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Abstract. In this paper, we introduce a prey-predator system with Allee effect in prey where both the prey
and predator species are subject to harvesting and exhibit herd behaviour. The new idea of this paper is
to consider the Allee effect, herd behaviour and harversing together. Herd behaviour may be proved as a
buffer against environmental obstacles. On the contrary, Allee effect and harvesting together may wash out
the population from the system. So, the optimal harvesting policy is significant for the ecosystem concerned
with our proposed model. Moreover, taking some hypothetical data, a rigorous numerical illustration and
sensitivity analysis of the main parameters are offered here to validate the mathematical findings. To
summarise, we can say that our model is an endeavor aiming at the ecological balance in nature.

1. Introduction

Modelling of the prey-predator system has been a fertile field for theoretical ecology. The exploitation
of biological resources ([1],[2],[3]) is a significant threat to the ecological balance in nature. Furthermore,
the human being is directly related to ecology and is too needed to take proper initiatives to maintain the
ecological balance. Near about two million species exist in this world and they are always fighting with each
other for existence. A noticeable fact is that, different species are related in some instances. The predator-
prey ([4]-[7]) situation is defined as the situation when the growth rate of one species decreases while that
of other increases. The Lotka-Volterra model [8] is the prime source of population models of previous days.
Researchers also considered different models in this field like the Holling tanner model, ratio-dependent
model, etc. ([9]-[11]). Harvesting [12] is a matter of interest for both ecologists and economists in recent
times. So, harvesting models ([13]-[18]) are getting so much importance in the dynamics of the prey-
predator system. Allee effect ([19]-[23]) is another recent trend to work with these types of models. The
positive density reliance of populace enlargement at squat densities is known as Allee effect ([24]-[31]). In
this study, strong Allee effect has considered ([32]-[35]), whereas different types of Allee effect ([36]-[44])
can be used for this purpose. Jana and Elsayed [45] presented a single species model with strong Allee
effect and harvesting. Min et al. [40] discussed a diffusive prey-predator system with strong Allee effect. Yu
et al. [43] recently analysed an integrated pest management predator-prey model with weak Allee effect.
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Considering the recent trend, we introduce our present model using suitable assumptions regarding Allee
effect, herd behaviour and harvesting. For the modelling of Allee effect, the growth equation is of the form,

dX1

dT
= rX1

(
1 −

X1

K

) (X1

K0
− 1
)

(1)

where, X1(T) is the population density at the time T, K is the carrying capacity of the environment, r is the
intrinsic per capita growth rate and 0 < K0 << K. When the population size goes below the threshold level
K0, then the population growth rate decreases and goes to extinction.

The functional response or tropic function ([46]-[47]) is defined as the function which describes the
number of prey consumed per predator per unit time for given quantities of prey and predator. Till now,
many functional responses like Beddington-DeAngelis type, Holling type-I, II, III, etc. ([48]-[50]) have
been developed by different researchers. Among them, the Holling type-II functional response [51] can be
mathematically expressed as:

G(X1) =
aX1

1 + aThX1
(2)

where, X1(T) is the prey density at time T, Th denotes the average handling time of predator for each prey
and a means the search efficiency of the predator for prey.

It is a usual assumption that both prey and predator species live independently, for which any predator
can interact with any prey. But the populations who live in a group, always enjoy the benefits like high
success in mate finding, defense against predators, protection from foul weather etc. The dictionary
meaning of herd is a large group of animals, especially hoofed mammals, that live together as livestock. To
describe this social behaviour, Cosner et al. [52], Chattopadhyay et al. [53], Ajraldi et al. [54] gave different
concepts. Among them, Cosner et al. [52] and Ajraldi et al. [54] considered the functional response as the
square root of the predator and prey variable, respectively. In the real world, we find the prey-predator
situation where predator species are very large regarding some of their prey species. For these predators,
there is no need for time to handle the prey species. We consider this fact here and take the average
handling time Th = 0 for the functional response. The recent study of Anacleto et al. [51] is about the
delayed predator-prey model with Allee effect and Holling type-II functional response. We have modified
their considerations by taking herd behaviour and harvesting together. With all these above concerns and
reviewing some related literature ([55]-[61]), we consider the predation functional response as

G1(X1) = a
√

X1 (3)

where a, X1 are same as in (2). Lots of research work have already been done in this field. But as per
the author’s concern, no one considered the Allee effect, herd behaviour and harvesting together. For our
proposed model’s biological relevance, we can consider the example of some predatory fish species like
perch, muskie, pike, walleye, sharks, billfish, etc. People always harvest these fish to be consumed and
made oil, medicine etc. out of it. Any ecosystem containing big predatory fish usually shows a low density
of small fish. Generally, the little fish are preyed upon by the big fish almost in no time. For example, Shark
species prey on seals, sea lions, and other marine mammals.

Moreover, harvesting of all these species is always going on by human beings. Therefore, to protect
such an ecosystem, we must need an acceptable harvesting policy. So, the real-world situation demands an
optimal harvesting strategy for the sustainable development of the ecosystem. Hence, this study ultimately
aims to discuss the threats and some possible ways out for balanced ecology.

2. Mathematical Formulation of Proposed System

We are considering the following notations and assumptions to formulate our proposed model:
Notations:

X1(T) : Density of prey species at the time T
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X2(T) : Density of predator species at the time T

r : Intrinsic per capita growth rate of the prey

K : Carrying capacity of the prey

K0 : Prey population Allee threshold in the absence of predator

a : Search efficiency of the predator

b : Biomass conversion rate

d : Death rate of the predator in the absence of prey

q1 : Catchability coefficient of prey species

q2 : Catchability coefficient of predator species

Assumptions:
Here we will derive the mathematical modelling in differential form based on the discussion in the

introduction section regarding the growth of species, their relations, functional responses (1,2,3) and the
following assumptions:

(i) Both the populations live in herds.
(ii) A multiplicative Allee effect in prey population growth.

(iii) The average handling time of the predator for each prey is zero.
(iv) Both the prey and predator are subject to harvesting effort F.

Therefore, the proposed model can be represented by the following set of non-linear differential equa-
tions:

dX1
dT = rX1

(
1 − X1

K

) (
X1
K0
− 1
)
− a
√

X1
√

X2 − q1FX1,
dX2
dT = ab

√
X1
√

X2 − (d + q2F)X2
(4)

with initial condition X1(0) > 0 and X2(0) > 0.
Here 0 < K0 << K, and q1FX1, q2FX2 are the catch rate function (based on the catch per unit effort) for the

prey and predator, respectively. The modified functional response of (3) has been considered here because
of herd behaviour. Prey species always want to avoid their predators. But in an ecosystem, it is not possible
every time. So, the herd behaviour acts as a buffer against predatory attacks. Harvesting is also unexpected
for the populations of any ecosystem. But they cannot neglect the harvesting process. As a result, both
prey and predator species form herds as a fighting strategy. So, we must have a biological significance to
discuss our proposed model system. It is obvious that the parameters we used here are non-negative.

Now let x1 =
X1
K , x2 =

X2
K , t = r K

K0
T and also put m = K0

K , α = aK0
rK , β = abK0

rK , δ = dK0
rK , E = FK0

rK . Then after
some simplifications, the system (4) reduces to our working equations of the form,

dx1
dt = x1(1 − x1)(x1 −m) − α

√
x1
√

x2 − q1Ex1,
dx2
dt = β

√
x1
√

x2 − (δ + q2E)x2,
(5)

with initial condition

x1(0) > 0 and x2(0) > 0
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3. Positivity and Boundedness of the System (5)

Let us consider the following theorems for the positivity of the system (5) :

Theorem 3.1. Beginning in R2
+, all the solutions (x1(t), x2(t)) of (5) remain positive for all t ≥ 0.

Proof. The first equation of (5) gives,

x1(t) = x1(0) exp[

t∫
0

{(1 − x1(s))(x1(s) −m) −
α
√

x2(s)√
x1(s)

− q1E}ds] > 0

Again the second equation of (5) gives,

x2(t) = x2(0) exp[

t∫
0

{
β
√

x1(s)√
x2(s)

− (δ + q2E)}ds > 0

So we can say that x1(t) > 0 and x2(t) > 0 for all t ≥ 0 which completes the proof.

Now the following theorem ensures the boundedness of the system (5).

Theorem 3.2. All the solutions of (5) which start in R2
+, are uniformly bounded.

Proof. Let {x1(t), x2(t)} be a solution of (5). Then we have the possible two cases.
Case 1: x1(0) ≤ 1.
Let us consider for all values of t ≥ 0, x1(t) ≤ 1. Now, if this supposing is false then, we must find two

positive real numbers t1 and t2 for which x1(t1) = 1 and x1(t) > 1 for all t ∈ (t1, t2). So, for all t ∈ (t1, t2) the
system (5) gives,

x1(t) = x1(0) exp[

t∫
0

f (x1(s), x2(s))ds], where f (x1(s), x2(s)) = {(1 − x1(s))(x1(s) −m) −
α
√

x2(s)√
x1(s)

− q1E}.

This implies,

x1(t) = x1(0)[exp

t1∫
0

f (x1(s), x2(s))ds][exp

t∫
t1

f (x1(s), x2(s))ds]

= x1(t1) exp[

t∫
t1

f (x1(s), x2(s))ds] for all t ∈ (t1, t2)

So, for all t ∈ (t1, t2), value of f (x1(s), x2(s)) must be negative as m < 1 and hence x1(t) < x1(t1) = 1. This is a
contradiction as we assumed that x1(t) > 1 for all t ∈ (t1, t2). Consequently, our claim is valid.

Case 2: x1(0) > 1.
Here we claim lim sup

t→∞
x1(t) ≤ 1 and suppose that our assert is false. Then x1(t) > 1 for all t > 0.

Therefore, f (x1(t), x2(t)) < 0 where f (x1(s), x2(s)) = {(1 − x1(s))(x1(s) − m) −
α
√

x2(s)
√

x1(s)
− q1E}. Now, the first

equation of (5) gives,

x1(t) = x1(0) exp[

t∫
0

f (x1(s), x2(s))ds] < x1(0)



S. Biswas et al. / Filomat 37:5 (2023), 1561–1579 1565

Again we can obtain that, dx1
dt < (x1(0) − m)x1(1 − x1) where x1(0) − m > 0. This ensures that

lim sup
t→∞

x1(t) ≤ 1 which contradicts our assumption and hence our assert is correct. So, we conclude that

lim sup
t→∞

x1(t) ≤ 1.

Now let W = βx1 + αx2. Then for large value of t we must have,

dW
dt

= β
dx1

dt
+ α

dx2

dt
= βx1(1 − x1)(x1 −m) − αδx2 − βq1Ex1 − αq2Ex2

≤ βx1{(1 +m)x1 −m − x2
1} − αδx2

≤ β(1 +m)x1 − αδx2

≤ 2β(1 +m) − µW, where µ = min{(1 +m), δ}

Therefore, dW
dt + µW ≤ 2β(1 +m).From the theory of differenial inequalities, we get

0 ≤W(x1, x2) ≤
2β(1 +m)
µ

+
W(x1(0), x2(0))

eµt

and for t→∞, 0 ≤W(x1, x2) ≤ 2β(1+m)
µ .

Since W is a linear combination of x1 and x2 and W(x1, x2) is bounded for all values x1, x2 so x1 and x2 is also
bounded. Hence, all the solutions of (5) enter inside the region,

B = {(x1, x2) : 0 ≤W(x1, x2) ≤
2β(1 +m)
µ

+ ε, for any ε > 0}.

Hence the theorem is proved.

4. Extinction Criteria of the System (5)

Researchers are working continuously to maintain the ecological balance in nature. Consequently, we
are trying to find some extinction criteria for both the prey and predator species.

Let us take x1 = lim sup
t→∞

x1(t) and x2 = lim inf
t→∞

x2(t). Then from Theorem 3.2 we get x1 ≤ 1.

Theorem 4.1. If x1 < m, then lim
t→∞

x1(t) = 0.

Proof. Let, lim
t→∞

x1(t) = ρ > 0. Then for any ϵ fulfilling 0 < ϵ < m−x1 there subsists tϵ > 0 so that x1(t) < x1+ϵ

for any t > tϵ (from the definition of x1). Now for t > tϵ, the first equation of (5) implies,

x1(t) = x1(0) exp[

t∫
0

{(1 − x1(u))(x1(u) −m) −
α
√

x2(u)√
x1(u)

− q1E}du]

< x1(0) exp[

t∫
0

(x1 + ϵ −m)du]

< x1(0) exp{−(m − x1 − ϵ)t} → 0 as t→∞,

which is a contradiction and hence the theorem is proved.

Theorem 4.2. If x2 > [ 2
α2 {2(1 −m) − q1E}2], then lim

t→∞
x1(t) = 0.
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Proof. Let, lim
t→∞

x1(t) = σ > 0. Then for any ϵ fulfilling 0 < ϵ < 1 − m, there exists tϵ > 0 so that x1(t) < 1 + ϵ

for any t > tϵ (as x1 ≤ 1). Again, for any 0 < ϵ
′

< x2 − [ 2
α2 {2(1 − m) − q1E}2], there exists tϵ′ > 0 such that

x2(t) > x2 − ϵ
′

for t > tϵ′ (from definition of x2).
Now, for t > max{tϵ, tϵ′ } the first equation of (5) implies,

dx1

dt
< x1(1 + ϵ −m) − α

√
x1
√

x2 − q1Ex1

< x1(1 + ϵ −m) −
αx1
√

x2
√

1 + ϵ
− q1Ex1 as x1 <

√

1 + ϵ
√

x1

< x1{2(1 −m) −
α
√

x2
√

2
− q1E}

< −
αx1
√

2
[
√

x2 − ϵ
′

−

√
2
α
{2(1 −m) − q1E}] < 0,

which implies lim
t→∞

x1(t) = 0 and this is a contradiction that proves the theorem.

Theorem 4.3. If x2 >
2β2

(δ+q2E)2 , then lim
t→∞

x2(t) = 0.

Proof. For any ϵ fulfilling 0 < ϵ < 1 there subsists tϵ > 0 in such a way that x1(t) < 1 + ϵ for any t > tϵ (as
x1 ≤ 1).

Also, for any ϵ
′

satisfying 0 < ϵ
′

< x2 −
2β2

(δ+q2E)2 there exists tϵ′ > 0 such that x2(t) > x2 − ϵ
′

for t > tϵ′ . Now,
for t > max{tϵ,tϵ′ }, the second equation of (5) gives,

dx2

dt
=
√

x2(β
√

x1 − δ
√

x2 − q2E
√

x2)

<
√

x2{β
√

1 + ϵ −
√

x2(δ + q2E)}

< −(δ + q2E)
√

x2{

√
x2 − ϵ

′

−
β
√

2
(δ + q2E)

}

< 0 as 0 < ϵ
′

< x2 −
2β2

(δ + q2E)2

Thus, lim
t→∞

x2(t) = 0 and this proves the theorem.

5. Equilibria and Stability Analysis of the System (5)

In this section, we discuss the existence of all possible equilibrium points with their stability. Clearly

(0, 0), {
1+m+
√

(1−m)2−4q1E
2 , 0},{

1+m−
√

(1−m)2−4q1E
2 , 0} are trivial and axial equilibrium points of system (5) provided

(1−m)2
≥ 4q1E. Linearization of our proposed system about the trivial and axial equilibrium is not possible

and hence cannot be studied. So, the interior equilibrium points can only be analysed here. Figure 1 presents
the nullclines of our model.

Lemma 5.1. Interior equilibrium (x∗1, x
∗

2) exists if and only if the equation x2
1 − (1 + m)x1 + (m + q1E + αβ

δ+q2E ) = 0
has a positive real root.

Proof. From dx1
dt = 0 and dx2

dt = 0 we can easily obtain

x2
1 − (1 +m)x1 + (m + q1E +

αβ

δ + q2E
) = 0

The positive solution of this equation ensures the existence of the interior equilibrium and vice-versa.
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Figure 1: Nullclines of system (5) for m = 0.07, α = 0.25, β = 0.11, δ = 0.118, q1 = 0.19, q2 = 0.22, E = 0.14.

Theorem 5.2. The necessary and sufficient condition for existence of the interior equilibrium (x∗1, x
∗

2) is (1 + m)2
≥

4(m + q1E + αβ
δ+q2E ).

Proof. Let the interior equilibrium point (x∗1, x
∗

2) exists. Then Lemma 5.1 gives that x2
1− (1+m)x1+ (m+ q1E+

αβ
δ+q2E ) = 0 has a positive real root. Therefore, the discriminant of the equation must be greater than or equal

to zero. Hence (1 +m)2
≥ 4(m + q1E + αβ

δ+q2E ).

For the converse part, let (1 + m)2
≥ 4(m + q1E + αβ

δ+q2E ) holds. Next, we have to consider the equation

x2
1 − (1 + m)x1 + (m + q1E + αβ

δ+q2E ) = 0. Solving the quadratic equation we get the solutions as x1 =
1+m

2 ±√
(1+m)2−4(m+q1E+ αβ

δ+q2E )

2 . Now by our assumption, (1 + m)2
≥ 4(m + q1E + αβ

δ+q2E ). Also one can observe that
1+m

2 > 0 as 0 < m < 1. So, at least one of the values of x1 must be positive. Then Lemma 5.1 ensures that the
interior equilibrium exists and the theorem is proved.

Now, if we take m = 0.07, α = 0.25, β = 0.11, δ = 0.118, q1 = 0.37, q2 = 0.22, E = 0.14, then the parameter
values do not satisfy the existence condition of interior equilibrium. Consequently, the interior equilibrium
does not exist for the taken values. Figure 2 is the pictorial representation of this fact.
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Figure 2: Behaviour of system (5) for m = 0.07, α = 0.25, β = 0.11, δ = 0.118, q1 = 0.37, q2 = 0.22, E = 0.14 and initial condition
(0.04, 0.001).

For the stability of interior equilibrium point (x∗1, x
∗

2) we consider the following theorem.
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Theorem 5.3. The interior equilibrium point (x∗1, x
∗

2) is locally asymptotically stable if and only if 3(x∗1)2
− 2(1 +

m)x∗1 +
α
√

x∗2
2
√

x∗1
−
β
√

x∗1
2
√

x∗2
+m+ δ+ (q1 + q2)E > 0 and {3(x∗1)2

− 2(1+m)x∗1 +
α
√

x∗2
2
√

x∗1
+m+ q1E}(δ+ q2E−

β
√

x∗1
2
√

x∗2
)+ αβ4 > 0.

Proof. For the equilibrium point (x∗1, x
∗

2), the Jacobian matrix is

J(x∗1, x
∗

2) =
[
b11 b12
b21 b22

]

where b11 = x∗1(1 − x∗1) + (x∗1 −m)(1 − 2x∗1) −
α
√

x∗2
2
√

x∗1
− q1E, b12 = −

α
√

x∗1
2
√

x∗2
, b21 =

β
√

x∗2
2
√

x∗1
, b22 =

β
√

x∗1
2
√

x∗2
− δ − q2E.

Now the characteristic equation of the matrix J(x∗1, x
∗

2) is

ξ2 + Aξ + B = 0,

where A = −trJ(x∗1, x
∗

2) = −b11 − b22, B = det J(x∗1, x
∗

2) = b11b22 − b12b21. From the Descartes rule of sign, both
the roots of ξ2 + Aξ + B = 0 will be negative if and only if A > 0 and B > 0. Simplifying the expression

of −b11 − b22 and b11b22 − b12b21 we get A = 3(x∗1)2
− 2(1 + m)x∗1 +

α
√

x∗2
2
√

x∗1
−
β
√

x∗1
2
√

x∗2
+ m + δ + (q1 + q2)E and

B = {3(x∗1)2
− 2(1 +m)x∗1 +

α
√

x∗2
2
√

x∗1
+m + q1E}(δ + q2E −

β
√

x∗1
2
√

x∗2
) + αβ4 . This proves the theorem.

6. Bifurcation Analysis of the System (5)

For the occurrence of bifurcation near the interior equilibrium point (x∗1, x
∗

2) of the system (5), here we
are using the Hopf bifurcation theorem [58].

Theorem 6.1. If the interior equilibrium (x∗1, x
∗

2) exists, then Hopf bifurcation occurs at m = m∗ = x∗1 −
1

1−2x∗1
{δ +

(q1 + q2)E +
α
√

x∗2
2
√

x∗1
−
β
√

x∗1
2
√

x∗2
− x∗1(1 − x∗1)} provided m∗ is positive with αβ4 > (

β
√

x∗1
2
√

x∗2
− δ − q2E)2 and x∗1 ,

1
2 .

Proof. We can obtain that,
i) [trJ(x∗1, x

∗

2)]m=m∗ = 0.

ii) [det J(x∗1, x
∗

2)]m=m∗ = −(
β
√

x∗1
2
√

x∗2
− δ − q2E)2 +

αβ
4 > 0 as αβ4 > (

β
√

x∗1
2
√

x∗2
− δ − q2E)2.

iii) If m = m∗, then the characteristic equation is ξ2 + det J(x∗1, x
∗

2) = 0 whose roots are purely imaginary.
iv) [ d

dm (trJ(x∗1, x
∗

2))]m=m∗ = 2x∗1 − 1 , 0 as x∗1 ,
1
2 .

Therefore, all the conditions of the Hopf bifurcation theorem are satisfied and this proves the theo-
rem.

7. Bionomic Equilibrium Points of the System (5)

The biological equilibrium points have already been discussed in section 5. The mixture of the biological
equilibrium point and economic equilibrium point is identified as bionomic equilibrium. This type of
equilibrium point is attained when total revenue acquired by selling the harvested biomass is equivalent
to the entirety cost consumed in harvesting it. Consider c as the constant fishing cost per unit effort, p1 and
p2 as the constant price per unit biomass of the prey and predator species, respectively. Therefore, the net
economic revenue to the society at any time is,

Π(x1, x2,E) = [p1q1x1 + p2q2x2 − c]E = 0 (6)

The economic rent obtained from fishery becomes negative and the fishery will be closed if the fishing
cost exceeds the revenue (c > p1q1x1+p2q2x2). So, we must assume that c < p1q1x1+p2q2x2 for the existence of
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bionomic equilibrium. Then we can obtain the bionomic equilibrium points by taking the positive solutions
of the following set of equations:

dx1
dt = x1(1 − x1)(x1 −m) − α

√
x1
√

x2 − q1Ex1,
dx2
dt = β

√
x1
√

x2 − (δ + q2E)x2,
Π(x1, x2,E) = [p1q1x1 + p2q2x2 − c]E = 0

(7)

Clearly (0, 0, 0), { c
p1q1
, 0,

(1+m)cp1q1−mp2
1q2

1−c2

p2
1q3

1
}, {

m+1+
√

(m−1)2−
4αβ
δ

2 ,
β2

2δ2 (m+1+
√

(m − 1)2 −
4αβ
δ ), 0}, {

m+1−
√

(m−1)2−
4αβ
δ

2 ,

β2

2δ2 (m+1−
√

(m − 1)2 −
4αβ
δ ), 0} are the trivial bionomic equilibrium points. Our present model also contains

non-zero bionomic equilibrium point (x1∞, x2∞,E∞) satisfying the system (7) and we can easily obtain,

x1∞ =
c(δ + q2E∞)2

p1q1(δ + q2E∞)2 + p2q2β2 , and x2∞ =
cβ2

p1q1(δ + q2E∞)2 + p2q2β2 (8)

and E∞ is the positive real root obtained from (8) and the first equation of (7).

8. Optimal Harvesting Policy of the System (5)

Optimal harvesting policy is subject to adoption by fishery management. Consider the current value of
a continuous time stream of revenues as J . Then J is presented as:

J(E) =

∞∫
0

e−θt(p1q1x1 + p2q2x2 − c)Edt (9)

where θ represents the instantaneous annual discount rate [61] at time t. Now our major aim is to maximize
J(E) subject to the system (5) and the constraint 0 ≤ E(t) ≤ Emax.

The optimization of J(E) can be easily done by Pontryagin’s maximal principle. Now we shall find
the value of E(t) such that J(E) is maximized. The expression for the Hamiltonian for this optimal control
problem can be written as:

H = e−θt(p1q1x1 + p2q2x2 − c)E + λ1{x1(1 − x1)(x1 −m) − α
√

x1
√

x2 − q1Ex1} + λ2{β
√

x1
√

x2 − (δ + q2E)x2}

where λ1(t) as well as λ2(t) means the adjoint variables. Their corresponding equations are as follow:

−
dλ1

dt
=
∂H
∂x1
= Ep1q1e−θt + λ1{(1 − 2x1)(x1 −m) + x1(1 − x1) −

α
√

x2

2
√

x1
− q1E} + λ2

β
√

x2

2
√

x1

−
dλ2

dt
=
∂H
∂x2
= Ep2q2e−θt

− λ1
α
√

x1

2
√

x2
+ λ2{

β
√

x1

2
√

x2
− δ − q2E}

Simplifying we get,

dλ1

dt
+ {2(1 +m)x1 − 3x1

2
−m −

α
√

x2

2
√

x1
− q1E}λ1 +

β
√

x2

2
√

x1
λ2 = −Ep1q1e−θt (10)

and

dλ2

dt
+ {
β
√

x1

2
√

x2
− δ − q2E}λ2 −

α
√

x1

2
√

x2
λ1 = −Ep2q2e−θt (11)
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Now from (10) and (11) we obtain,

[D2 + (V + R)D + RV +US]λ1 = {Sp2q2 − (D + V)p1q1}Ee−θt (12)

where, D ≡ d
dt , U = α

√
x1

2
√

x2
, R = {2(1 +m)x1 − 3x1

2
−m − α

√
x2

2
√

x1
− q1E}, V = { β

√
x1

2
√

x2
− δ − q2E}, S = β

√
x2

2
√

x1
.

So, solving (12) we can easily evaluate that λ1 = C1el1t + C2el2t + M1
N e−θt, where C1 and C2 are integral

constants, l1 and l2 are the roots of the equation l2 + (V + R)l + RV + US = 0 , M1 = {Sp2q2 + (θ − V)p1q1}E
and N = θ2

− (V + R)θ + RV +US.
Clearly, λ1 is bounded if either li < 0 or Ci = 0, (i = 1, 2). But it is quite difficult to find l1 and l2. So, we

have to assume that C1 = 0 = C2.
Then λ1 =

M1
N e−θt where M1 = {

βp2q2
√

x2

2
√

x1
+ (θ + δ + q2E − β

√
x1

2
√

x2
)p1q1}E and N = θ2 + {3x1

2
− 2(1 + m)x1 +

α
√

x2

2
√

x1
−
β
√

x1

2
√

x2
+m + δ + (q1 + q2)E}θ + {2(1 +m)x1 − 3x1

2
−
α
√

x2

2
√

x1
−m − q1E}( β

√
x1

2
√

x2
− δ − q2E) + αβ4 .

Proceeding in a similar way, we get λ2 =
M2
N e−θt where M2 = [{3x1

2
−2(1+m)x1+

α
√

x2

2
√

x1
+m+θ+q1E}p2q2−

αp1q1
√

x1

2
√

x2
]E and N is same as earlier.

For singular control, we have

∂H
∂E
= e−θt(p1q1x1 + p2q2x2 − c) − λ1q1x1 − λ2q2x2 = 0

Therefore,

e−θt(p1q1x1 + p2q2x2 − c) = λ1q1x1 + λ2q2x2

Putting the values of λ1 and λ2 give e−θt(p1q1x1 + p2q2x2 − c) = (M1q1x1 + M2q2x2) e−θt

N which implies
(p1q1x1 + p2q2x2 − c) = 1

N (M1q1x1 +M2q2x2). Again, we have

Π(x1, x2,E) = [p1q1x1 + p2q2x2 − c]E
⇒ Π(x1, x2,E) = (M1q1x1 +M2q2x2) E

N

M1,M2 are of O(θ) and N is of O(θ2) which implies that Π is of O(θ−1). Consequently Π is diminishing for
all values of θ ≥ 0. This concludes that the maximization of Π is occurred at θ = 0.

9. Numerical Analysis

We cannot deny the importance of real-world data. But the collection of data from the real field is very
tough and also time taking. The economic problem may be another significant factor to affect this. Thus
we are taking some hypothetical data here for verification of our analytical findings. Numerical validation
always has a significant impact on ecological development through this type of model. So for simulations
of this paper, we preferred a qualitative rather than a quantitative point of view. We have done these
simulations with the help of MATLAB and MATHEMATICA software.

First of all, we take the values of our used parameters as m = 0.07, α = 0.25, β = 0.11, δ = 0.118, q1 = 0.19,
q2 = 0.22, E = 0.14 and (x1(0), x2(0)) = (0.04, 0.001). Then x1(0) = 0.04 < 0.07 = m and hence the condition
of Theorem 4.1 is satisfied. Therefore, the prey population goes to extinction. Figure 3 depicts the fact
graphically.

If we take the parameter values as previous and the initial condition (x1(0), x2(0)) = (0.4, 0.1), then the
populations behave like Figure 4.

Next, taking the parameter values as previous, we get (1+m)2 = 1.1449 > 1.1256 = 4(m+q1E+ αβ
δ+q2E ).Then

by Theorem 5.2, the interior equilibrium exists and we find two interior equilibrium points (0.6044, 0.3303)
and (0.4656, 0.2545).
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Figure 3: Extinction behaviour of system (5) for low prey density.
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Figure 4: Stable behaviour of system (5).

For the interior equilibrium point (x∗1, x
∗

2) = (0.6044, 0.3303), we evaluate

3(x∗1)2
− 2(1 +m)x∗1 +

α
√

x∗2
2
√

x∗1
−
β
√

x∗1
2
√

x∗2
+m + δ + (q1 + q2)E = 0.0658539 > 0,

{3(x∗1)2
− 2(1 +m)x∗1 +

α
√

x∗2
2
√

x∗1
+m + q1E}(δ + q2E −

β
√

x∗1
2
√

x∗2
) +
αβ

4
= 0.00623917 > 0.

Again, for the interior equilibrium point (x∗1, x
∗

2) = (0.4656, 0.2545),

{3(x∗1)2
− 2(1 +m)x∗1 +

α
√

x∗2
2
√

x∗1
+m + q1E}(δ + q2E −

β
√

x∗1
2
√

x∗2
) +
αβ

4
= −0.00480677 < 0.

So, according to Theorem 5.3, (0.6044, 0.3303) is stable and (0.4656, 0.2545) is unstable equilibrium points.
Phase-space trajectories corresponding to the stabilities of the populations to a given set of parameter

values are presented in Figure 5.
Further, if we take the values of the parameters as in Figure 3 and the initial condition as (x1(0), x2(0)) =

(10000, 108), then x2 = 108 > 107.563 = [ 2
α2 {2(1 − m) − q1E}2]. So by Theorem 4.2, the prey species will be

washed out from the system. This situation is depicted in Figure 6.
Now, if we take the parameters as m = 0.07, α = 0.25, β = 0.11, δ = 0.118, q1 = 0.19, q2 = 0.22, E = 0.14 and

initial condition (x1(0), x2(0)) = (1.1, 0.1), then both the populations converge to their respective equilibrium
state. The time series plot of the system is shown in Figure 7.
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Figure 5: Phasepotrait of the stable equilibrium point (0.6044, 0.3303).
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Figure 6: Extinction behaviour of system (5) for high predator density.
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Figure 7: Steady state of the populations converging (0.6044, 0.3303).

Figure 7 shows that the prey and predator populations settle down to their respective steady-state level
as time progresses.

It is also observed that our assumed parameter values satisfy all the conditions of Theorem 6.1 for
the interior equilibrium point (0.6044, 0.3303). Hence, there exists a simple Hopf- bifurcation with m as a
bifurcation parameter. Consequently, we have both stable and unstable behaviour near m = 0.385. The
bifurcation diagram of the system is presented in Figure 8.
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Figure 8: Bifurcation behaviour of system (5) for m.

Figure 8 shows stable behavior (plotted in green line) as m progresses up to 0.385; after that the system
becomes unstable (plotted blue dotted line).

Now, we shall try to throw some light on the sensitivity of our used parameter values. Consequently,
we analyse the different behaviour of our model system through this. Theorem 5.2 ensures the existence
of interior equilibrium point, and Theorem 5.3 states its stability. In this study, we observed the presence
of Hopf-bifurcation by Theorem 6.1. Table 1 and Table 2 reflect the results obtained from the theorems.
Here, we noticed that the system (5) always gives either an infeasible solution or two solutions together.
Sensitivity analysis of our proposed model is provided in the following two tables:

Table-1: Sensitivity of parameters m, α, β, q1 on Stability and Bifurcation
Parameter Change (%) Interior equilibrium point Stability Hopf Bifurcation point

−15% (0.628356, 0.343388) Stable 0.472078
(0.431144, 0.235614) Unstable 0.807672

m 14% (0.556639, 0.304196) Stable 0.0853513
(0.523161, 0.285901) Unstable does not exist

15% infeasible − −

−3% (0.636772, 0.347987) Stable 0.488131
(0.433228, 0.236753) Unstable 0.844387

α 2% (0.568421, 0.310634) Stable 0.202561
(0.501579, 0.274106) Unstable does not exist

3% infeasible − −

−3% (0.636772, 0.327421) Stable 0.488131
(0.433228, 0.222761) Unstable 0.844387

β 2% (0.568421, 0.323184) Stable 0.202561
(0.501579, 0.28518) Unstable does not exist

3% infeasible − −

−19% (0.634334, 0.346655) Stable 0.472042
(0.435666, 0.238086) Unstable 0.882627

q1 18% (0.540017, 0.295112) Unstable does not exist

(0.529983, 0.289629) Unstable does not exist

19% infeasible − −

From Table 1 we observe that if we increase the value of m by 15% and above, the solution of the system
becomes infeasible; otherwise, we get a feasible solution. Similarly, for α, β and q1 we obtain the same
results for 3%, 3% and 19% respectively.
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Table-2: Sensitivity of parameters δ, q2 on stability and bifurcation
Parameter Change (%) Interior equilibrium point Stability Hopf Bifurcation point

−4% infeasible − −

−3% (0.552587, 0.316879) Unstable 0.0453591
δ (0.517413, 0.296709) Unstable does not exist

4% (0.637446, 0.327265) Stable 0.498542
(0.432554, 0.222073) Unstable 0.821946

−13% infeasible − −

−12% (0.545284, 0.313364) Unstable does not exist

q2 (0.524716, 0.301544) Unstable does not exist

13% (0.633264, 0.328172) Stable 0.485986
(0.436736, 0.226326) Unstable 0.8557

From Table 2 we observe that, if we decrease the value of δ by 4% and above, then the solution of the
system becomes infeasible; otherwise, we get a feasible solution. A similar observation has been seen for
q2. In this case, if we decrease the value of q2 by 13% and above, then a feasible solution becomes infeasible.
From Table 1 and Table 2 we conclude that the parameters m, α, β and q1 have same tendency regarding
existence of interior equilibrium and the parameters δ, q2 have the opposite tendency for the same.

From Tables 1 and 2, we get the numerical idea with the stability and existence of Hopf-bifurcation for
the equilibrium solutions. For the pictorial representation of the sensitivities, let us take the parameter
values as α = 0.25, β = 0.11, δ = 0.118, q1 = 0.19, q2 = 0.22, E = 0.14. Then the changing values of m give
different behaviour of the equilibrium curve which is depicted through Figure 9. Similarly, the sensitivity
of the equilibrium curve to q1 is presented through Figure 10.

0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x
1

x
2

 

 

m=0.1

m=0.3

m=0.5

m=0.7

m=0.9

Figure 9: Behaviour of the equilibrium curve for different m.

From Figure 9 we observe that the increasing value of m leads the equilibrium to an infeasible solution.
Conversely, if we decrease the value of m, then we always get a feasible solution. Similarly, Figure 10 gives
a sensitivity of q1 on the equilibrium curve. Therefore, the catchability coefficient of prey q1 behaves the
same as m for feasibility. But we find that q1 brings most of the solutions to infeasibility if we increase its
value. So, we have to be very conscious about the harvesting policy.

The effect of death rate (d) on the equilibrium curve is presented in Figure 11. In our present paper, we
assumed the harvesting for both the prey and predator species. So, we must have to study the effect of E
on our proposed model system. To observe the effect of harvesting on the phase potrait of the system (5),
we assume the parameter values as m = 0.07, α = 0.25, β = 0.11, δ = 0.118, q1 = 0.19, q2 = 0.22. For E = 0.1,
the phase potrait of the system (5) based on the above set of parameter values is depicted in Figure 12.

Figure 11 shows that the predator’s death rate can increase for the low density of prey. Figure 12 shows
that starting with different initial conditions, the curves behave differently up to the stable equilibrium
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Figure 10: Behaviour of the equilibrium curve for different q1.
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Figure 11: Effects of d on the equilibrium curve.
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Figure 12: Phasepotrait of the system (5) for different initial condition when E = 0.1.

(0.5632, 0.3477). But from somewhere after the stable point the curves go through a particular path. This
level of harvesting strategy may be acceptable for balanced ecology.

The phase-space trajectories corresponding to E = 0.2 and E = 0.3 are depicted through Figure 13 and
Figure 14, respectively.

From Figure 13, we observe that all trajectories converge to the stable equilibrium point (0.627, 0.289)
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Figure 13: Phase portrait for system (5) when E = 0.2.
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Figure 14: Phasepotrait for system (5) when E = 0.3.

starting with different initial conditions. Therefore, the harvesting strategy of this situation is acceptable
also. Figure 14 depicts the stable and unstable behavior of our proposed model system. The stable and
unstable behaviour (Figure 14) of our model system demands the replanning of the harvesting policy for
E = 0.3.

The phase-space trajectories corresponding to E = 0.4 is presented in Figure 15. Also, the time series
plot of our system for different harvesting efforts based on the parameter values as m = 0.07, α = 0.25,
β = 0.11, δ = 0.118, q1 = 0.19, q2 = 0.22 and initial condition as (x1(0), x2(0)) = (0.35, 0.1) is depicted in Figure
16.

From Figure 15 we observe that the stability differs for a little change of parameter value. Therefore,
modification in harvesting policy is also needed for E = 0.4. Figure 16 depicts that the populations behave
differently with different harvesting efforts. Consequently, we must have to follow the optimal harvesting
strategy for balancing ecology.

10. Discussion and Concluding Remarks

Modelling of the prey-predator system has undergone different developments in Biomathematics. Al-
though, for balance in nature, ecology demands more and more constructive steps regarding this. Herd
behaviour and Allee effect are natural phenomena of species. But, for any ecosystem, harvesting is a
significant threat commonly created by human beings. So, our theorems regarding the threat of extinction
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Figure 15: Different behaviour of phasepotrait for E = 0.4.
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Figure 16: Behaviour of the populations with different harvesting efforts.

for prey and predator species may help ecological balance in nature. Giving importance to harvesting,
we obtained policy for optimal harvesting to maintain the sustainable development of ecosystems. Our
numerical analysis with a graphical view relates this study to biological importance. Sensitivity analysis
can help ecologists regarding ecological balance. This study observed that the Allee effect and harvesting
together are threatening factors for prey populations. Harvesting on predator species also plays a vital role
in the extinction of population density.

As a consequence, we can say that our considered environment of ecosystem needs prudent initiatives.
Otherwise, the ecology may be unbalanced. So, one can use our paper’s methods and results to form
patterns in the prey-predator modelling, and hence we hope that our present model can help in balancing
ecology. Moreover, this paper initiates future work with time delay, stochastic model, different three
species models, and so on. But more complex model demands further study in this field. Comparative
study between ratio-dependent and prey-dependent models can be developed with a different point of
view. New models in a different environment on prey-predator systems can be formed and analysed in
this way.
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