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Abstract. Given an unstable stochastic differential equations, the stabilisation by delay feedback controls
for such equations under Lipschitz conditions or highly nonlinear conditions have been discussed by several
authors. However, there is few works on the stabilisation by delay feedback controls under the sub-linear
expectation associated with a G-Lévy process. The aim of this paper is to design delay feedback controls in
the drift part and obtain the asymptotical stability in mean square and quasi-surely asymptotical stability
for the stochastic differential equations driven by G-Lévy process with the polynomial growth condition.
Lastly, we give an example to verify the obtained theory.

1. Introduction

Non-additive expectations and non-additive probabilities are important tools for studying uncertainties
in statistics, measures of risk, and non-linear stochastic calculus (see, for example, Denis and Martini [4],
Marinacci [22]). Recently, Peng [29] introduce a notion of the sub-linear expectation which is generated by
one dimensional fully nonlinear heat equation, called G-heat equation. Under the sub-linear expectation, a
new type of G-Brownian motion and the related calculus of Itôs type were introduced ([29–31]). G-Brownian
motion has a very rich and interesting new structure which non-trivially generalizes the classical Brownian
motion, there have been some interesting works (see, for example, Denis, Hu and Peng [5], Gao [9], Gao
and Jiang [10], Soner, Touzi and Zhang [38], Li and Peng [16], Bai and Lin [2], Zhang [42], Zhu and Huang
[43] and the references therein).

On the other hand, one feels that G-Brownian motion is not sufficient to model the financial world,
as both G-Brownian motion and the standard Brownian motion share the same property, which makes
them often unsuitable for modelling, namely the continuity of paths. Therefore, the natural generalization
of G-Brownian motion is to consider a jump processes and the uncertainty associated with the drift, the
volatility and the jump component. Hu and Peng [14] introduced the process with jumps, which they
called G-Lévy process and studied the distribution property, i.e., Lévy-Khintchine formula, of a Lévy
process under sub-linear expectations. However, in contrast to the extensive studies on G-Brownian
motion, there has been little systematic development on G-Lévy process in the literature. The main reason
is the complexity of dependence structures for G-Lévy process. To the best of our knowledge, we only
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find that Ren [34] considered the representation of a sub-linear expectation associated with G-Lévy process.
Paczka [25] considered the integration theory for G-Lévy processes with finite activity. Paczka [26] studied
the properties of the Poisson random measure and the Poisson integral associated with a G-Lévy process.
Wang and Yuan [39] obtained the existence of solution for stochastic differential equations driven by G-Lévy
process with discontinuous coefficients. Qiao and Wu [33] proved that a kind of additive functionals of
stochastic differential equations (SDEs) driven by G-Lévy processes has path independence under some
assumptions. Faizullah et al. [6] obtained the exponential estimate for solutions of stochastic functional
differential equations driven by G-Lévy process.

In the past decades, SDEs have come to play an important role in many branches of science and industry,
such as biology, physics, economics, engineering and financial market (Gikhman and Skorokhod [11]). One
of the important issues in the study of SDEs is the analysis of stability (see Mao [20]). Wang and Gao
[40] considered the SDEs driven by G-Lévy Process and proposed the sufficient conditions for the mean
exponential stability to the following SDEs:

dx(t) = f (t, x(t))dt + h(t, x(t))d⟨B⟩(t) + σ(t, x(t))dB(t) +
∫
Rd

0

K(t, x(t), z)L(dt, dz), t ≥ 0. (1.1)

Shen, Wu and Yin [37] gave sufficient conditions for the mean square exponential instability of the solution
for the SDEs (1.1). Hence, a meaningful question is whether we can design a feedback control u(t, x(t))
based on the current state x(t), so that the controlled system

dx(t) = [ f (t, x(t)) + u(t, x(t)]dt + h(t, x(t))d⟨B⟩(t) + σ(t, x(t))dB(t) +
∫
Rd

0

K(t, x(t), z)L(dt, dz), t ≥ 0,

becomes stable? However, taking into account a time lag τ(> 0) between the time when the observation
of the state is made and the time when the feedback control reaches the system, it is more realistic that
the control depends on a past state x(t − τ). Hence, the stabilisation problem becomes to design a delay
feedback control u(t, x(t − τ)) such that the controlled system (G-SDDEs, in short)

dx(t) = [ f (t, x(t)) + u(t, x(t − τ)]dt + h(t, x(t))d⟨B⟩(t) + σ(t, x(t))dB(t) +
∫
Rd

0

K(t, x(t), z)L(dt, dz), t ≥ 0, (1.2)

is stable. Suppose that the underlying G-SDDEs with the initial data

{x(t) : −τ ≤ t ≤ 0} = ξ ∈ C([−τ, 0];Rn), (1.3)

with Ê|ξ|2 < ∞. B(·) is d-dimensional G-Brownian motion, ⟨B⟩(·) is the quadratic variation process of the G-
Brownian motion, L(·, ·) is a Poisson random measure associated with the G-Lévy process. The coefficients
f , h, σ are in the space M2

G([0,T];Rn), K ∈ H2
G([0,T] ×Rd

0;Rn) for any x ∈ Rn (the precise definition are given
in Section 2).

The main contributions of this paper are presented as follows:

(i) A class of unstable stochastic differential equations driven by G-Lévy process are stabilised via delay
feedback controls in the drift part based on continuous observation.

(ii) The sufficient conditions on stabilisation criteria are obtained based on constructing appropriate
G-Lyapunov function.

(iii) The stochastic calculus on G-Lévy process is applied to solve the stability of the systems.

Note that the ordinary differential equations with delay feedback controls have been well developed
(see, for example, Ahlborn and Parlitz [1], Cao, Li and Ho [3], Pyragas [32]). On the other hand, there has
been increasing interest and demanding for investigating stochastic differential equations with feedback
control. Mao, Lam and Huang [21] were the first to study stabilisation problem for a given unstable
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hybrid stochastic differential equations with the delay feedback control, since then, there have been some
interesting works (see, for example, Mao [19], You, Liu, Lu, Mao and Qiu [41], Lu, Hu and Mao [18], Li and
Mao [17], Fei et al. [7], Mei et al. [23], Ren et al. [35], Shao [36], Li et al.[15], Hu et al. [12], just mention a
few.)

The rest of this paper is organized as follows. In Section 2 we introduce preliminary results in the
G-framework. In Section 3, we use the method of Lyapunov functionals to investigate the asymptotic
stability of the solutions for the controlled system driven by G-Lévy process. Finally, in Section 4, we give
an example to verify the obtained theory.

2. Preliminaties

In this section, we introduce briefly some notations about the G-framework, for the detail we can see
Peng [29], Neufeld and Nutz [24], Paczka [27] and the references therein.

• Ω denotes the space of all continuous functions on R+.

• Cb,lip(Rd) is the space of all bounded real-valued Lipschitz continuous functions.

• H donotes a linear space of real-valued functions defined on Ω such that if Xi ∈ H , i = 1, 2, ..., d, then
φ(X1, ...,Xd) ∈ H for all φ ∈ Cb,lip(Rd).

• Denote ΩT := {ω.∧T : ω ∈ Ω}. Let

Lip(ΩT) := {ξ ∈ L0(Ω) : ξ = ϕ(Xt1 ,Xt2 − Xt1 , · · ·,Xtn − Xtn−1 )},

where ϕ ∈ Cb,lip(Rd), 0 ≤ t1 < · · · < tn ≤ T. Lp
G(ΩT) is the completion of Lip(ΩT) under the norm

∥ · ∥p := Ê[| · |p]1/p, p ≥ 1.

• Consider the type of simple process: for a given partition πT = {t0, t1, ..., tN} of [0,T], let

ηt(ω) =
N−1∑
k=0

ηk(ω)I(tk ,tk+1](t),

where ηk ∈ Lp
G(Ωtk ), k = 0, 1, ...,N − 1 are given. The collection of these processes is denoted by

Mp,0
G (0,T). Let Mp

G(0,T) denotes the completion of Mp,0
G (0,T) under the norm

||η||Mp
G(0,T) =

[ ∫ T

0
Ê[|η(t)|p]dt

] 1
p

.

• C stand for a positive constant and its value may be different in different appearances, and this
assumption is also adaptable to Cp depending only on the subscripts.

Definition 2.1. A sublinear expectation Ê is a functional Ê: H → R satisfying the following properties: for all
X,Y ∈ H , we have

(i) Monotonicity Ê(X) ≥ Ê(Y) if X ≥ Y.

(ii) Constant preserving Ê(C) = C for C ∈ R.

(iii) Sub-additivity Ê(X + Y) ≤ Ê(X) + Ê(Y).

(iv) Positive homogeneity Ê(λX) = λÊ(X) for λ ≥ 0.
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The tripe (Ω,H , Ê) is called a sub-linear expectation space (compared with a probability space (Ω,F ,P)),
Ê is called a linear expectation if (iii) and (iv) is replaced by Ê[X + αY] = Ê(X) + αÊ(Y) for α ∈ R. X ∈ H is
called a random variable in (Ω,H , Ê). We also denote lower expectation Ẽ[x] := −Ê[−x] for each X ∈ H .

Definition 2.2. (G-Lévy process [14]) A d-dimensional càdlàg process X = (Xt)t≥0 defined on a sub-linear expectation
space (Ω,H , Ê) is called a Lévy process if the following properties are satisfied:

(i) X0 = 0.

(ii) For each s, t ≥ 0, the increment Xt+s − Xt is independent of (Xt1 , ...,Xtn ) for every n ∈ N and every partition
0 ≤ t1 ≤ t2 ≤ ... ≤ tn ≤ t.

(iii) The distribution of the increment Xt+s − Xs, s, t ≥ 0 does not depend on t.

Moreover, a Lévy process X is a G-Lévy process if it satisfies the following conditions:

(iv) There exists a 2d-dimensional Lévy process (Xc
t ,X

d
t )t≥0 such that Xt = Xc

t + Xd
t , for each t ≥ 0.

(v) The processes Xc
t and Xd

t satisfying the following assumption:

lim
t↓0
Ê[|Xc

t |
3]t−1 = 0; Ê[|Xd

t |] ≤ Ct, f or all t ≥ 0,

where C is a positive constant.

Note that the condition (v) implies that Xc
t is a generalized G-Brownian motion, the jump part Xd

t is of
finite variation (see Hu and Peng [14] for details).

Lemma 2.3. (Lévy-Khintchine representation [14]) Let X be a G-Lévy process in Rd. Defined nonlocal operator

GX[ f (·)] := lim
δ↓0
Ê[ f (Xδ)]δ−1, f or f ∈ C3

b(Rd) with f (0) = 0.

Then, GX has the following Lévy-Khintchine representation

GX[ f (·)] = sup
(v,p,Q)∈U

{∫
Rd

0

f (z)v(dz) + ⟨D( f (0), p⟩ +
1
2

tr[D2 f (0)QQT]
}

where Rd
0 := Rd

\ {0},U is a subset U ⊂ V × Rd
× Q, and V is a set of all Borel measures on (Rd

0,B(Rd
0)). Q is a

set of all d-dimensional positive definite symmetric matrices in Sd (Sd is the space of all d × d-dimensional symmetric
matrices) such that

sup
(v,p,Q)∈U

{∫
Rd

0

|z|v(dz) + |p| + tr
[
QQT

]}
< ∞. (2.1)

Definition 2.4. For the sub-linear expectation Ê, we introduce the capacity c and c̃ related to Ê and Ẽ as, respectively

c(A) := sup
P∈B

P(A),A ∈ B(Ω),

c̃(A) := inf
P∈B
P(A),A ∈ B(Ω),

where B is a relatively compact family of probability measures.

We will say that a set A ∈ B(Ω) is polar if c(A) = 0. We say that a property holds quasi-surely (q.s.) if it
holds outside a polar set.
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Lemma 2.5. Let X ∈ L1
G(ΩT) and for some p > 0, Ê[|X|p] < ∞. Then, for each M > 0,

c(|X| > M) ≤
Ê[|X|p]

Mp .

In this paper, we assume that G-Lévy process X has finite activity, i.e.,

λ := sup
v∈V

v(Rd
0) < ∞.

Without loss of generality we will also assume that λ = 1 and that µ(Rd
0) = 1. Let Xu− denotes the left

limit of X at point u, ∆Xu = Xu − Xu−. We define a Poisson random measure L(ds, dz) associated with the
G-Lévy process X by considering

L((s, t],A) =
∑

s<u≤t

IA(∆Xu), q.s.,

for any 0 < s < t < ∞ and A ∈ B(Rd
0). The random measure is well-defined and may be used to define the

pathwise integral.
Let HS

G([0,T] ×Rd
0) be a space of all the elementary random fields on [0,T] ×Rd

0 of the form

K(r, z)(w) =
n−1∑
k=1

m∑
l=1

Fk,l(w)I(tk ,tk+1](r)ψl(z),n,m ∈N,

where 0 ≤ t1 < ... < tn ≤ T is a partition of [0,T], {ψl}
m
l=1 ⊂ Cb,lip(Rd) are functions with disjoint supports such

that ψl(0) = 0 and Fk,l = ϕk,l(Xt1 , ...,Xtk − Xtk−1 ), ϕk,l ∈ Cb,lip(Rd×k). We introduce the norm on this space

||K||p
Hp

G([0,T]×Rd
0)

:= Ê
[ ∫ T

0
sup
v∈V

∫
Rd

0

|K(r, z)|pv(dz)dr
]
, p = 1, 2.

Definition 2.6. Let 0 ≤ s < t ≤ T. The Itô integral of K ∈ HS
G([0,T] × Rd

0) with respect to the jump measure L is
defined as ∫ t

s

∫
Rd

0

K(r, z)L(dr, dz) :=
∑
s<r≤t

K(r,∆Xr), q.s..

It is worth note that for every K ∈ HS
G([0,T] × Rd

0),
∫ T

0

∫
Rd

0
K(r, z)L(dr, dz) is an element of L1

G(ΩT) and

L2
G(ΩT).

Let Hp
G([0,T]×Rd

0) denote the topological completion of HS
G([0,T]×Rd

0) under the norm || · ||Hp
G([0,T]×Rd

0), p =
1, 2. Then Itô integral can be continuously extended to the whole space Hp

G([0,T] ×Rd
0), p = 1, 2. Moreover,

the extended integral takes values in Lp
G(ΩT), p = 1, 2. The formula from Definition 2.6 still holds for all

K ∈ Hp
G([0,T] ×Rd

0).
For K(r, z) ∈ H2

G([0,T] ×Rd
0), we know that

M(t) :=
∫ T

0

∫
Rd

0

K(r, z)L(dr, dz) −
∫ T

0
sup
v∈V

∫
Rd

0

K(r, z)v(dz)dr

is a G-martingale, hence we have

Ê
[

sup
0≤t≤T

|M(t)|2
]
≤ CÊ

[ ∫ T

0
sup
v∈V

∫
Rd

0

K2(r, z)v(dz)dr
]
,
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where C is a positive constant.
Throughout this paper, let C([−τ,∞) × Rn;R+) denote the family of all continuous functions from

[−τ,∞) × Rn to R+, C1,2(R+ × Rn;R+) denote the family of all continuous non-negative functions W(t, x)
defined onR+×Rn, they are continuously once differentiable in t and twice in x.Given W ∈ C1,2(R+×Rn;R+),
we define the function LW : R+ ×Rn

→ R by

LW :=Wt(t, x) + ⟨Wx(t, x), f (t, x))⟩ + sup
Q∈Q

tr[(⟨Wx(t, x), h(t, x)⟩

+
1
2
⟨Wxx(t, x)σ(t, x), σ(t, x)⟩)QQT] + sup

v∈V

∫
Rd

0

(W(t, x + K(t, x, z)) −W(t, x))v(dz),

where

Wt(t, x) =
∂W(t, x)
∂t

,Wx(t, x) = (
∂W(t, x)
∂x1

,
∂W(t, x)
∂x2

, · · · ,
∂W(t, x)
∂xn

),

and

Wxx(t, x) = (
∂2W(t, x)
∂xi∂x j

)n×n.

3. Asymptotic Stability

In this section, we will use the method of Lyapunov functionals to investigate the asymptotic stability
of controlled G-SDDEs (1.2). For the stability of this paper, we suppose the

f (t, 0) = u(t, 0) = h(t, 0) = σ(t, 0) = K(t, 0, z) = 0, t ≥ 0, (3.1)

which implies that x(t) ≡ 0 is the trivial solution of the G-SDDEs (1.2). In order to obtain the existence and
uniqueness of the global solution of equation (1.2), we need the following conditions.

Assumption 3.1. Assume that for any real number m > 0, x1, x2 ∈ Rd and |x1| ∨ |x2| < m, the functions f (t, x),
h(t, x), σ(t, x),K(t, x, z) satisfy

| f (t, x1) − f (t, x2)| + |h(t, x1) − h(t, x2)| + |σ(t, x1) − σ(t, x2)|

+ sup
v∈V

∫
Rd

0

|K(t, x1, z) − K(t, x2, z)|v(dz) ≤ Lm|x1 − x2|,
(3.2)

where Lm is a positive constant.
And for x1, x2 ∈ Rd, there exists a positive constant L such that

|u(t, x1) − u(t, x2)| ≤ L|x1 − x2|. (3.3)

Moreover, there exist positive constants C and pi, i = 1, 2, 3, 4 such that

| f (t, x)| ≤ C(1 + |x|p1 ),
|h(t, x)| ≤ C(1 + |x|p2 ),
|σ(t, x)| ≤ C(1 + |x|p3 ),

sup
v∈V

∫
Rd

0

|K(t, x, z)|v(dz) ≤ C(1 + |x|p4 ).

(3.4)

The condition (3.4) is referred as the polynomial growth condition which means one of the pi, i = 1, 2, 3, 4 more than
1. When pi = 1, i = 1, 2, 3, 4, the condition (3.4) is the familiar linear growth condition.
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It is well-known that (3.2), (3.3) and linear growth condition can guarantee the existence and uniqueness
of the global solution of (1.2). Without the linear growth condition, the solutions of the G-SDDEs (1.2) may
explode to infinity at a finite time. To avoid such a possible explosion, we propose our alternative condition
as follows, it’s weaker than the linear growth condition.

Assumption 3.2. Assume that there exist functions W̄ ∈ C1,2(R+ ×Rn;R+) and W1 ∈ C1,2([−τ,∞) ×Rn;R+), as
well as nonnegative constants p ≥ 2pi, i = 1, 2, 3, 4 and q j ( j = 1, 2, 3) with q2 > q3, such that

|x|p ≤ W̄(t, x) ≤W1(t, x),∀(t, x) ∈ R+ ×Rn, (3.5)

and

LW̄(t, x) + W̄x(t, x)u(t, y) ≤ q1 − q2W1(t, x) + q3W1(t − τ, y), (3.6)

for all (t, x, y) ∈ R+ ×Rn
×Rn.

Theorem 3.1. Under Assumptions 3.1 and 3.2, for any given initial data (1.3) there exists a unique global solution
x(t) to the G-SDDEs (1.2) on t ∈ [−τ,∞) and the solution has the property:

sup
−τ≤t<∞

Ê|x(t)|p < ∞,

where γ > 0 is the unique root to the equation q2 = γ + eγτq3.

Proof. The existence and uniqueness of the global solution can be proved by the standard technique of
Picard iterations, we omit the details (we can see, for example, Wang and Gao [40], Hu et al. [13] for the
details). Next, we will prove sup

−τ≤t≤∞ Ê|x(t)|p < ∞.
In fact, applying the G-Itô formula to eγtW̄(t, x(t)), t ≥ 0, we have

eγtW̄(t, x(t)) − W̄(0, x(0))

=

∫ t

0
eγr[γW̄(r, x(r)) + LW̄(r, x(r)) + W̄x(t, x)u(t, y)]dr +

∫ t

0
eγr
⟨W̄x(r, x(r)), σ(r, x(r))⟩dB(r) +M0

t + P0
t ,

where

Ms
t :=
∫ t

s
eγr[⟨W̄x(r, x(r)), h(r, x(r))⟩ +

1
2
⟨W̄xx(r, x(r))σ(r, x(r)), σ(r, x(r))⟩]d⟨B⟩(r)

−

∫ t

s
eγr sup

Q∈Q
tr[⟨W̄x(r, x(r)), h(r, x(r))⟩ +

1
2
⟨W̄xx(r, x(r))σ(r, x(r)), σ(r, x(r))⟩QQT]dr,

Ps
t :=
∫ t

s

∫
Rd

0

eγr[W̄(r, x(r−) + K(r, x(r), z)) − W̄(r, x(r−))]L(dr, dz)

−

∫ t

s
sup
v∈V

∫
Rd

0

eγr[W̄(r, x(r−) + K(r, x(r), z)) − W̄(r, x(r−))]v(dz)dr.
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By conditions (3.5) and (3.6), then we have

eγt
|x|p −W1(0, x(0))

≤

∫ t

0
eγr[q1 − (q2 − γ)W1(r, x) + q3W1(r − τ, x(r − τ))]dr

+

∫ t

0
eγr
⟨W̄x(r, x(r)), σ(r, x(r))⟩dB(r) +M0

t + P0
t

≤
q1

γ
eγt
− (q2 − γ)

∫ t

0
eγrW1(r, x)dr +

∫ t

0
eγrq3W1(r − τ, x(r − τ))dr

+

∫ t

0
eγr
⟨W̄x(r, x(r)), σ(r, x(r))⟩dB(r) +M0

t + P0
t

≤
q1

γ
eγt
− (q2 − γ)

∫ t

0
eγrW1(r, x)dr + eγτ

∫ 0

−τ
q3W1(r, x(r))dr

+ eγτ
∫ t

0
eγrq3W1(r, x(r))dr +

∫ t

0
eγr
⟨W̄x(r, x(r)), σ(r, x(r))⟩dB(r) +M0

t + P0
t .

This implies

eγt
|x|p

≤W1(0, x(0)) +
q1

γ
eγt
− (q2 − γ − eγτq3)

∫ t

0
eγrW1(r, x)dr + eγτ

∫ 0

−τ
q3W1(r, x(r))dr

+

∫ t

0
eγr
⟨W̄x(r, x(r)), σ(r, x(r))⟩dB(r) +M0

t + P0
t .

Note that {Ms
t}, {P

s
t} are G-martingale (Peng [28] and Paczka [27]). Then taking the expectation on both sides,

we have
Ê(eγt

|x|p) ≤ K +
q1

γ
eγt,

where

K =W1(0, x(0)) + eγτ
∫ 0

−τ
q3W1(r, x(r))dr.

Which means
sup
−τ≤t<∞

Ê|x(t)|p < ∞.

This completes the proof.

In order to use Lyapunov functional to study the asymptotic stability of controlled G-SDDEs (1.2), we
define xt := {x(t+ s) : −2τ ≤ s ≤ 0} for t ≥ 0, xt is well defined for 0 ≤ t < 2τ. Let x(s) = ξ(−τ) for s ∈ [−2τ,−τ).
In this paper, we will use the following Lyapunov functional

Ṽ(t, xt) =W(t, x(t)) + ρ
∫ 0

−τ

∫ t

t+s
[τ| f (r, x(r)) + u(r, x(r − τ))|2

+ C
′

2τ|h(r, x(r))|2 + C2|σ(r, x(r))|2 + Cτ sup
v∈V

∫
Rd

0

K2(r, x(r), z)v(dz)]drds,
(3.7)

for t ≥ 0, where W ∈ C1,2(R+ ×Rn;R+), and ρ is a determined positive constant and let

f (r, x) = f (0, x),u(r, x) = u(0, x), h(r, x) = h(0, x),
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σ(r, x) = σ(0, x), sup
v∈V

∫
Rd

0

K(r, x, z)v(dz) = sup
v∈V

∫
Rd

0

K(0, x, z)v(dz),

for (r, x) ∈ [−2τ, 0) ×Rn.
Applying G-Itô formula to W(t, x(t)), we get

dW(t, x(t)) = [LW(t, x(t)) +Wx(t, x(t))u(t, x(t − τ))]dt

+ ⟨Wx(t, x(t)), σ(t, x(t))⟩dB(t) + dN0
t + dD0

t , t ≥ 0,
(3.8)

where

Ns
t :=
∫ t

s
[⟨Wx(r, x(r)), h(r, x(r))⟩ +

1
2
⟨Wxx(r, x(r))σ(r, x(r)), σ(r, x(r))⟩]d⟨B⟩(r)

−

∫ t

s
sup
Q∈Q

tr[⟨Wx(r, x(r)), h(r, x(r))⟩ +
1
2
⟨Wxx(r, x(r))σ(r, x(r)), σ(r, x(r))⟩QQT]dr,

Ds
t :=
∫ t

s

∫
Rd

0

[W(r, x(r−) + K(r, x(r), z)) −W(r, x(r−))]L(dr, dz)

−

∫ t

s
sup
v∈V

∫
Rd

0

[W(r, x(r−) + K(r, x(r), z)) −W(r, x(r−))]v(dz)dr.

Note that {Ns
t }, {D

s
t} are G-martingale (Peng [28] and Paczka [27]). It is easy to obtain that

d
(
ρ

∫ 0

−τ

∫ t

t+s

[
τ| f (r, x(r)) + u(r, x(r − τ))|2 + C

′

2τ|h(r, x(r))|2

+ C2|σ(r, x(r))|2 + Cτ sup
v∈V

∫
Rd

0

K2(r, x(r), z)v(dz)
]
drds
)

≤

(
ρτ
[
τ| f (t, x(t)) + u(t, x(t − τ))|2 + C

′

2τ|h(t, x(t))|2 + C2|σ(t, x(t))|2

+ Cτ sup
v∈V

∫
Rd

0

K2(t, x(t), z)v(dz)
]
− ρ(
∫ t

t−τ
[τ| f (r, x(r)) + u(r, x(r − τ))|2

+ C
′

2τ|h(r, x(r))|2 + C2|σ(r, x(r))|2 + Cτ sup
v∈V

∫
Rd

0

K2(r, x(r), z)v(dz)]dr)
)
dt.

(3.9)

Thus we have

dṼ(t, xt) = LṼ(t, xt)dt + ⟨Wx(t, x(t)), σ(t, x(t))⟩dB(t) + dN0
t + dD0

t , (3.10)

where

LṼ(t, xt) = LW(t, x(t)) +Wx(t, x(t))u(t, x(t − τ))

+ ρτ
[
τ| f (t, x(t)) + u(t, x(t − τ))|2 + C

′

2τ|h(t, x(t))|2 + C2|σ(t, x(t))|2

+ Cτ sup
v∈V

∫
Rd

0

K2(t, x(t), z)v(dz)
]
− ρ(
∫ t

t−τ
[τ| f (r, x(r)) + u(r, x(r − τ))|2

+ C
′

2τ|h(r, x(r))|2 + C2|σ(r, x(r))|2 + Cτ sup
v∈V

∫
Rd

0

K2(r, x(r), z)v(dz)dr).

(3.11)

In order to study the asymptotic stability of the controlled G-SDDEs (1.2), we need to impose the following
assumption.
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Assumption 3.3. Assume that there is a function W ∈ C1,2(R+ ×Rn;R+) such that

LW(t, x(t)) +Wx(t, x(t))u(t, x(t)) + α1|Wx(t, x(t))|2 + α2| f (t, x(t))|2

+ α3|h(t, x(t))|2 + α4|σ(t, x(t))|2 + α5 sup
v∈V

∫
Rd

0

K2(t, x(t), z)v(dz)

≤ −α0|x(t)|2,

(3.12)

for all (t, x(t)) ∈ (R+ ×Rn), where αi, i = 0, · · · , 5 are positive constants.

Theorem 3.2. Under Assumptions 3.1, 3.2 and 3.3, let

τ <

√
α1α2

2L2 ∧

√
α1α3

L2C′2
∧
α1α4

L2C2
∧
α1α5

L2Cτ
, and τ <

√
α0α1

2L4 . (3.13)

Then for any given initial data (1.3), the solution of G-SDDEs (1.2) has the following property

Ẽ(
∫
∞

0
|x(s)|2ds) < ∞. (3.14)

Proof. For any initial data ξ ∈ C([−τ, 0];Rn), let k0 > 0 be a large enough integer such that ||ξ|| < k0. For any
integer k ≥ k0, define the following stopping time

ζk = inf{t ≥ 0 : |x(t)| ≥ k}.

It comes from Theorem 3.1, we know that as k→∞, the ζk is increasing to infinity q.s.. By G-Itô formula to
Ṽ(t, xt) and (3.10), we have, for all t ≥ 0 and k ≥ k0,

ÊṼ(t ∧ ζk, xt∧ζk ) = Ṽ(t0, x0) + Ê
∫ t∧ζk

0
LṼ(s, xs)ds. (3.15)

By Assumption 3.1, we have

Wx(t, x(t))[u(t, x(t − τ)) − u(t, x(t))] ≤ α1|Wx(t, x(t))|2 +
L2

4α1
|x(t) − x(t − τ)|2. (3.16)

By (3.11), (3.16) and Assumption 3.2, we obtain

LṼ(t, xt)
≤ LW(t, x(t)) +Wx(t, x(t))u(t, x(t − τ))

+ ρτ
[
τ| f (t, x(t)) + u(t, x(t − τ))|2 + C

′

2τ|h(t, x(t))|2 + C2|σ(t, x(t))|2

+ Cτ sup
v∈V

∫
Rd

0

K2(t, x(t), z)v(dz)
]
− ρ(
∫ t

t−τ
[τ| f (r, x(r)) + u(r, x(r − τ))|2

+ C
′

2τ|h(r, x(r))|2 + C2|σ(r, x(r))|2 + Cτ sup
v∈V

∫
Rd

0

K2(r, x(r), z)v(dz)]dr)

≤ LW(t, x(t)) +Wx(t, x(t))u(t, x(t)) + α1|Wx(t, x(t))|2 +
L2

4α1
|x(t) − x(t − τ)|2

+ 2ρτ2
| f (t, x(t))|2 + 2ρτ2

|u(t, x(t − τ))|2 + ρC
′

2τ
2
|h(t, x(t))|2 + ρC2τ|σ(t, x(t))|2

+ ρCττ sup
v∈V

∫
Rd

0

K2(t, x(t), z)v(dz)
]
− ρ(
∫ t

t−τ
[τ| f (r, x(r)) + u(r, x(r − τ))|2

+ C
′

2τ|h(r, x(r))|2 + C2|σ(r, x(r))|2 + Cτ sup
v∈V

∫
Rd

0

K2(r, x(r), z)v(dz)]dr).

(3.17)
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Let ρ = L2

α1
, where ρ is the free parameter in the definition of the Lyapunov functional (see (3.7)). Let

τ <
√

α1α2
2L2 ∧

√
α1α3

L2C′2
∧

α1α4
L2C2
∧

α1α5
L2Cτ

, by the Assumption 3.3, we can obtain

LṼ(t, xt) ≤ −α0|x(t)|2 + 2ρτ2L2
|x(t − τ)|2 +

L2

4α1
|x(t) − x(t − τ)|2

−
L2

α1
(
∫ t

t−τ
[τ| f (r, x(r)) + u(r, x(r − τ))|2 + C

′

2τ|h(r, x(r))|2

+ C2|σ(r, x(r))|2 + Cτ sup
v∈V

∫
Rd

0

K2(r, x(r), z)v(dz)]dr).

(3.18)

It comes from (3.10), we have

0 ≤ Ṽ(t, xt)

= Ṽ(0, x0) +
∫ t∧ζk

0
LṼ(s, xs)ds +

∫ t∧ζk

0
⟨Wx(s, x(s)), σ(s, x(s))⟩dB(s) +N0

t +D0
t

≤ Ṽ(0, x0) +
∫ t∧ζk

0
[−α0|x(s)|2 + 2ρτ2L2

|x(s − τ)|2]ds +
∫ t∧ζk

0
[

L2

4α1
|x(s) − x(s − τ)|2]ds

−
L2

α1

∫ t∧ζk

0

∫ s

s−τ
[τ| f (r, x(r)) + u(r, x(r − τ))|2 + C

′

2τ|h(r, x(r))|2 + C2|σ(r, x(r))|2

+ Cτ sup
v∈V

∫
Rd

0

K2(r, x(r), z)v(dz)]drds +
∫ t∧ζk

0
⟨Wx(s, x(s)), σ(s, x(s))⟩dB(s) +N0

t +D0
t .

(3.19)

For convenience, we let

ϕ1 :=
∫ t∧ζk

0
[−α0|x(s)|2 + 2ρτ2L2

|x(s − τ)|2]ds,

ϕ2 :=
L2

4α1

∫ t∧ζk

0
|x(s) − x(s − τ)|2ds,

ϕ3 :=
L2

α1

∫ t∧ζk

0

∫ s

s−τ
[τ| f (r, x(r)) + u(r, x(r − τ))|2 + C

′

2τ|h(r, x(r))|2 + C2|σ(r, x(r))|2

+ Cτ sup
v∈V

∫
Rd

0

K2(r, x(r), z)v(dz)]drds.

(3.20)

For ϕ1, we know ∫ t∧ζk

0
|x(s − τ)|2ds ≤

∫ t∧ζk

−τ
|x(s)|2ds.

Hence, we have

ϕ1 ≤ 2ρτ2L2
∫ 0

−τ
|x(s)|2ds − (α0 − 2ρτ2L2)

∫ t∧ζk

0
|x(s)|2ds

≤ 2ρτ3L2
||ξ||2 − (α0 − 2ρτ2L2)

∫ t∧ζk

0
|x(s)|2ds.

(3.21)

Substituting (3.21) and (3.20) into (3.19) and let k→∞, we can get

ϕ̄3 ≤C1 − (α0 − 2ρτ2L2)
∫ t

0
|x(s)|2ds

+ ϕ̄2 +

∫ t

0
⟨Wx(s, x(s)), σ(s, x(s))⟩dB(s) +N0

t +D0
t ,

(3.22)
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with C1 = Ṽ(0, x0) + 2ρτ3L2
||ξ||2, where

ϕ̄2 :=
L2

4α1

∫ t

0
|x(s) − x(s − τ)|2ds,

ϕ̄3 :=
L2

α1

∫ t

0

∫ s

s−τ
[τ| f (r, x(r)) + u(r, x(r − τ))|2 + C

′

2τ|h(r, x(r))|2 + C2|σ(r, x(r))|2

+ Cτ sup
v∈V

∫
Rd

0

K2(r, x(r), z)v(dz)]drds.

(3.23)

For t ∈ [0, τ], we obtain

ϕ̄2 ≤
L2

4α1

∫ τ

0

(
2|x(s)|2 + 2|x(s − τ)|2

)
ds

≤
L2

2α1

∫ τ

0

(
|x(s)|2 + |x(s − τ)|2

)
ds ≤

L2τ
α1

(
sup
−τ≤s≤τ

|x(s)|2
)

:= C3.

(3.24)

For t > τ, we have

ϕ̄2 ≤ C3 +
L2

4α1

∫ t

τ

(
|x(s) − x(s − τ)|2

)
ds. (3.25)

Substituting (3.25) into (3.22), we have

ϕ̄3 ≤C1 + C3 − (α0 − 2ρτ2L2)
∫ t

0
|x(s)|2ds +

L2

4α1

∫ t

τ

(
|x(s) − x(s − τ)|2

)
ds

+

∫ t

0
⟨Wx(s, x(s)), σ(s, x(s))⟩dB(s) +N0

t +D0
t .

(3.26)

Taking the expectation on both sides we obtain

Ê(ϕ̄3) ≤C1 + C3 + Ê
[
− (α0 − 2ρτ2L2)

∫ t

0
|x(s)|2ds

]
+ Ê
( L2

4α1

∫ t

τ
|x(s) − x(s − τ)|2ds

)
.

(3.27)

On the other hand, by the Burkholder-Davis-Gundy-type inequalities (Gao [9], Wang and Gao [40]), we
have

Ê
(
|x( j) − x( j − τ)|2

)
≤ Ê(

∫ j

j−τ
[ f (s, x(s)) + u(s, x(s − τ))]ds +

∫ j

j−τ
h(s, x(s))d⟨B⟩(s)

+

∫ j

j−τ
σ(s, x(s))dB(s) +

∫ j

j−τ

∫
Rd

0

K(s, x(s), z)L(ds, dz))|2)

≤ 4
(
Ê(sup

0≤r≤ j

[
|

∫ r

r−τ
[ f (s, x(s)) + u(s, x(s − τ))]ds|2 + |

∫ r

r−τ
h(s, x(s))d⟨B⟩(s)|2

+ |

∫ r

r−τ
σ(s, x(s))dB(s)|2 + |

∫ r

r−τ

∫
Rd

0

K(s, x(s), z)L(ds, dz))|2
]
)
)

≤ 4Ê
∫ j

j−τ
(τ| f (s, x(s)) + u(s, x(s − τ))|2)ds + 4C

′

2τ

∫ j

j−τ
Ê|h(s, x(s))|2ds

+ 4C2

∫ j

j−τ
Ê|σ(s, x(s))|2ds + 4CτÊ[

∫ j

j−τ
sup
v∈V

∫
Rd

0

K2(s, x(s), z)v(dz)ds].

(3.28)
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Hence,

−Ê
[
− (α0 − 2ρτ2L2)

∫ t

0
|x(s)|2ds

]
≤C1 + C3 + Ê

( L2

4α1

∫ t

τ

[
|x(s) − x(s − τ)|2

]
ds
)
− Ê(ϕ̄3)

≤C1 + C3.

(3.29)

Let τ <
√

α0α1
2L4 , by ρ = L2

α1
, then α0 − 2ρτ2L2 > 0. Let t→∞, imply that

Ẽ(
∫
∞

0
|x(s)|2ds) = −Ê

∫
∞

0
−|x(s)|2ds < ∞. (3.30)

This completes the proof.

Theorem 3.3. Under the same assumptions of Theorem 3.2. Then for any given initial data (1.3), the solution of the
G-SDDEs (1.2) is asymptotically stable in mean square, that is, the solution has the property that

lim
t→∞
Ẽ(|x(t)|2) = 0. (3.31)

Proof. Applying the G-Itô formula, we have

|Ẽ|x(t2)|2 − Ẽ|x(t1)|2|

≤ Ẽ

∫ t2

t1

(
2|x(t)|[ f (t, x(t)) + u(t, x(t − τ))] + 2|x(t)|h(t, x(t))

+ |σ(t, x(t))|2 +
∫
Rd

0

[
2|x(t)|K(t, x, z) + K2(t, x, z)

]
v(dz)

)
dt.

(3.32)

It follows from (3.4) that∣∣∣Ẽ|x(t2)|2 − Ẽ|x(t1)|2
∣∣∣

≤ Ê

∫ t2

t1

(
2|x(t)|[ f (t, x(t)) + u(t, x(t − τ))] + 2|x(t)|h(t, x(t))

+ |σ(t, x(t))|2 +
∫
Rd

0

[
2|x(t)|K(t, x, z) + K2(t, x, z)

]
v(dz)

)
dt

≤

∫ t2

t1

(
c1 + c2(1 + Ê|x(t)|p)

)
dt.

(3.33)

Hence, by Theorem 3.1, we can obtain

|Ẽ|x(t2)|2 − Ẽ|x(t2)|2| ≤ (t2 − t1)(c1 + c2 + c2c3),

where ci, i = 1, 2, 3 are constants and c1 = 5C2, c2 = 9C+6C2+2L, c3 = sup
−τ≤t<∞ Ê|x(t)|p < ∞. That is, Ẽ|x(t)|2

is uniformly continuous in t, combining with the (3.14), we have limt→∞ Ẽ(|x(t)|2) = 0. This completes the
proof.

Theorem 3.4. Under the same assumptions of Theorem 3.2, then the solution of the controlled G-SDDEs satisfies

lim
t→∞

x(t) = 0, q.s.. (3.34)

That is, the controlled system is quasi-surely asymptotically stable.
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Proof. Assume that the assertion (3.34) is not true, which means we can find a positive and small enough
constant ε ∈ (0, 1

4 ) sufficiently small such that

c̃
(
Ω1

)
≥ 4ε, (3.35)

where Ω1 = {lim supt→∞ |x(t)|2 > 2ε}. For any k ≥ ||ξ||, let ζk be the same stopping time as defined in the
proof of Theorem 3.2 and from Theorem 3.2 we have

Ẽ|x(t ∧ ζk)|2 ≤ C,

this means
k2c̃(ζk ≤ t) ≤ C, ∀t ≥ 0,

this, letting t→∞, implies there is a positive integer k1 large enough such that

lim sup
k→∞

k2c̃(ζk ≤ ∞) ≤ C + 1, ∀k ≥ k1. (3.36)

Hence we can then choose a sufficiently large fixed k2 ≥ k1 such that C+1
k2

2
≤ ε to get c̃(ζk2 < ∞) ≤ ε. This

means that

c̃(Ω2) ≥ 1 − ε, (3.37)

where Ω2 = {|x(t)| < k2,∀t ≥ −τ}. Combining (3.35) with (3.37), we have

c̃(Ω1 ∩Ω2) ≥ 3ε. (3.38)

Define the stopped process x̄(t) = x(t ∧ ζk2 ). It is obvious that x̄(t) satisfies the form

dx̄(t) = f̄ (t)dt + h̄(t)d⟨B⟩(t) + σ̄(t)dB(t) +
∫
Rd

0

K̄(t, z)L(dt, dz), (3.39)

where
f̄ (t) = [ f (t, x(t)) + u(t, x(t − τ))]I[0,ζk2 )(t),

h̄(t) = h(t, x(t))I[0,ζk2 )(t),

σ̄(t) = σ(t, x(t))I[0,ζk2 )(t),

sup
v∈V

∫
Rd

0

K̄(t, z)v(dz) = sup
v∈V

∫
Rd

0

K(t, x(t), z)I[0,ζk2 )(t)v(dz),

It is easy to see that f̄ (t), h̄(t), σ̄(t) and supv∈V

∫
Rd

0
K̄(t, z)v(dz) are bounded processes, that is,

| f̄ (t)| ∨ |h̄(t)| ∨ |σ̄(t)| ∨ | sup
v∈V

∫
Rd

0

K̄(t, z)v(dz)| ≤ C5, q.s., (3.40)

for all t ≥ 0. Next, we will define a sequence of stopping times

β1 = inf{t ≥ 0 : |x̄(t)|2 ≥ 2ε},

β2l = inf{t ≥ β2l−1 : |x̄(t)|2 ≤ ε}, l = 1, 2, · · · ,

β2l+1 = inf{t ≥ β2l : |x̄(t)|2 ≥ 2ε}, l = 1, 2, · · · .

It comes from Theorem 3.2 that

C4 := Ẽ
∫
∞

0
(|x(t)|2)dt < ∞. (3.41)
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This means that

lim inf
t→∞

|x(t)|2 = 0, q.s.. (3.42)

By the definition of Ω1 and Ω2 and (3.42) we have

Ω1 ∩Ω2 ⊂ {βl < ∞} ∩ {ζk2 = ∞}, l = 1, 2, · · · . (3.43)

Choose a small positive number θ and a large positive integer ϖ such that

4θC2
5(θ + θC

′

2 + C2 + Cθ) ≤ εδ2 and C4 < ε
2θϖ. (3.44)

By (3.38) and (3.43), we can further choose a sufficiently large number N such that

c̃(β2ϖ ≤ N) ≥ 2ε. (3.45)

In particular, if β2ϖ ≤ N, then |x(β2ϖ)| = ε. So, by the definition of x̄(t), we have β2ϖ ≤ ζk2 . This implies

x̄(t,w) = x(t,w) f or all 0 ≤ t ≤ β2ϖ and w ∈ {β2ϖ ≤ N}. (3.46)

By (3.39) and the Burkholder-Davis-Gundy-type inequalities, for 1 ≤ l ≤ ϖ,

Ẽ( sup
0≤t≤θ

||x̄(β2l−1 ∧N + t)| − |x̄(β2l−1 ∧N)||2)

≤Ê( sup
0≤t≤θ

|x̄(β2l−1 ∧N + t) − x̄(β2l−1 ∧N)|2)

=Ê( sup
0≤t≤θ

|

∫ β2l−1∧N+t

β2l−1∧N
f̄ (s, x(s))ds +

∫ β2l−1∧N+t

β2l−1∧N
h̄(s, x(s))d⟨B⟩(s)

+

∫ β2l−1∧N+t

β2l−1∧N
σ̄(s, x(s))dB(s) +

∫ β2l−1∧N+t

β2l−1∧N

∫
Rd

0

K̄(s, x(s), z)L(ds, dz)|2)

≤4Ê( sup
0≤t≤θ

|

∫ β2l−1∧N+t

β2l−1∧N
f̄ (s, x(s))ds|2) + 4Ê( sup

0≤t≤θ
|

∫ β2l−1∧N+t

β2l−1∧N
h̄(s, x(s))d⟨B⟩(s)|2)

+ 4Ê( sup
0≤t≤θ

|

∫ β2l−1∧N+t

β2l−1∧N
σ̄(s, x(s))dB(s)|2)

+ 4Ê( sup
0≤t≤θ

|

∫ β2l−1∧N+t

β2l−1∧N

∫
Rd

0

K̄(s, x(s), z)L(ds, dz)|2)

≤4θ
∫ β2l−1∧N+θ

β2l−1∧N
Ê(| f̄ (s, x(s))|2)ds + 4θC

′

2

∫ β2l−1∧N+θ

β2l−1∧N
Ê(|h̄(s, x(s))|2)ds

+ 4C2

∫ β2l−1∧N+θ

β2l−1∧N
Ê(|σ̄(s, x(s))|2)ds + 4CθÊ[

∫ β2l−1∧N+θ

β2l−1∧N
sup
v∈V

∫
Rd

0

K̄2(s, x(s), z)(ds)dz]

≤4θC2
5(θ + θC

′

2 + C2 + Cθ).

This, together with (3.44) and Chebyshev inequality, we can get

c̃( sup
0≤t≤θ

|x̄(β2l−1 ∧N + t) − x̄(β2l−1 ∧N)| ≥ δ) ≤ ε.

By (3.45) and the above inequality, we can obtain

c̃({β2ϖ ≤ N} ∩ {sup
0≤t≤v

||x̄(β2l−1 + t)| − |x̄(β2l−1)|| < δ})

=c̃(β2ϖ ≤ N) − c̃({β2ϖ ≤ N} ∩ {sup
0≤t≤v

||x̄(β2l−1 + t)| − |x̄(β2l−1)|| ≥ δ})

≥c̃(β2ϖ ≤ N) − c̃( sup
0≤t≤θ

||x̄(β2l−1 ∧N + t)| − |x̄(β2l−1 ∧N)|| ≥ δ) ≥ ε.
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Hence,

c̃({β2ϖ ≤ N}) ∩ {β2l − β2l−1 ≥ θ}) ≥ ε. (3.47)

At lastly, by (3.41), (3.46) and (3.47), we have

C4 = Ẽ

∫
∞

0
|x(t)|2dt

≥

ϖ∑
i=1

Ẽ(I{β2ϖ≤N}

∫ β2l

β2l−1

|x̄(t)|2dt) ≥ ε
ϖ∑

i=1

Ẽ(I{β2ϖ≤N}(β2l − β2l−1))

≥ εθ
ϖ∑

i=1

c̃({β2ϖ ≤ N} ∩ {β2l − β2l−1 ≥ θ}) ≥ ε2θϖ.

However, this contradicts with the inequality in (3.44). Therefore the required assertion (3.34) holds. This
completes the proof.

4. Example

In order to illustrate the obtained theory, in this section, given a stochastic differential equation driven
by G-Lévy process, we design delay feedback controls u(t, x(t − τ)) in the drift part such that the control
systems have asymptotical stability in mean square and quasi-surely asymptotical stability.

Example 4.1. Consider the following stochastic differential equation driven by the G-Lévy process:

dx(t) = f (t, x(t))dt + h(t, x(t))d⟨B⟩(t) + σ(t, x(t))dB(t) +
∫
Rd

0

K(t, x(t), z)L(dt, dz), t ≥ 0. (4.1)

Assume
f (t, x) = x − x3, h(t, x) = x, σ(t, x) =

√

2x,K(t, x, z) = 2xR(z).

Moreover, we assume that the function R(z) satisfies

1
2
− sup

Q∈Q
tr[IQQT] < sup

v∈V

∫
Rd

0

(
|R(z)|2 + R(z)

)
v(dz)

< sup
v∈V

∫
Rd

0

(
(1 + 2R(z))6

− 1
)
v(dz) < 1 − sup

Q∈Q
tr[IQQT],

where I is a d × d dimensional matrix whose elements is 1.

Now, we define the delay feedback control u(t, x(t − τ)) = −10x(t − τ). Consider the corresponding control
systems

dx(t) = [ f (t, x(t)) + u(t, x(t − τ)]dt + h(t, x(t))d⟨B⟩(t) + σ(t, x(t))dB(t)

+

∫
Rd

0

K(t, x(t), z)L(dt, dz), t ≥ 0.
(4.2)

Thus the Assumption 3.1 holds obviously. Next, our aim is to verify Assumptions 3.2—3.3 and get the
bound of the time delay τ.



G. Shen et al. / Filomat 37:5 (2023), 1653–1671 1669

To verify the Assumption 3.2, define W̄(t, x(t)) = x6, then we obtain

LW̄(t, x) + W̄x(t, x)u(t, y)
= W̄t(t, x) + ⟨W̄x(t, x), f (t, x)⟩ + W̄x(t, x)u(t, y) + sup

Q∈Q
tr[(⟨W̄x(t, x), h(t, x)⟩

+
1
2
⟨W̄xx(t, x)σ(t, x), σ(t, x)⟩)QQT] + sup

v∈V

∫
Rd

0

(W̄(t, x + K(t, x, z)) − W̄(t, x))v(dz)

= 6x6
− 6x8 + [36 sup

Q∈Q
tr[IQQT] + sup

v∈V

∫
Rd

0

[(1 + 2R(z))6
− 1]v(dz)]x6

− 60x5y

≤ 42x6
− 6x8

− 60x5y.

Noting that 60x5y ≤ 30x6 + 30y6, which means

LW̄(t, x) + W̄x(t, x)u(t, y) ≤ 105x6
− 6x8

− 33x6 + 30y6.

Let W1(t, x) = 3x6, q1 = supx∈R(105x6
− 6x8) < ∞, q2 = 11 and q3 = 10, the Assumption 3.2 is fulfilled.

To verify the Assumption 3.3, define W(t, x(t)) = x2 + 0.5x4, and let α1 = α2 = α3 = 0.1, α4 = α5 = 0.6, then

LW(t, x(t)) +Wx(t, x(t))u(t, x(t)) + α1|Wx(t, x(t))|2 + α2| f (t, x(t))|2

+ α3|h(t, x(t))|2 + α4|σ(t, x(t))|2 + α5 sup
v∈V

∫
Rd

0

K2(v, x(v), z)v(dz)

≤ 2x2
− 2x6

− 20x2
− 20x4 + sup

Q∈Q
tr[(2x2 + 2x4 + 2x2 + 6x4)QQT]

+ 4 sup
v∈V

∫
Rd

0

(|R(z)|2 + R(z))v(dz)x2 + 0.5 sup
v∈V

∫
Rd

0

(
(1 + 2R(z))4

− 1
)
v(dz)x4

+ α1(4x2 + 8x4 + 4x6) + α2(x2
− 2x4 + x6) + α3x2 + 2α4x2

+ 4α5x2 sup
v∈V

∫
Rd

0

|R(z)|2v(dz)

≤

(
2 − 20 + 4 sup

Q∈Q
tr[IQQT] + 4 sup

v∈V

∫
Rd

0

(|R(z)|2 + R(z))v(dz) + 4α1 + α2

+ α3 + 2α4 + 4α5 sup
v∈V

∫
Rd

0

|R(z)|2v(dz)
)
x2 +

(
− 20 + 16 sup

Q∈Q
tr[IQQT]

+ 0.5 sup
v∈V

∫
Rd

0

[(1 + 2R(z))4
− 1]v(dz) + 8α1 − 2α2

)
x4 +

(
− 2 + 4α1 + α2

)
x6

≤ −9.8x2
− 3.4x4

− 1.5x6.

Thus, the Assumption 3.3 are satisfied. Moreover, we could let α0 = 9.8 and C′2 ∨ C2 ∨ Cτ < 50. From the
(3.13), we have τ < 0.0012. Hence the solution of G-SDDEs (4.2) is asymptotically stable in mean square
and quasi-surely asymptotically stable.
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(2007) 541-567.
[31] S. Peng. Multi-dimensional G-Brownian motion and related stochastic calculus under G- expectation. Stochastic Processes and their

Applications. 118 (2008) 2223-2253.
[32] K. Pyragas. Control of chaos via extended delay feedback. Physics Letters A. 206 (1995) 323-330.
[33] H. Qiao, J. Wu. Path independence of the additive functions for stochastic differential equations driven by G-Lévy processes.
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