmetric) of the
autonomous problem at infinity, ϑ ∈ M∞ and c∞ = J∞(ϑ). For any given y ∈ RN, let ϑy := ϑ(x − y). By the
translation invariance of the integrals, we know that ϑy ∈ M∞ and c∞ = J∞(ϑy). From Lemma 2.8, for any
y ∈ RN, there exists θy ≥ 1 such that ϑ̂y = ϑy(·/θy) ∈ M. Thus we have

|J(ϑ̂y) − c∞| = |J(ϑ̂y) −J∞(ϑy)|

=

∣∣∣∣∣12
∫
RN
|∇ϑ̂y|

2
−

1
2

∫
RN
|∇ϑy|

2 +
1
2

∫
RN

V(x)|G−1(ϑ̂y)|2

−
1
2

∫
RN

V∞|G−1(ϑy)|2 −
∫
RN

H(G−1(ϑ̂y)) +
∫
RN

H(G−1(ϑy))
∣∣∣∣∣

=

∣∣∣∣∣12(θN−2
y − 1)

∫
RN
|∇ϑ|2 +

1
2
θN

y

∫
RN

V(xθy + y)|G−1(ϑ)|2

−
1
2

∫
RN

V∞|G−1(ϑ)|2 + (1 − θN
y )

∫
RN

H(G−1(ϑ))
∣∣∣∣∣

≤
1
2

∣∣∣θN−2
y − 1

∣∣∣ ∫
RN
|∇ϑ|2 +

∣∣∣1 − θN
y

∣∣∣ ∫
RN

H(G−1(ϑ))

+
1
2

∫
RN

∣∣∣θN
y V(xθy + y) − V∞

∣∣∣ |G−1(ϑ)|2.

Since θy → 1 as |y| → +∞, we have 1
2

∣∣∣θN−2
y − 1

∣∣∣ ∫
RN |∇ϑ|

2
→ 0 and

∣∣∣1 − θN
y

∣∣∣ ∫
RN H(G−1(ϑ)) → 0. More-

over, by V(xθy + y) → V∞ as |y| → +∞, we get 1
2

∫
RN

∣∣∣θN
y V(xθy + y) − V∞

∣∣∣ |G−1(ϑ)|2 → 0. It follows that
lim|y|→+∞J(ϑ̂y) = c∞. Thus c = inf

v∈M
J(v) ≤ c∞.

Next, we only need to claim that c = inf
v∈M
J(v) ≥ c∞. If v ∈ M and θ ∈ (0, 1] satisfy v(·/θ) ∈ M∞, then it
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follows from (V3) that

J(v) =
1
2

∫
RN
|∇v|2 +

1
2

∫
RN

V(x)| f (v)|2 −
∫
RN

H(G−1(v))

=
1
N

(∫
RN
|∇v|2 −

∫
RN

∇V(x) · x
2

|G−1(v)|2
)

≥
1
N

∫
RN
|∇v|2

≥
θN−2

N

∫
RN
|∇v|2

≥ J
∞(v(x/θ)) ≥ c∞.

Thus for any v ∈ M, J(v) ≥ c∞. Therefore c = inf
v∈M
J(v) ≥ c∞. This completes the proof. □

Proof of Theorem 1.2. Suppose by contradiction, that is, there exists ν ∈ H1(RN), which is a critical point
of the functional J at level c. In particular, that, ν ∈ M and J(ν) = c. By Lemma 2.9, there exists t ∈ (0, 1]
be such that νt ∈ M∞. It follows from (V3) that

c = J(ν) =
1
N

(∫
RN
|∇ν|2 −

∫
RN

∇V(x) · x
2

|G−1(ν)|2
)

≥
tN−2

N

∫
RN
|∇ν|2 −

∫
RN

∇V(x) · x
2N

|G−1(ν)|2

≥ J
∞(νt)

≥ c∞ = c.

Thus t = 1, ν ∈ M∞ andJ∞(ν) = c∞. In view of Lemma 2.14 in [19],J∞′(ν) = 0. We can show that ν > 0 by
(h1)-(h2) and a standard argument. Hence, it follows from

c = J(ν) =
tN−2

N

∫
RN
|∇ν|2 −

∫
RN

∇V(x) · x
2N

|G−1(ν)|2 > c∞ = c.

This is a contradiction. The proof is completed. □
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