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Abstract. In this paper, we present a new hybrid extragradient algorithm for finding a common element
of the fixed point problem for a demicontractive mapping and the split equilibrium problem for a pseu-
domonotone and Lipschitz-type continuous bifunction. By using a new technique of choosing the step size
of the proposed method, our algorithms do not need any prior information of the operator norm. In fact,
we propose an inertial type algorithm in order to accelerate its convergence rate and then prove strong
convergence theorem of our proposed method under some control conditions. Moreover, we give some
numerical experiments to support our main results.

1. Introduction

The equilibrium problem provides a unified approach to address a variety of mathematical problems
arising in disciplines such as physics, transportation, game theory, economics and network (see[12, 19]).

Let H1 and H2 be real Hilbert spaces with the inner product ⟨·, ·⟩ and the norm ∥ · ∥. Let C1 and C2 be
nonempty closed convex subset of H1 and H2, respectively. Let T : C1 → C1 be a mapping. We denoted
Fix(T) by the set of all fixed points of T, i.e., Fix(T) = {x ∈ C1 : Tx = x}. Let f1 : C1 × C1 → R be a bifunction.

The equilibrium problem (shortly, (EP)) is as follows:

Find a point x̄ ∈ C1 such that f1(x̄, y) ≥ 0 for all y ∈ C1. (1)

The set of all solutions of the problem (EP) is denoted by EP( f1). The equilibrium problem is a gener-
alization of the variational inequality problem, the optimization problem, the Nash equilibrium problem
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and some others (see [4, 6, 7, 11, 20]). Recently, some nonlinear problems to find a common point of the
solution set of the equilibrium problem and the set of fixed points of a nonexpansive mapping becomes an
attractive field for many researchers (see [1, 8–10, 17, 18, 22, 25, 27–29]).

Let f1 : C1 × C1 → R and f2 : C2 × C2 → R be two bifunctions. Let A : H1 → H2 be a bounded linear
operator. The split equilibrium problem (shortly, (SEP)) [21] is as follows:

Find a point x̄ ∈ C1 such that f1(x̄, y) ≥ 0 for all y ∈ C1 (2)

and such that

ȳ = Ax̄ ∈ C2 solves f2(ȳ, z) ≥ 0 for all z ∈ C2. (3)

The solution set of the problem (SEP) is denoted by

Ω = {z ∈ EP( f1) : Az ∈ EP( f2)}.

The split equilibrium problem is said to be monotone if bifunctions f1 and f2 are monotone.
Obviously, if f2 = 0 and C2 = H2 in the problem (SEP), then the split equilibrium problem becomes the

equilibrium problem.
In 2012, He [21] proposed a new algorithm for solving the split monotone equilibrium problem and

investigated the convergence behaviour in several ways including the strong convergence and he also
generated the sequence {xn} iteratively as follows:



x1 ∈ C1 = C,

f1(un, y) +
1
rn
⟨y − un,un − xn⟩ ≥ 0, ∀y ∈ C,

f2(wn, z) +
1
rn
⟨z − wn,wn − Aun⟩ ≥ 0, ∀z ∈ D,

yn = PC[un − γA∗(wn − Aun)],
Cn+1 = {v ∈ Cn : ∥yn − v∥ ≤ ∥un − v∥ ≤ ∥xn − v∥},
xn+1 = PCn+1 (x1), ∀n ≥ 1,

(4)

where C and D are nonempty closed convex subsets of H1 and H2, respectively, A∗ is the adjoint operator of
A, γ ∈

(
0, 1
∥A∥2

)
and {rn} is a sequence in [r,∞) ⊂ (0,∞) with some conditions.

To find a solution of a system of equilibrium problems for pseudomonotone monotone and Lipschitz-
type continuous bifunctions in Rm, in [32], Tran et al. introduced the following extragradient method
{xn}: 

x0 ∈ C1,

yn = argmin
{1
2
∥y − xn∥

2 + λn f1(xn, y) : y ∈ C1

}
,

xn+1 = argmin
{1
2
∥y − xn∥

2 + λn f1(yn, y) : y ∈ C1

}
, ∀n ≥ 0,

(5)

where λn ∈ (0, 1]. They proved that the sequence {xn} converges to a solution of the equilibrium problem.
Recently, Anh [3] presented a hybrid extragradient iteration method {xn} for finding a common element

of the set of fixed points of a nonexpansive self-mapping and the set of solutions of the equilibrium problem
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for a pseudomonotone and Lipschitz-type continuous bifunction as follows:

x0 ∈ C1,

yn = argmin
{1
2
∥y − xn∥

2 + λn f1(xn, y) : y ∈ C1

}
,

tn = argmin
{1
2
∥t − xn∥

2 + λn f1(yn, t) : t ∈ C1

}
,

zn = αnxn + (1 − αn)T(tn),
Dn = {z ∈ C1 : ∥zn − z∥ ≤ ∥xn − z∥},
Qn = {z ∈ C1 : ⟨xn − z, x0 − xn⟩ ≥ 0},
xn+1 = PDn∩Qn , ∀n ≥ 0.

(6)

Also, he showed that, under certain appropriate conditions imposed on λn and αn, the sequences {xn}

strongly converges to a common solution of the solution sets of the fixed point problem and the equilibrium
problem. Further, some more iterative algorithms for finding a common element of the set of fixed points of
a nonlinear mapping and the set of solutions of the equilibrium problem for pseudomonotone bifunctions
in real Hilbert spaces have been studied by some authors (see[2, 13, 23, 31, 33]).

Very recently, Dong et al. [14–17], Hieu et al. [22] and some others have studied some kinds of
inertial algorithms to converge strongly and weakly to some fixed points of nonlinear mappings and some
solutions of some variational inequality problems, equilibrium problems and split feasibility problems in
Hilbert spaces.

In this paper, motivated and inspired by the results [3, 21], first we apply the inertial term, that is, inertial
extrapolation, to some algorithms and then our control conditions on the step sizes do not require any prior
knowledge of the operator norm. Second, we prove some strong convergence theorems of the proposed
algorithms for approximating a common solution of the set of solutions of the split pseudomonotone
equilibrium problem and the set of fixed points of a demicontractive mapping in real Hilbert spaces.

2. Preliminaries

Let H be a real Hilbert space with the inner product ⟨·, ·⟩ and the norm ∥ · ∥. Let C be a nonempty closed
convex subset of H. Let the symbols→ (⇀) be denoted the strong and weak convergence, respectively, and
let ωw(xn) denote the set of cluster points of the sequence {xn} in the weak topology, that is, there exists a
subsequence {xni } of {xn} such that xni ⇀ x. Let f : H→ R be a function. Define the set of minimizers of the
function f by

argmin
y∈C⊆H

f (y) = {y ∈ C : f (y) ≤ f (z), ∀z ∈ C}.

It is known that argmin{ f (y) + a : y ∈ C} = argmin{ f (y) : y ∈ C} for all a ∈ R. A mapping PC is called the

metric projection of H onto C if, for any x ∈ H, there exists a unique nearest point in C denoted by PC(x), i.e.,

PC(x) = argmin{∥y − x∥ : y ∈ C}.

It is known that PC is a firmly nonexpansive mapping and, moreover, PC is characterized by the following
property:

⟨x − PCx, y − PCx⟩ ≤ 0, ∀x ∈ H, y ∈ C.

Now, we recall the following definition:

Definition 2.1. Let C be a nonempty closed convex subset of a real Hilbert space H. A mapping T : C → C is said
to be:

(1) firmly nonexpansive if
∥Tu − Tv∥2 ≤ ⟨Tu − Tv,u − v⟩, ∀u, v ∈ C;



A. Hanjing et al. / Filomat 37:5 (2023), 1607–1623 1610

(2) nonexpansive if
∥Tu − Tv∥ ≤ ∥u − v∥, ∀u, v ∈ C;

(3) quasi-nonexpansive if Fix(T) , ∅ and

∥Tu − v∥ ≤ ∥u − v∥, ∀u ∈ C, v ∈ Fix(T);

(4) k-demicontractive if Fix(T) , ∅ and there exists k ∈ [0, 1) such that

∥Tu − v∥2 ≤ ∥u − v∥2 + k∥u − Tu∥2, ∀u ∈ C, v ∈ Fix(T).

Noted the following:
(1) Every firmly nonexpansive mapping is nonexpansive.
(2) Every nonexpansive mapping is quai-nonexpansive.
(3) Every quasi-nonexpansive mapping is demicontractive.
(4) If T is a demicontractive mapping with Fix(T) , ∅, then Fix(T) is closed convex.

Definition 2.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C → C be a mapping
and I be the identity mapping on C. The mapping T − I is said to be demiclosed at zero if, for any sequence {xn} in C
which xn ⇀ x and Txn − xn → 0, we have x ∈ Fix(T).

Next, we list some well-known definitions for the next section.

Definition 2.3. The bifunction f : C × C→ R is said to be:
(1) strongly monotone on C if there exists a constant γ > 0 such that f (x, y) + f (y, x) ≤ −γ∥x − y∥2, ∀x, y ∈ C;
(2) monotone on C if f (x, y) + f (y, x) ≤ 0, ∀x, y ∈ C;
(3) pseudomonotone if f (x, y) ≥ 0⇒ f (y, x) ≤ 0, ∀x, y ∈ C;
(4) Lipschitz-type continuous on C if there exist two positive constants c1, c2 such that

f (x, y) + f (y, z) ≥ f (x, z) − c1∥x − y∥2 − c2∥y − z∥2, ∀x, y, z ∈ C.

From the definitions above, it is clear that (1) =⇒ (2) =⇒ (3).
Now, we assume that the bifunction f : C × C→ R satisfies the following conditions:
(b1) f (x, x) = 0 for all x ∈ C and f is pseudomonotone on C;
(b2) f is Lipschitz-type continuous;
(b3) for each x ∈ C, y 7→ f (x, y) is convex and subdifferentiable;
(b4) f (x, y) is weakly continuous on C × C, that is, if {xn}, {yn} ⊆ C weakly converges to x, y ∈ C,

respectively, then f (xn, yn)→ f (x, y).
Note that, if f satisfies the condition (b1) and EP( f ) , ∅, then EP( f ) is convex (see [7]). By the condition

(b4), we can show that EP( f ) is closed.

Lemma 2.4 ([30]). Let H be a real Hilbert space. Then the following results hold:
(1) for all t ∈ [0, 1] and u, v ∈ H,

∥tu + (1 − t)v∥2 = t∥u∥2 + (1 − t)∥v∥2 − t(1 − t)∥u − v∥2.

(2) ∥u ± v∥2 = ∥u∥2 ± 2⟨u, v⟩ + ∥v∥2 for all u, v ∈ H.

Lemma 2.5 ([24]). Let C be a closed and convex subsets of a real Hilbert space H. Then, for any x, y, z ∈ H and
a ∈ R, the set

D := {v ∈ C : ∥y − v∥2 ≤ ∥x − v∥2 + ⟨w, v⟩ + a} (7)

is closed and convex.
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Lemma 2.6 ([24]). Let C be a closed convex subset of a real Hilbert space H. Let {xn} be a sequence in H, u ∈ H and
let q = PCu. Suppose that the sequence {xn} in H satisfies the following conditions:

ωw(xn) ⊆ C, ∥xn − u∥ ≤ ∥u − q∥, ∀n ≥ 1.

Then xn → q.

Lemma 2.7 ([2, 3]). Let C be a nonempty closed convex subset of a real Hilbert spaces H and f : C × C → R be
a psedumonotone and Lipschitz-type continuous bifunction with constants c1, c2 > 0. For each x ∈ C, let f (x, ·) be
convex and subdifferentiable on C. Let {vn}, {zn} and {wn} be the sequences generated by

v0 ∈ C,

zn = argmin
{1
2
∥z − vn∥

2 + λn f (vn, z) : z ∈ C
}
,

wn = argmin
{1
2
∥w − vn∥

2 + λn f (zn,w) : w ∈ C
}
, ∀n ≥ 0,

(8)

where λn > 0 for all n ≥ 0. Then, for each x∗ ∈ EP( f ),

λn[ f (vn, z) − f (vn, zn)] ≥ ⟨zn − vn, zn − z⟩, ∀z ∈ C, (9)

and

∥wn − x∗∥2 ≤ ∥vn − x∗∥2 − (1 − 2λnc2)∥wn − zn∥
2
− (1 − 2λnc1)∥vn − zn∥

2, ∀n ≥ 0. (10)

3. Main Results

Throughout this section, let H1 and H2 be real Hilbert spaces with the inner product ⟨·, ·⟩ and the norm
∥ · ∥. Let C1 and C2 be nonempty closed convex subsets of H1 and H2, respectively. and let I be the identity
mapping on H1.We assume that
• T : H1 → H1 is a k-demicontractive mapping such that T − I demiclosed at zero;
• A : H1 → H2 is a bounded linear operator with its adjoint operator A∗;
• f1 : C1 × C1 → R is the bifunction satisfies the conditions (b1)-(b4) with the Lipschitz constants

c1, c2 > 0;
• f2 : C2 × C2 → R is the bifunction satisfies the conditions (b1)-(b4) with the Lipschitz constants

b1, b2 > 0;
• Fix(T) ∩Ω , ∅.
For our main results, that is, some strong convergence theorems, we start with the following important

lemmas:

Lemma 3.1. Let {xn}, {yn} and {tn} be the sequences generated by

x0 ∈ H1,

yn = argmin
{1
2
∥y − PC2 Axn∥

2 + βn f2(PC2 Axn, y) : y ∈ C2

}
,

tn = argmin
{1
2
∥t − PC2 Axn∥

2 + βn f2(yn, t) : t ∈ C2

}
, ∀n ≥ 0,

(11)

where 0 < βn < min
{

1
2b1
, 1

2b2

}
for all n ≥ 0. Then we have

∥Axn − tn∥
2
≤ 2⟨Axn − Ax∗,Axn − tn⟩ (12)

and

∥xn − γnA∗(Axn − tn) − x∗∥2 ≤ ∥xn − x∗∥2 − γn

[
∥Axn − tn∥

2
− γn∥A∗(Axn − tn)∥2

]
(13)

for all n ≥ 0 and x∗ ∈ H1 such that Ax∗ ∈ EP( f2).
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Proof. Let n ≥ 0 and x∗ ∈ H1 be such that Ax∗ ∈ EP( f2). By Lemma 2.7, we have

∥Axn − tn∥
2
≤ ∥Axn − Ax∗∥2 − 2⟨Axn − Ax∗, tn − Ax∗⟩ + ∥tn − Ax∗∥2

≤ ∥Axn − Ax∗∥2 − 2⟨Axn − Ax∗, tn − Ax∗⟩ + ∥PC2 Axn − Ax∗∥2

− (1 − 2βnb2)∥tn − yn∥
2
− (1 − 2βnb1)∥PC2 Axn − yn∥

2.

Since 2βnb1, 2βnb2 < 1 and PC2 is a firmly nonexpansive mapping, we obtain

∥Axn − tn∥
2
≤ ∥Axn − Ax∗∥2 − 2⟨Axn − Ax∗, tn − Ax∗⟩ + ∥PC2 Axn − Ax∗∥2

≤ ∥Axn − Ax∗∥2 − 2⟨Axn − Ax∗, tn − Ax∗⟩ + ∥Axn − Ax∗∥2

= 2⟨Axn − Ax∗,Axn − tn⟩. (14)

From (14), it follows that

∥xn−γnA∗(Axn − tn) − x∗∥2

= ∥xn − x∗∥2 − 2γn⟨xn − x∗,A∗(Axn − tn)⟩ + γ2
n∥A

∗(Axn − tn)∥2

= ∥xn − x∗∥2 − 2γn⟨Axn − Ax∗,Axn − tn⟩ + γ
2
n∥A

∗(Axn − tn)∥2

≤ ∥xn − x∗∥2 − γn

[
∥Axn − tn∥

2
− γn∥A∗(Axn − tn)∥2

]
. (15)

This completes the proof.

Remark 3.2. Let {xn}, {yn} and {tn} be the sequences generated by (11) and let A−1(EP( f2)) , ∅. Then, by (12), we
have

Axn − tn = 0⇐⇒ A∗(Axn − tn) = 0, ∀n ≥ 0. (16)

Lemma 3.3. Let {un} be the sequence generated by{
s0 ∈ H1,

un = (1 − αn)sn + αnTsn, ∀n ≥ 0,
(17)

where {αn} is a real sequence in (0, 1). Then we have

∥un − x∗∥2 ≤ ∥sn − x∗∥2 − αn(1 − k − αn)∥(T − I)sn∥
2, ∀n ≥ 0, x∗ ∈ F(T).

Proof. Let x∗ ∈ F(T). Since T is a k-demicontractive mapping, by Lemma 2.4 (1), we have

∥un − x∗∥2 = ∥(1 − αn)(sn − x∗) + αn(Tsn − x∗)∥2

= (1 − αn)∥sn − x∗∥2 + αn∥Tsn − x∗∥2 − αn(1 − αn)∥(T − I)sn∥
2

≤ (1 − αn)∥sn − x∗∥2 + αn∥sn − x∗∥2 + αnk∥Tsn − sn∥
2

− αn(1 − αn)∥(T − I)sn∥
2

= ∥sn − x∗∥2 − αn(1 − k − αn)∥(T − I)sn∥
2. (18)

This completes the proof.

Now, we introduce the hybrid extragradient algorithm for solving the split pseudomonotone equilib-
rium problem and the fixed point problem of a k-demicontractive mapping.
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Algorithm 3.1. Initialization. Choose {λn}, {βn} ⊆ (0,∞), {αn} ⊆ (0, 1), {θn} ⊆ [0,∞). Take x1 = w0 ∈ H1 and
for n ≥ 1.

Step 1. Solve the strongly convex problem:
yn = argmin

{1
2
∥y − PC2 Axn∥

2 + βn f2(PC2 Axn, y) : y ∈ C2

}
,

tn = argmin
{1
2
∥t − PC2 Axn∥

2 + βn f2(yn, t) : t ∈ C2

}
.

(19)

Step 2. Compute vn using

vn = PC1 [xn − γnA∗(Axn − tn)], (20)

where γn is chosen such that {γn } is bounded and there exists ε > 0 such that

γn ∈

[
ε,

∥Axn − tn∥
2

2∥A∗(Axn − tn)∥2

]
, n ∈ Γ = {k : Axk − tk , 0}. (21)

Otherwise, γn = γ, where γ is a nonnegative real number.
Step 3. Solve the strongly convex problem:

zn = argmin
{1
2
∥z − vn∥

2 + λn f1(vn, z) : z ∈ C1

}
,

wn = argmin
{1
2
∥w − vn∥

2 + λn f1(zn,w) : w ∈ C1

}
.

(22)

Step 4. If xn = Txn, yn = Axn and zn = xn, then xn ∈ Fix(T) ∩Ω and stop. Otherwise, go to Step 5.
Step 5. Compute sn,un and xn+1 using

sn = wn + θn(wn − wn−1),
un = (1 − αn)sn + αnTsn,

xn+1 = PDn∩Qn (x1),
(23)

where

Dn = {p ∈ H1 : ∥un − p∥2 ≤ ∥xn − p∥2 + 2θn⟨wn − p,wn − wn−1⟩ + θ
2
n∥wn − wn−1∥

2
} (24)

and

Qn = {p ∈ H1 : ⟨xn − p, x1 − xn⟩ ≥ 0}. (25)

Then update n := n + 1 and go to Step 1.

Lemma 3.4. If xn = Txn, yn = Axn and zn = xn in Algorithm 3.1, then xn ∈ Fix(T) ∩Ω.

Proof. Since xn = Txn,we get xn ∈ Fix(T). By (9), we see that

λn f2(Axn, y) = λn[ f2(PC2 Axn, y) − f2(PC2 Axn, yn)] ≥ ⟨yn − PC2 Axn, yn − y⟩ = 0, ∀y ∈ C2. (26)

Sinceλn > 0 for all n ≥ 0,we have Axn ∈ EP( f2). Since yn = Axn and zn = xn,we get tn = Axn and zn = xn = vn.
Similarly, we can prove that xn ∈ EP( f1). Therefore xn ∈ Fix(T) ∩Ω. This completes the proof.
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Lemma 3.5. Let {xn} be a sequence in Algorithm 3.1 satisfying the following conditions:
(a) 0 < αn < 1 − k for all n ≥ 1;
(b) 0 < λn < min

{
1

2c1
, 1

2c2

}
for all n ≥ 0;

(c) 0 < βn < min
{

1
2b1
, 1

2b2

}
for all n ≥ 0.

Then {xn} is well defined and Fix(T) ∩Ω ⊆ Dn ∩Qn for all n ≥ 1.

Proof. It is easy to see that Qn is closed and convex. By Lemma 2.5, it follows that Dn is closed and convex.
So, we have Dn ∩Qn is closed and convex for all n ≥ 1.

Let x∗ ∈ Fix(T) ∩Ω. By Lemma 3.3 and the condition on αn,we have

∥un − x∗∥2 ≤ ∥sn − x∗∥2 − αn(1 − k − αn)∥(T − I)sn∥
2

= ∥wn + θn(wn − wn−1) − x∗∥2 − αn(1 − k − αn)∥(T − I)sn∥
2

≤ ∥wn − x∗∥2 + 2θn⟨wn − x∗,wn − wn−1⟩ + θ
2
n∥wn − wn−1∥

2

− αn(1 − k − αn)∥(T − I)sn∥
2

≤ ∥wn − x∗∥2 + 2θn⟨wn − x∗,wn − wn−1⟩ + θ
2
n∥wn − wn−1∥

2. (27)

By (10) and the condition on λn,we have

∥wn − x∗∥2 ≤ ∥vn − x∗∥2 − (1 − 2λnc2)∥wn − zn∥
2
− (1 − 2λnc1)∥vn − zn∥

2
≤ ∥vn − x∗∥2. (28)

By (13) and the condition on γn,we have

∥vn − x∗∥2 = ∥PC1 [xn − γnA∗(Axn − tn)] − PC1 x∗∥2

≤ ∥xn − γnA∗(Axn − tn) − x∗∥2

≤ ∥xn − x∗∥2 − γn

[
∥Axn − tn∥

2
− γn∥A∗(Axn − tn)∥2

]
≤ ∥xn − x∗∥2. (29)

From (27), (28) and (29), it follows that

∥un − x∗∥2 ≤ ∥xn − x∗∥2 + 2θn⟨wn − x∗,wn − wn−1⟩ + θ
2
n∥wn − wn−1∥

2, ∀n ≥ 1, (30)

that is, x∗ ∈ Dn for all n ≥ 1. So, we have Fix(T) ∩Ω ⊆ Dn, ∀n ≥ 1.
Next, we show, by induction, that {xn} is well defined and Fix(T) ∩Ω ⊆ Dn ∩Qn for all n ≥ 1. For n = 1,

we have Q1 = H1 and hence Fix(T)∩Ω ⊆ D1 ∩Q1. Suppose that Fix(T)∩Ω ⊆ Dk ∩Qk for some k ≥ 1. There
exists a unique element xk+1 ⊆ Dk ∩Qk such that xk+1 = PDk∩Qk (x1) is equivalent to

⟨xk+1 − x, x1 − xk+1⟩ ≥ 0, ∀x ∈ Dk ∩Qk. (31)

Since Fix(T) ∩Ω ⊆ Dk ∩ Qk, we get ⟨xk+1 − x, x1 − xk+1⟩ ≥ 0, ∀x ∈ Fix(T) ∩Ω and hence Fix(T) ∩Ω ⊆ Qk+1.
Therefore, by induction, we have Fix(T) ∩Ω ⊆ Dk+1 ∩Qk+1. This completes the proof.

Theorem 3.6. If the sequences {βn}, {λn}, {θn} and {αn} satisfy the following conditions: for some positive real
numbers ai for each i = 1, · · · , 6,

(C1) {βn} ⊆ [a1, a2] ⊆
(
0,min

{
1

2b1
, 1

2b2

})
;

(C2) {λn} ⊆ [a3, a4] ⊆
(
0,min

{
1

2c1
, 1

2c2

})
;

(C3) {αn} ⊆ [a5, a6] ⊆ (0, 1 − k);
(C4) {θn} ⊆ [0,∞) and limn→∞ θn = 0.

Then the sequence {xn} generated by Algorithm 3.1 converges strongly to PFix(T)∩Ω(x1).
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Proof. By Lemma 3.4, we assume that the stop criterion at Step 4 can not be satisfied for all n ≥ 1. Since
Ω∩Fix(T) is a nonempty closed convex subset of H1, there exists a unique element z1 ∈ Ω∩Fix(T) such that

z1 = PΩ∩Fix(T)(x1). (32)

From xn+1 = PDn∩Qn (x1),we have

∥xn+1 − x1∥ ≤ ∥p − x1∥, ∀p ∈ Dn ∩Qn. (33)

Since z1 ∈ Ω ∩ Fix(T) ⊆ Dn ∩Qn,we have

∥xn+1 − x1∥ ≤ ∥z1 − x1∥, ∀n ≥ 1. (34)

This implies that {xn} is bounded. Otherwise, for each p ∈ Qn,we have

⟨xn − p, x1 − xn⟩ ≥ 0, ∀n ≥ 1, (35)

and hence xn = PQn (x1). Since xn+1 ∈ Dn ∩Qn ⊆ Qn,we have

∥xn − x1∥ ≤ ∥xn+1 − x1∥, ∀n ≥ 1. (36)

So, the sequence {∥xn − x1∥} is bounded and non-decreasing and so
limn→∞ ∥xn − x1∥ exists. Since xn+1 ∈ Qn,we have ⟨xn − xn+1, x1 − xn⟩ ≥ 0 and so

∥xn − xn+1∥
2 = ∥xn − x1∥

2 + ∥xn+1 − x1∥
2
− 2⟨xn − x1, xn+1 − x1⟩

= ∥xn+1 − x1∥
2
− ∥xn − x1∥

2
− 2⟨xn − x1, xn+1 − xn⟩

≤ ∥xn+1 − x1∥
2
− ∥xn − x1∥

2. (37)

This implies that

lim
n→∞
∥xn − xn+1∥ = 0. (38)

From xn+1 = PDn∩Qn (x1), it follows that xn+1 ∈ Dn, i.e.,

∥un − xn+1∥
2
≤ ∥xn − xn+1∥

2 + 2θn⟨wn − xn+1,wn − wn−1⟩ + θ
2
n∥wn − wn−1∥

2. (39)

Since {xn} is bounded, we also have {un}, {wn} and {vn} are bounded. By (38) and limn→∞ θn = 0,we get

lim
n→∞
∥un − xn+1∥ = 0. (40)

Hence we have

∥un − xn∥ ≤ ∥un − xn+1∥ + ∥xn − xn+1∥ → 0 as n→∞. (41)

Let x∗ ∈ Fix(T) ∩Ω. By (27), (28) and (29), we obtain

∥un − x∗∥2 ≤ ∥xn − x∗∥2 + 2θn⟨wn − x∗,wn − wn−1⟩ + θ
2
n∥wn − wn−1∥

2
− αn(1 − k − αn)∥(T − I)sn∥

2

− (1 − 2λnc2)∥wn − zn∥
2
− (1 − 2λnc1)∥vn − zn∥

2
− γn

[
∥Axn − tn∥

2
− γn∥A∗(Axn − tn)∥2

]
. (42)

From (42), it follows that

αn(1 − k − αn)∥(T − I)sn∥
2
≤ ∥xn − x∗∥2 − ∥un − x∗∥2 + 2θn⟨wn − x∗,wn − wn−1⟩ + θ

2
n∥wn − wn−1∥

2

= (∥xn − x∗∥ + ∥un − x∗∥)∥xn − un∥

+ 2θn⟨wn − x∗,wn − wn−1⟩ + θ
2
n∥wn − wn−1∥

2. (43)
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By (41) and the conditions on αn, θn,we get

lim
n→∞
∥(T − I)sn∥ = 0 (44)

and we have

lim
n→∞
∥un − sn∥ = 0. (45)

Similarly, we have

lim
n→∞
∥wn − zn∥ = lim

n→∞
∥vn − zn∥ = 0. (46)

By (41) and (45), we get

∥xn − sn∥ ≤ ∥xn − un∥ + ∥un − sn∥ → 0 as n→∞. (47)

Since {xn} is bounded, there exists a subsequence {xni } of {xn} such that xni ⇀ x̄ ∈ H1 as i → ∞. By (47), we
also have sni ⇀ x̄ ∈ H1 as i→∞. Using (44) and the demiclosedness of T − I,we have x̄ ∈ Fix(T).

If Γ is finite, then Axn − tn = 0 for all n ∈N\Γ. It follows from Remark 3.2 that

lim
n→∞
∥Axn − tn∥ = lim

n→∞
∥A∗(Axn − tn)∥ = 0.

Suppose that Γ is infinite. It is noted that, if n < Γ, then we have

lim
n→∞
∥Axn − tn∥ = lim

n→∞
∥A∗(Axn − tn)∥ = 0.

For each n ∈ Γ, again, from (42) and the condition of γn, it follows that

ε
2
∥Axn − tn∥

2
≤
γn

2
∥Axn − tn∥

2

≤ γn

[
∥Axn − tn∥

2
− γn∥A∗(Axn − tn)∥2

]
≤ (∥xn − x∗∥ + ∥un − x∗∥)∥xn − un∥ + 2θn⟨wn − x∗,wn − wn−1⟩ + θ

2
n∥wn − wn−1∥

2. (48)

By (41) and the conditions on θn,we get

lim
n→∞
∥Axn − tn∥ = 0 (49)

and then

lim
n→∞
∥A∗(Axn − tn)∥ = 0. (50)

Since PC1 is firmly nonexpansive, it follows from (13) and (29) that

∥vn − x∗∥2 = ∥PC1 [xn − γnA∗(Axn − tn)] − x∗∥2

≤ ⟨vn − x∗, xn − γnA∗(Axn − tn) − x∗⟩

=
1
2

[
∥vn − x∗∥2 + ∥xn − γnA∗(Axn − tn) − x∗∥2

]
−

1
2
∥(vn − xn) + γnA∗(Axn − tn)∥2

≤ ∥xn − x∗∥2 −
1
2
∥vn − xn∥

2
− ⟨vn − xn, γnA∗(Axn − tn)⟩ −

γ2
n

2
∥A∗(Axn − tn)∥2. (51)

By (27), (28) and (51), we have

∥un − x∗∥2 ≤ ∥vn − x∗∥2 + 2θn⟨wn − x∗,wn − wn−1⟩ + θ
2
n∥wn − wn−1∥

2

≤ ∥xn − x∗∥2 + 2θn⟨wn − x∗,wn − wn−1⟩ + θ
2
n∥wn − wn−1∥

2
−
γ2

n

2
∥A∗(Axn − tn)∥2

−
1
2
∥vn − xn∥

2
− ⟨vn − xn, γnA∗(Axn − tn)⟩. (52)
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This implies that

1
2
∥vn − xn∥

2
≤ (∥xn − x∗∥ + ∥un − x∗∥)∥xn − un∥ + 2θn⟨wn − x∗,wn − wn−1⟩

+ θ2
n∥wn − wn−1∥

2
− ⟨vn − xn, γnA∗(Axn − tn)⟩. (53)

By (41), (50) and the condition on θn,we have

lim
n→∞
∥vn − xn∥ = 0. (54)

By (46) and (54), we get

∥xn − zn∥ ≤ ∥xn − vn∥ + ∥vn − zn∥ → 0 as n→∞, (55)

and

∥xn − wn∥ ≤ ∥xn − zn∥ + ∥zn − wn∥ → 0 as n→∞. (56)

By (54), (55) and (56), we have vni ⇀ x̄ ∈ C1, zni ⇀ x̄ ∈ C1, wni ⇀ x̄ ∈ C1, respectively. Now, we show that
x̄ ∈ Ω. By (9), we have

λni [ f1(vni , z) − f1(vni , zni )] ≥ ⟨zni − vni , zni − z⟩, ∀z ∈ C1. (57)

Taking i→∞ in (57), from (b1), (b4), (46) and the condition on λn, it follows that

f1(x̄, z) ≥ 0, ∀z ∈ C, (58)

that is, x̄ ∈ EP( f1). Using (49), we get

∥PC2 Axn − tn∥ = ∥PC2 Axn − PC2 tn∥ ≤ ∥Axn − tn∥ → 0 as n→∞. (59)

By (10), we have

∥tn − Ax∗∥2 ≤ ∥PC2 Axn − Ax∗∥2 − (1 − 2βnb2)∥tn − yn∥
2
− (1 − 2βnb1)∥PC2 Axn − yn∥

2. (60)

Hence we have

(1 − 2βnb1)∥PC2 Axn − yn∥
2
≤ ∥PC2 Axn − Ax∗∥2 − ∥tn − Ax∗∥2

≤ (∥PC2 Axn − Ax∗∥ + ∥tn − Ax∗∥)∥∥PC2 Axn − tn∥. (61)

By (59) and the condition on βn,we get

lim
n→∞
∥PC2 Axn − yn∥ = 0. (62)

Similarly, we have

lim
n→∞
∥tn − yn∥ = 0. (63)

By (49) and (63), we have

∥yn − Axn∥ ≤ ∥yn − tn∥ + ∥tn − Axn∥ → 0 as n→∞. (64)

Since A is a bounded linear and xni ⇀ x̄ ∈ H1, we have Axni ⇀ Ax̄ ∈ H2. Since {yn} ⊆ C2 and (64), we have
yni ⇀ Ax̄ ∈ C2. Using (62), we get PC2 Axn ⇀ Ax̄ ∈ C2. By (9), we have

βni [ f2(PC2 Axni , z) − f2(PC2 Axni , yni )] ≥ ⟨yni − PC2 Axni ,PC2 Axni − y⟩, ∀y ∈ C2. (65)

Taking i→∞ in (65), it follows from (b1), (b4), (62) and the condition on βn that

f2(Ax̄, y) ≥ 0, ∀y ∈ C2, (66)

that is, Ax̄ ∈ EP( f2). Therefore, we have x̄ ∈ Fix(T) ∩ Ω, i.e., ωw(xn) ⊆ Fix(T) ∩ Ω. Therefore, it follows the
inequality (34) and Lemma 2.6 that {xn} → PFix(T)∩Ω(x1) as n→∞. This completes the proof.
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If we set θn = 0 for all n ≥ 1 in Algorithm 3.1, then we obtain the following result for the split
pseudomonotone equilibrium problem and the fixed point problem of a demicontractive mapping:

Corollary 3.7. Let {xn} be a sequence generated by

x1 ∈ H1

yn = argmin
{1
2
∥y − PC2 Axn∥

2 + βn f2(PC2 Axn, y) : y ∈ C2

}
,

tn = argmin
{1
2
∥t − PC2 Axn∥

2 + βn f2(yn, t) : t ∈ C2

}
,

vn = PC1 [xn − γnA∗(Axn − tn)],

zn = argmin
{1
2
∥z − vn∥

2 + λn f1(vn, z) : z ∈ C1

}
,

wn = argmin
{1
2
∥w − vn∥

2 + λn f1(zn,w) : w ∈ C1

}
,

un = (1 − αn)wn + αnTwn,

Dn = {p ∈ H1 : ∥un − p∥ ≤ ∥xn − p∥},
Qn = {p ∈ H1 : ⟨xn − p, x1 − xn⟩ ≥ 0}
xn+1 = PDn∩Qn (x1), n ≥ 1,

(67)

where {γn } is bounded and satisfies the condition (21). If {βn}, {λn} and {αn} satisfy the following conditions: for some
positive real number ai for each i = 1, · · · , 6,

(C1) {βn} ⊆ [a1, a2] ⊆
(
0,min

{
1

2b1
, 1

2b2

})
;

(C2) {λn} ⊆ [a3, a4] ⊆
(
0,min

{
1

2c1
, 1

2c2

})
;

(C3) {αn} ⊆ [a5, a6] ⊆ (0, 1 − k),
Then the sequence {xn} generated by (67) converges strongly to PFix(T)∩Ω(x1).

If we set T = I in Algorithm 3.1, then we obtain the following result for the split pseudomonotone
equilibrium:

Corollary 3.8. Suppose that Ω , ∅. Let {xn} be a sequence generated by

x1 ∈ H1

yn = argmin
{1
2
∥y − PC2 Axn∥

2 + βn f2(PC2 Axn, y) : y ∈ C2

}
,

tn = argmin
{1
2
∥t − PC2 Axn∥

2 + βn f2(yn, t) : t ∈ C2

}
,

vn = PC1 [xn − γnA∗(Axn − tn)],

zn = argmin
{1
2
∥z − vn∥

2 + λn f1(vn, z) : z ∈ C1

}
,

wn = argmin
{1
2
∥w − vn∥

2 + λn f1(zn,w) : w ∈ C1

}
,

un = wn + θn(wn − wn−1),
xn+1 = PDn∩Qn (x1), n ≥ 1,

(68)

where Dn = {p ∈ H1 : ∥un−p∥2 ≤ ∥xn−p∥2+2θn⟨wn−p,wn−wn−1⟩θ2
n∥wn−wn−1∥

2
},Qn = {p ∈ H1 : ⟨xn−p, x1−xn⟩ ≥

0} and {γn } is bounded and satisfies the condition (21). If {βn}, {λn} and {θn} satisfy the following conditions: for some
positive real number ai for each i = 1, · · · , 4,
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(C1) {βn} ⊆ [a1, a2] ⊆
(
0,min

{
1

2b1
, 1

2b2

} )
;

(C2) {λn} ⊆ [a3, a4] ⊆
(
0,min

{
1

2c1
, 1

2c2

})
;

(C3) {θn} ⊆ (−∞,∞) and limn→∞ θn = 0.
Then the sequence {xn} generated by (68) converges strongly to PΩ(x1).

If we set f2 = 0 and C2 = H2 in Algorithm 3.1, So, we obtain the following result for the pseudomonotone
equilibrium and the fixed point problem of a demicontractive mapping:

Corollary 3.9. Suppose that Fix(T) ∩ EP( f1) , ∅. Let {xn} be a sequence generated by

x1 = w0 ∈ H1,

zn = argmin
{1
2
∥z − PC1 xn∥

2 + λn f1(PC1 xn, z) : z ∈ C1

}
,

wn = argmin
{1
2
∥w − PC1 xn∥

2 + λn f1(zn,w) : w ∈ C1

}
,

sn = wn + θn(wn − wn−1),
un = (1 − αn)sn + αnTsn,

xn+1 = PDn∩Qn (x1), n ≥ 1,

(69)

where Dn = {p ∈ H1 : ∥un − p∥2 ≤ ∥xn − p∥2 + 2θn⟨wn − p,wn − wn−1⟩ + θ2
n∥wn − wn−1∥

2
},Qn = {p ∈ H1 :

⟨xn − p, x1 − xn⟩ ≥ 0}. If {λn}, {αn} and {θn} satisfy the following conditions: for some positive real number ai for each
i = 1, · · · , 4,

(C1) {λn} ⊆ [a1, a2] ⊆
(
0,min

{
1

2c1
, 1

2c2

} )
;

(C2) {αn} ⊆ [a3, a4] ⊆ (0, 1 − k);
(C3) {θn} ⊆ (−∞,∞) and limn→∞ θn = 0.

Then the sequence {xn} generated by (69) converges strongly to PFix(T)∩EP( f1)(x1).

4. Numerical Experiments

Now, we present a numerical experiment for supporting our main theorems, where all codes were
written in Matlab and run on laptop Intel core i5, 4.00 GB RAM, windows 8 (64-bit).

Example 4.1. Let H1 = R5, H2 = R and

C1 =


x = (x1, x2, · · · , x5)T

∈ R5
+ := {x ∈ R5

+ : xi ≥ 0,∀i = 1, 2, · · · , 5},
x1 + x2 + x3 + 2x4 + x5 ≤ 10,
2x1 + x2 − x3 + x4 + 3x5 ≤ 15,
x1 + x2 + x3 + x4 + 0.5x5 ≥ 4.

Define a bifunction f1 : C1 × C1 → R by f1(x, y) = ⟨Bx + χ5(y + x) + µ − α, y − x⟩, ∀x, y ∈ C1, where

B =


0 χ χ χ χ
χ 0 χ χ χ
χ χ 0 χ χ
χ χ χ 0 χ
χ χ χ χ 0

 , χ = 3, α = (2, 2, 2, 2, 2)T, µ = (3, 4, 5, 7, 6)T.

Then we have f1 is a pseudomonotone on C1, but it is not monotone on C1 (see [5]). It is known that f1 is Lipschitz-type
continuous on C1 with the constants c1 = c2 =

∥B∥2
2 = 6. Let C2 = [0, 1]. Define a bifunction f2 : C2 × C2 → R by

f2(x, y) = H(x)(y − x), ∀x, y ∈ C2,
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where

H(x) =
{

0, if 0 ≤ x ≤ 1
2 ,

e(x− 1
2 ) + sin(x − 1

2 ) − 1, if 1
2 ≤ x ≤ 1.

Then we have f2 is a monotone on C2 and Lipschitz-type continuous on C2 with the constants b1 = b2 = 2 (see [23]).
The linear operator A : R5

→ R is defined by A(x) = ⟨a, x⟩, where a is a vector in R5 whose elements are randomly
generated in [1, 5]. Thus A∗(y) = y · a for all y ∈ R. Define the mapping T : R5

→ R5 by

T(x) =
{

x, if x ∈ (−∞, 0],
−2x, if x ∈ [0,∞),

for all x = (x1, x2, · · · , x5)T
∈ R5. Then T is 1

3 -demicontractive mapping, but it is not quasi-nonexpansive mapping.
By Algorithm 3.1, we have the following:

Step 1. Solve the strong convex problem:

yn = argmin
{1
2

(y − P[0,1]Axn)2 + βnH(P[0,1]Axn)(y − P[0,1]Axn) : y ∈ [0, 1]
}
, (70)

where βn =
n

100n−1 for all n ≥ 1. A simple computation shows that (70) is equivalent to the following:

yn = P[0,1]Axn − βnH(P[0,1]Axn), ∀n ≥ 1.

Similarly, we get tn = P[0,1]Axn − βnH(yn), ∀n ≥ 1.
Step 2. Compute vn using

vn = PC1 [xn − γn(Axn − tn) · a], ∀n ≥ 1,

where a = (1, 1, 1, 1, 1)T
∈ R5 and γn =

1
100∥a∥22

, ∀n ≥ 1.

Step 3. Solve the strong convex problem:

zn = argmin
{1
2
∥z − vn∥

2
2 + λn⟨Bvn + χ

5(z + vn) + µ − α, z − vn⟩ : z ∈ C1

}
and

wn = argmin
{1
2
∥z − vn∥

2
2 + λn⟨Bzn + χ

5(z + zn) + µ − α, z − zn⟩ : z ∈ C1

}
,

where λn =
n

100n−1 for all n ≥ 1.

Step 4. Compute sn,un and xn+1 where θn =
1

100n and αn =
n

3n−1 for all n ≥ 1.
In the experiment, we choose the stopping criterion is En =: ∥xn∥2 < 10−10, Time (s) is the average of execution

times and Iter. := Number of iterations. So, the numerical result and the graph of error are shown in the Table 1 and
Figure 1.
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Table 1: Numerical result of Algorithm 3.1 with start x1 = w0 = (0.5, 1, 0.5, 3, 2)T.

Time (s) Iter. Approximate solution En

0.4493 1 (0.3040, 0.7648, 1.2256, 0.7710, 0.3893)T 1.7104
2 (0.1525, 0.3083, 0.4640, 0.2985, 0.1472)T 0.6666
3 (2.6×10−7, 0.0081, 0.2664, 0.0576, 0.0465)T 0.2766
4 (2.8×10−6, 0.2445, 4.6×10−7, 2.4×10−6, 2.6×10−6)T 0.2445
5 (0.0001, 0.0352, 0.0897, 0.0389, 0.0204)T 0.1059
6 (7.8×10−11, 4.2×10−11, 2.7×10−11, 4.2×10−11, 8.3×10−11)T 1.3×10−10

7 (3.9×10−11, 4.1×10−11, 4.1×10−11, 4.2×10−11, 8.3×10−11)T 1.2×10−10

8 (3.6×10−11, 3.9×10−11, 4.3×10−11, 3.9×10−11, 8.1×10−11)T 1.1×10−10

9 (5.1×10−11, 4.7×10−11, 4.3×10−11, 4.8×10−11, 9.9×10−11)T 1.3×10−10

10 (2.6×10−11, 3.3×10−13, 2.2×10−11, 2.6×10−11, 5.9×10−11)T 7.3×10−11

2 4 6 8 10 12 14 16

Number of iteration

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

E
n

Error

Algorithm 3.1

Figure 1: Graph of error for Example 4.1

Example 4.2. Let H = R2 and C = {(x1, x2) : xi ≥ 0 ∀i = 1, 2}. Define a bifunction f : C × C → R by
f (x, y) = 2(y2 − x2)∥x∥2, for all x = (x1, x2), y = (y1, y2) ∈ C. Define the mapping T : R2

→ R2 by T(x) = −0.9x
for all x = (x1, x2) ∈ R2. The stopping criterion is given by En =: ∥xn∥2 < 10−4. Choose θn =

1
10n , αn = 0.6 and

λn =
n

100n−1 . So, the comparison of numerical results between Anh Algorithm [3] and Corollary 3.9 are shown in the
Table 3.9 and Figure ??.

Table 2: Comparison of numerical results between Anh Algorithm and Corollary 3.9.

Anh Algorithm [3] Corollary 3.9
Case Starting points Iter. Tims (s) Iter. Tims (s)

1 x1 = w0 = (2, 0.8) 774 0.2322 27 0.3431
2 x1 = w0 = (1, 2) 1708 0.2203 56 0.3057
3 x1 = w0 = (1.5, 0.7) 1233 0.2280 37 0.3478
4 x1 = w0 = (1, 5) 867 0.2335 53 0.3389
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(d) Case 4
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Figure 2: Plot of error by Anh Algorithm and Corollary 3.9.

5. Conclusion

In this paper, we proposed a new hybrid extragradient method for solving a common solutions of the
fixed point problem of a demicontractive mapping and the split equilibrium problem for a pseudomonotone
and Lipschitz-type continuous bifunction and proved some strong convergence results of the proposed
method under some control conditions. Moreover, we gave some numerical experiments to support our
main results. The novelty of this paper is as follows:

(1) We introduced a new method for solving a common solutions of the fixed point problem of a
demicontractive mapping and the split equilibrium problem for a pseudomonotone and Lipschitz-type
continuous bifunction;

(2) We obtained some strong convergence results of our proposed algorithm which is more desirable
than the methods of Tran et al. [32] and Anh [3];

(3) Finally, we gave some examples to illustrate our main results and the comparison of the methods of
Anh [3] with our method.
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