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Merve İlkhan Karaa, Hadi Roopaeib
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Abstract. This paper deals with the characterization of compact operators on Cesàro sequence spaces as
an application of Hausdorffmeasure of noncompactness. Further, the norms of Cesàro operators on certain
spaces are investigated.

1. Introduction and background

In the realm of functional analysis, the method constructing a new sequence space by the aid of matrix
domain of a particular summability matrix has recently been studied by several authors. For the relevant
literature, see [1–6].

Characterization of compact operators on matrix domains is one of the fundamental application of
Hausdorff measure of non-compactness in the theory of sequence spaces. Recently, many fascinating
results have been presented in this theory (see [7–12]).

The results related to norms of matrix operators on sequence spaces go back to the theorems of Hardy,
Copson and Hilbert. The problem of finding the norm and the upper bounds of certain matrix operators
on different sequence spaces are studied by [13–17].

The main purpose of this study is to characterize the compact operators on the matrix domain of the
Cesàro matrix of order n by using the concept of the Hausdorffmeasure of non-compactness. Moreover, it
is aimed to compute the norms of Cesàro operators on Hilbert sequence space, difference sequence space
and Hausdorffmatrix domains.

2. Known Results

Let ω be the space of all real or complex valued sequences. If X ⊂ ω, then X is called a sequence
space. The most used classical sequence spaces are the space of all p-absolutely summable sequences ℓp
(1 ≤ p < ∞), all convergent sequences c, all convergent to zero sequences c0 and all bounded sequences ℓ∞.
These spaces are Banach spaces endowed with the norms

∥x∥ℓp =

∑
k

|xk|
p


1/p

, ∥x∥ℓ∞ = ∥x∥c = ∥x∥c0 = sup
k
|xk|.
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Also, ψ denotes the set of all finite sequences.
Through this study we suppose that 1 < p < ∞.
A Banach space X is called a BK-space if the mapping Ĩ j : X→ R defined by Ĩ j(x) = x j is continuous for

each j ∈N. Let e0 = (1, 0, 0, ...), e1 = (0, 1, 0, ...), e2 = (0, 0, 1, ...), · · · , ek = (0, 0, ..., 0, 1, 0, ...), · · · . If x = (xk) ∈ X is
written uniquely as x =

∑
k xkek, then it is said that the BK-space X satisfies the AK-property. ℓp (1 ≤ p < ∞)

and c0 satisfies AK-property but c and ℓ∞ do not satisfy this property.
The β-dual of a sequence space X is defined by

Xβ =

a = (ak) ∈ ω :
∞∑

k=1

akuk converges for all u = (uk) ∈ X

 .
Let X and Y be sequence spaces and T = (t j,k) be an infinite matrix of real or complex numbers t j,k. Then

T gives a matrix transformation from X into Y and we write T : X → Y if for every sequence x = (xk) ∈ X,
the sequence Tx = (T j(x)), the T−transform of x, is in Y, where

T j(x) =
∑

k

t j,kxk ( j ∈N).

Throughout the study, T j will be the sequence of jth row of an infinite matrix T = (t j,k). By (X,Y), we denote
the class of all infinite matrices that map X into Y. Hence, T ∈ (X,Y) if and only if T j ∈ Xβ for all j ∈N.

The matrix domain of an infinite matrix T in the sequence space ℓp is defined as

Tp = {x ∈ ω : Tx ∈ ℓp}

which is also a sequence space. If T is a triangle, then this new sequence space is also a normed space by
the induced norm ∥x∥Tp = ∥Tx∥ℓp , ([18], Theorem 4.3.12]). It is easy to see that for any bounded matrix T the
inclusion ℓp ⊂ Tp holds.

Consider the Hausdorffmatrix Hµ = (h j,k)∞j,k=0, with entries of the form:

h j,k =

{ ( j
k

) ∫ 1

0 θ
k(1 − θ) j−kdµ(θ) if 0 ≤ k ≤ j

0 if k > j.

where µ is a probability measure on [0, 1]. The Hausdorff matrix contains the famous classes of matrices.
For real α > 0, these classes are as follow:

(i) The choice dµ(θ) = α(1 − θ)α−1dθ gives the Cesàro matrix of order α;
(ii) The choice dµ(θ) = αθα−1dθ gives the Gamma matrix of order α;

(iii) The choice dµ(θ) = | logθ|α−1

Γ(α) dθ gives the Hölder matrix of order α;
(iv) The choice dµ(θ) = point evaluation at θ = α gives the Euler matrix of order α.

Hardy’s formula ([19], Theorem 216) states that the Hausdorffmatrix is a bounded operator on ℓp if and

only if
∫ 1

0 θ
−1
p dµ(θ) < ∞ and

∥Hµ
∥ℓp =

∫ 1

0
θ
−1
p dµ(θ). (1)

By letting dµ(θ) = n(1 − θ)n−1dθ in the definition of the Hausdorff matrix, the Cesàro matrix Cn = (cn
j,k)

of order n is defined as follows

cn
j,k =


(n+ j−k−1

j−k )
(n+ j

j ) 0 ≤ k ≤ j

0 otherwise,
(2)
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which has the norm

∥Cn
∥ℓp =

Γ(n + 1)Γ(1/p∗)
Γ(n + 1/p∗)

, (3)

where p∗ is the conjugate of p i.e. 1
p +

1
p∗ = 1. This follows from (1) and (i) using a known formula for Euler’s

Beta function. Note that, C1 is the well-known Cesàro matrix C with ∥C∥ℓp = p∗.
The following matrix domains are the sequence spaces associated with the Cesàro matrix of order n.

Cn
p =

x = (x j) ∈ ω :
∞∑
j=0

∣∣∣∣∣∣∣∣ 1(n+ j
j

) j∑
k=0

(
n + j − k − 1

j − k

)
xk

∣∣∣∣∣∣∣∣
p

< ∞


and

Cn
∞ =

x = (x j) ∈ ω : sup
j

∣∣∣∣∣∣∣∣ 1(n+ j
j

) j∑
k=0

(
n + j − k − 1

j − k

)
xk

∣∣∣∣∣∣∣∣ < ∞
 .

The sequence y = (y j) will denote the Cn-transform of a sequence x = (x j); that is,

y j = (Cnx) j =
1(n+ j
j

) j∑
k=0

(
n + j − k − 1

j − k

)
xk (4)

for all j ∈N.
The Hausdorffmeasure of noncompactness of a bounded set A is denoted by χ(A) and defined as

χ(A) = inf{r > 0 : A ⊂ ∪ j
k=1B(xk, rk), xk ∈ X, rk < r, j ∈N},

where B(xk, rk) is the open ball centered at xk and radius rk for each k = 1, 2, ..., j. For basic properties of
Hausdorffmeasure of noncompactness, we refer to [20] and references therein.

Let L : X → Y be a linear operator. We call L as compact if the domain of L is whole of X and for any
bounded sequence x = (x j) in X, the sequence (L(x j)) has a convergent subsequence in Y. If L is a bounded
linear operator, then the value

∥L∥χ = χ(L({x ∈ X : ∥x∥ = 1}))

is called the Hausdorff measure of noncompactness of the operator L. There is a close relation between
the concepts of the Hausdorff measure of noncompactness and compact operators. Also, we have by [21,
Corollary 1.15] that

L is compact if and only if ∥L∥χ = 0. (5)

Let (X, ∥.∥) be a BK-space and u = (uk) ∈ ω. The notation ∥.∥∗X means that

∥u∥∗X = sup
x∈X,∥x∥=1

∣∣∣∣∣∣∣∑k

ukxk

∣∣∣∣∣∣∣ < ∞.
Further, this implies that u ∈ Xβ.

Lemma 2.1. [20, Theorem 1.29]
(a) ℓβp = ℓp∗ and ∥u∥∗ℓp

= ∥u∥ℓp∗ for 1 < p < ∞.

(b) ℓβ∞ = cβ = cβ0 = ℓ1 and ∥u∥∗ℓ∞ = ∥u∥
∗
c = ∥u∥∗c0

= ∥u∥ℓ1 .

(c) ℓβ1 = ℓ∞ and ∥u∥∗ℓ1
= ∥u∥ℓ∞ .
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By B(X,Y), we mean the family of all bounded linear operators L : X→ Y.

Lemma 2.2. [20, Theorem 1.23 (a)] Let X and Y be BK-spaces. Then every T ∈ (X,Y), defines an operator
LT ∈ B(X,Y) such that LT(x) = Tx for all x ∈ X.

The following result is used to determine the Hausdorffmeasure of noncompactness in the spaces ℓp.

Theorem 2.3. [22, Theorem 2.8] Let A be a bounded subset in ℓp and Pl : ℓp → ℓp be the operator defined by
Pl(x) = (x1, x2, ..., xl, 0, 0, ...) for all x = (xk) ∈ ℓp and each l ∈N. Then, we have

χ(A) = lim
l→∞

(
sup
x∈A
∥(I − Pl)(x)∥ℓp

)
,

where I is the identity operator on ℓp.

Lemma 2.4. [7, Theorem 3.7] If X ⊃ ψ is a BK-space, then the following statements hold.
(a) T ∈ (X, ℓ∞), then 0 ≤ ∥LT∥χ ≤ lim sup j ∥T j∥

∗

X.
(b) T ∈ (X, c0), then ∥LT∥χ = lim sup j ∥T j∥

∗

X.
(c) If X has AK or X = ℓ∞ and T ∈ (X, c), then

1
2

lim sup
n
∥T j − t∥∗X ≤ ∥LT∥χ ≤ lim sup

j
∥T j − t∥∗X,

where t = (tk) and tk = lim j t j,k for each k ∈N.

By N , we denote the collection of all finite subsets of N and by Nl, we denote the sub-collection of N
with elements that are greater than l.

Lemma 2.5. [7, Theorem 3.11] Let X ⊃ ψ be a BK-space. If T ∈ (X, ℓ1), then

lim
l

sup
N∈Nl

∥∥∥∥∥∥∥∥
∑
j∈N

T j

∥∥∥∥∥∥∥∥
∗

X

 ≤ ∥LT∥χ ≤ 4 lim
l

sup
N∈Nl

∥∥∥∥∥∥∥∥
∑
j∈N

T j

∥∥∥∥∥∥∥∥
∗

X


and LT is compact if and only if liml

(
supN∈Nl

∥
∑

j∈N T j∥
∗

X

)
= 0.

3. Compact Operators on Cesàro Sequence Spaces

The following auxiliary results are required in order to prove our main results.

Lemma 3.1. If u = (uk) ∈ {Cn
p}
β with 1 ≤ p ≤ ∞, then we have∑

k

ukxk =
∑

k

ũkyk (6)

for all x = (xk) ∈ Cn
p and also ũ = (ũk) ∈ ℓβp , where

ũk =

∞∑
i=k

(−1)(i−k)

(
n

i − k

)(
n + k

k

)
ui (k ∈N). (7)

In the rest of the study, the infinite matrix T̃ = (t̃ j,k) with entries

t̃ j,k =

∞∑
i=k

(−1)(i−k)
(

n
i − k

)(
n + k

k

)
t j,i

is used under the assumption that the series is convergent, where T = (t j,k) is a given matrix.
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Lemma 3.2. Let Y be an arbitrary subset of ω. If T ∈ (Cn
p ,Y), then T̃ ∈ (ℓp,Y) and Tx = T̃y for all x ∈ Cn

p , where
1 ≤ p ≤ ∞.

Proof. It follows from Lemma 3.1.

Theorem 3.3. Consider the sequence ũ = (ũk) given in (7).

(a) ∥u∥∗Cn
p
=

(∑
k |ũk|

p∗
)1/p∗

< ∞ for all u = (uk) ∈ {Cn
p}
β and 1 < p < ∞.

(b) ∥u∥∗Cn
∞

=
∑

k |ũk| < ∞ for all u = (uk) ∈ {Cn
∞}

β.
(c) ∥u∥∗Cn

1
= supk |ũk| < ∞ for all u = (uk) ∈ {Cn

1}
β.

Proof.
(a) Let u = (uk) ∈ {Cn

p}
β. Then, from Lemma 3.1, we have ũ = (ũk) ∈ ℓp∗ and the equality (6) holds. Since

∥x∥Cn
p = ∥y∥ℓp holds, it follows that

∥u∥∗Cn
p
= sup

x∈Cn
p ,∥x∥Cn

p
=1

∣∣∣∣∣∣∣∑k

ukxk

∣∣∣∣∣∣∣ = sup
y∈ℓp,∥y∥ℓp=1

∣∣∣∣∣∣∣∑k

ũkyk

∣∣∣∣∣∣∣ = ∥ũ∥∗ℓp
.

Hence, from Lemma 2.1 (a), we deduce that ∥u∥∗Cn
p
= ∥ũ∥∗ℓp

= ∥ũ∥ℓp∗ =
(∑

k |ũk|
p∗
)1/p∗

< ∞.

(b) If u = (uk) ∈ {Cn
∞}

β, we deduce from Lemma 2.1 (b) that ∥u∥∗Cn
∞

= ∥ũ∥∗ℓ∞ = ∥ũ∥ℓ1 =
∑

k |ũk| < ∞.
(c)If u = (uk) ∈ {Cn

1}
β, we deduce from Lemma 2.1 (c) that ∥u∥∗Cn

1
= ∥ũ∥∗ℓ1

= ∥ũ∥ℓ∞ = supk |ũk| < ∞.

Now, we are ready to characterize compact operators.

Theorem 3.4. Let 1 < p < ∞.

(a) If T ∈ (Cn
p , ℓ∞), then we have

0 ≤ ∥LT∥χ ≤ lim sup
j

∑
k

∣∣∣∣∣∣∣
∞∑
i=k

(−1)(i−k)

(
n

i − k

)(
n + k

k

)
t j,i

∣∣∣∣∣∣∣
p∗

1/p∗

.

(b) If T ∈ (Cn
p , c0), then we have

∥LT∥χ = lim sup
j

∑
k

∣∣∣∣∣∣∣
∞∑
i=k

(−1)(i−k)

(
n

i − k

)(
n + k

k

)
t j,i

∣∣∣∣∣∣∣
p∗

1/p∗

.

(c) If T ∈ (Cn
p , ℓ1), then we have

lim
l
∥T∥(l)(Cn

p ,ℓ1) ≤ ∥LT∥χ ≤ 4 lim
l
∥T∥(l)(Cn

p ,ℓ1),

where ∥T∥(l)(Cn
p ,ℓ1) = supN∈Nl

(∑
k

∣∣∣∑ j∈N
∑
∞

i=k(−1)(i−k)( n
i−k

)(n+k
k
)
t j,i

∣∣∣p∗)1/p∗

for each l ∈N.

Proof.

(a) If T is a mapping from Cn
p to ℓ∞ and x = (xk) ∈ Cn

p , then the series
∑

k t j,kxk converges. This means

T j ∈ {Cn
p}
β for each j ∈ N. By Theorem 3.3 (a), we write ∥T j∥

∗

Cn
p
= ∥T̃ j∥

∗

ℓp
= ∥T̃ j∥ℓp∗ =

(∑
k |t̃ j,k|

p∗
)1/p∗

for

each j ∈N, where t̃ j,k =
∑
∞

i=k(−1)(i−k)( n
i−k

)(n+k
k
)
t j,i. Thus, Lemma 2.4 (a) yields that

0 ≤ ∥LT∥χ ≤ lim sup
j

∑
k

|t̃ j,k|
p∗


1/p∗

.
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(b) Let T be a mapping from Cn
p to c0. Since we have ∥T j∥

∗

Cn
p
=

(∑
k |t̃ j,k|

p∗
)1/p∗

for each j ∈N, Lemma 2.4 (b)
yields that

∥LT∥χ = lim sup
j

∑
k

|t̃ j,k|
p∗


1/p∗

.

(c) Let T be a mapping from Cn
p to ℓ1. By Lemma 3.2, we have T̃ ∈ (ℓp, ℓ1). It follows from Lemma 2.5 that

lim
l

sup
N∈Nl

∥∥∥∥∥∥∥∥
∑
j∈N

T̃ j

∥∥∥∥∥∥∥∥
∗

ℓp

 ≤ ∥LT∥χ ≤ 4 lim
l

sup
N∈Nl

∥∥∥∥∥∥∥∥
∑
j∈N

T̃ j

∥∥∥∥∥∥∥∥
∗

ℓp

 .
Finally, from Lemma 2.1, we conclude that ∥

∑
j∈N T̃ j∥

∗

ℓp
= ∥

∑
j∈N T̃ j∥ℓp∗ =

(∑
k |

∑
j∈N t̃ j,k|

p∗
)1/p∗

.

Theorem 3.5. If T ∈ (Cn
p , c), then we have

1
2

lim sup
j

∑
k

|t̃ j,k − t̃k|
p∗


1/p∗

≤ ∥LT∥χ ≤ lim sup
j

∑
k

|t̃ j,k − t̃k|
p∗


1/p∗

,

where t̃ = (t̃k) and t̃k = lim j t̃ j,k for each k ∈N.

Proof. If T ∈ (Cn
p , c), Lemma 3.2 implies that T̃ ∈ (ℓp, c). Hence, it follows from Lemma 2.4 (c) that

1
2

lim sup
j
∥T̃ j − t̃∥∗ℓp

≤ ∥LT∥χ ≤ lim sup
j
∥T̃ j − t̃∥∗ℓp

,

where t̃ = (t̃k) and t̃k = lim j t̃ j,k for each k ∈N. From Lemma 2.1 (a), we conclude that ∥T̃ j− t̃∥∗ℓp
= ∥T̃ j− t̃∥ℓp∗ =(∑

k |t̃ j,k − t̃k|
p∗
)1/p∗

for each j ∈N.

From (5), we have the following result.

Corollary 3.6. Let 1 < p < ∞.

(a) LT is compact for T ∈ (Cn
p , ℓ∞) if

lim
j

∑
k

|t̃ j,k|
p∗


1/p∗

= 0.

(b) LT is compact for T ∈ (Cn
p , c) if and only if

lim
j

∑
k

|t̃ j,k − t̃k|
p∗


1/p∗

= 0.

(c) LT is compact for T ∈ (Cn
p , c0) if and only if

lim
j

∑
k

|t̃ j,k|
p∗


1/p∗

= 0.
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(d) LT is compact for T ∈ (Cn
p , ℓ1) if and only if

lim
l
∥T∥(l)(Cn

p ,ℓ1) = 0,

where ∥T∥(l)(Cn
p ,ℓ1) = supN∈Nl

(∑
k |

∑
j∈N t̃ j,k|

p∗
)1/p∗

.

Theorem 3.7.

1. If T ∈ (Cn
∞, ℓ∞), then we have

0 ≤ ∥LT∥χ ≤ lim sup
j

∑
k

∣∣∣∣∣∣∣
∞∑
i=k

(−1)(i−k)

(
n

i − k

)(
n + k

k

)
t j,i

∣∣∣∣∣∣∣ .
2. If T ∈ (Cn

∞, c0), then we have

∥LT∥χ = lim sup
j

∑
k

∣∣∣∣∣∣∣
∞∑
i=k

(−1)(i−k)

(
n

i − k

)(
n + k

k

)
t j,i

∣∣∣∣∣∣∣ .
3. If T ∈ (Cn

∞, ℓ1), then we have

lim
l
∥T∥(l)(Cn

∞,ℓ1) ≤ ∥LT∥χ ≤ 4 lim
l
∥T∥(l)(Cn

∞,ℓ1),

where ∥T∥(l)(Cn
∞,ℓ1) = supN∈Nl

(∑
k

∣∣∣∑ j∈N
∑
∞

i=k(−1)(i−k)( n
i−k

)(n+k
k
)
t j,i

∣∣∣) (l ∈N).

Proof. It follows in the same manner if one consider Theorem 3.3 (b) instead of (a) in the proof of Theorem
3.4.

Theorem 3.8. If T ∈ (Cn
∞, c), then we have

1
2

lim sup
j

∑
k

|t̃ j,k − t̃k| ≤ ∥LT∥χ ≤ lim sup
j

∑
k

|t̃ j,k − t̃k|,

where t̃ = (t̃k) and t̃k = lim j t̃ j,k for each k ∈N.

Proof. By Lemma 2.1 (b), we have ∥T̃ j − t̃∥∗ℓ∞ = ∥T̃ j − t̃∥ℓ1 =
∑

k |t̃ j,k − t̃k| for each j ∈ N. Hence, the proof
follows in the same manner with the proof of Theorem 3.5.

Similarly, the following result is given.

Corollary 3.9.

1. LT is compact for T ∈ (Cn
∞, ℓ∞) if

lim
j

∑
k

|t̃ j,k| = 0.

2. LT is compact for T ∈ (Cn
∞, c) if and only if

lim
j

∑
k

|t̃ j,k − t̃k| = 0.

3. LT is compact for T ∈ (Cn
∞, c0) if and only if

lim
j

∑
k

|t̃ j,k| = 0.
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4. LT is compact for T ∈ (Cn
∞, ℓ1) if and only if

lim
l
∥T∥(l)(Cn

∞,ℓ1) = 0,

where ∥T∥(l)(Cn
∞,ℓ1) = supN∈Nl

(∑
k |

∑
j∈N t̃ j,k|

)
.

Theorem 3.10.
1. If T ∈ (Cn

1 , ℓ∞), then we have

0 ≤ ∥LT∥χ ≤ lim sup
j

sup
k

∣∣∣∣∣∣∣
∞∑
i=k

(−1)(i−k)

(
n

i − k

)(
n + k

k

)
t j,i

∣∣∣∣∣∣∣
 .

2. If T ∈ (Cn
1 , c0), then we have

∥LT∥χ = lim sup
j

sup
k

∣∣∣∣∣∣∣
∞∑
i=k

(−1)(i−k)

(
n

i − k

)(
n + k

k

)
t j,i

∣∣∣∣∣∣∣
 .

3. If T ∈ (Cn
1 , ℓ1), then we have

∥LT∥χ = lim
l

sup
k

∞∑
j=l

∣∣∣∣∣∣∣
∞∑
i=k

(−1)(i−k)

(
n

i − k

)(
n + k

k

)
t j,i

∣∣∣∣∣∣∣
 .

Proof. It follows in the same manner if one consider Theorem 3.3 (c) instead of (a) in the proof of Theorem
3.4.

Theorem 3.11. If T ∈ (Cn
1 , c), then we have

1
2

lim sup
j

(
sup

k
|t̃ j,k − t̃k|

)
≤ ∥LT∥χ ≤ lim sup

j

(
sup

k
|t̃ j,k − t̃k|

)
.

Proof. By Lemma 2.1 (c), we have ∥T̃ j − t̃∥∗ℓ1
= ∥T̃ j − t̃∥ℓ∞ = supk |t̃ j,k − t̃k| for each j ∈ N. Hence, the proof

follows in the same manner with the proof of Theorem 3.5.

Similarly, the following result is given.

Corollary 3.12.
1. LT is compact for T ∈ (Cn

1 , ℓ∞) if

lim
j

(
sup

k
|t̃ j,k|

)
= 0.

2. LT is compact for T ∈ (Cn
1 , c) if and only if

lim
j

(
sup

k
|t̃ j,k − t̃k|

)
= 0.

3. LT is compact for T ∈ (Cn
1 , c0) if and only if

lim
j

(
sup

k
|t̃ j,k|

)
= 0.

4. LT is compact for T ∈ (Cn
1 , ℓ1) if and only if

lim
l

sup
k

∞∑
j=l

|t̃ j,k|

 = 0.
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4. Norm of Cesàro operator on some sequence spaces

In this part of study, we investigate the problem of finding the norm of Cesàro operator of order n on
some sequence spaces. The following lemma has the key role in finding the norm of operators between
matrix domains.

Lemma 4.1. Let U is a bounded operator on ℓp and Ap and Bp are two matrix domains such that Ap ≃ ℓp.
(a) If BT = UA, then T is a bounded operator from the matrix domain Ap into Bp and

∥T∥Ap,Bp = ∥U∥ℓp .

In particular, if T is a bounded operator on ℓp and AT = TA, then T is a bounded operator on the matrix domain Ap
and

∥T∥Ap = ∥T∥ℓp .

(b) If T has a factorization of the form T = UA, then T is a bounded operator from the matrix domain Ap into ℓp
and

∥T∥Ap,ℓp = ∥U∥ℓp .

Proof. (a) Since Ap and ℓp are isomorphic, hence

∥T∥Ap,Bp = sup
x∈Ap

∥Tx∥Bp

∥x∥Ap

= sup
x∈Ap

∥BTx∥ℓp

∥Ax∥ℓp

= sup
x∈Ap

∥UAx∥ℓp

∥Ax∥ℓp

= sup
y∈ℓp

∥Uy∥ℓp

∥y∥ℓp

= ∥U∥ℓp ,

(b) It is sufficient to let B = I in the part (a).

4.1. Norm of Cesàro operator on the Hilbert sequence spaces

Let us recall the Hilbert matrix H = (h j,k), which is defined by

h j,k =
1

j + k + 1
=


1 1/2 1/3 · · ·

1/2 1/3 1/4 · · ·

1/3 1/4 1/5 · · ·

...
...

...
. . .

 , j, k = 0, 1, . . . ,

and is a bounded operator on ℓp with ℓp-norm ∥H∥ℓp = Γ(1/p)Γ(1/p∗) = π csc(π/p). by [23], Theorem 323.
For a positive integer n, we define the Hilbert matrix of order n, Hn = (hn

j,k), by

hn
j,k =

1
j + k + n + 1

( j, k = 0, 1, · · · ).

Note that for n = 0, H0 = H is the Hilbert matrix. For more examples:

H1 =


1/2 1/3 1/4 · · ·

1/3 1/4 1/5 · · ·

1/4 1/5 1/6 · · ·

...
...

...
. . .

 , H2 =


1/3 1/4 1/5 · · ·

1/4 1/5 1/6 · · ·

1/5 1/6 1/7 · · ·

...
...

...
. . .

 .
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For non-negative integers n, j and k, let us define the matrix Bn = (bn
j,k) by

bn
j,k =

(k + 1) · · · (k + n)
( j + k + 1) · · · ( j + k + n + 1)

=

(
n + k

k

)
β( j + k + 1,n + 1) ( j, k = 0, 1, . . .),

where the β function is

β(m,n) =
∫ 1

0
zm−1(1 − z)n−1dz (m,n = 1, 2, . . .).

Consider that for n = 0, B0 = H, where H is the Hilbert matrix.
For computing the norm of Cesàro operator on the Hilbert matrix domains we need the following

lemma.

Lemma 4.2. The Hilbert matrix H and the Hilbert matrix of order n, Hn, have the following factorizations based on
the Cesàro matrix of order n:

(a) H = BnCn, where Bn defined in relation (8) and is a bounded operator on ℓp and

∥Bn
∥ℓp =

Γ(n + 1/p∗)Γ(1/p)
Γ(n + 1)

.

(b) Hn = CnBn,
(c) CnH = HnCn,

Proof. (a) This part is Corollary 2.3 of [24]. (b) This is Lemma 3.18 of [25]. (c) This part is the result of the
two previous parts.

The sequence space associated with the Hilbert matrix of order n, Hn
p , is defined by

Hn
p =

 x = (xk) ∈ ω :
∞∑
j=0

∣∣∣∣∣∣∣
∞∑

k=0

xk

j + k + n + 1

∣∣∣∣∣∣∣
p

< ∞

 ,
which has the norm

∥x∥Hn
p =

 ∞∑
j=0

∣∣∣∣∣∣∣
∞∑

k=0

xk

j + k + n + 1

∣∣∣∣∣∣∣
p

1
p

.

In Particular, for n = 0, we have

Hp =

 x = (xk) ∈ ω :
∞∑
j=0

∣∣∣∣∣∣∣
∞∑

k=0

xk

j + k + 1

∣∣∣∣∣∣∣
p

< ∞

 ,
with the norm ∥x∥Hp =

(∑
∞

j=0

∣∣∣∣∑∞k=0
xk

j+k+1

∣∣∣∣p) 1
p

.

Theorem 4.3. The Cesàro operator of order n, Cn, is a bounded operator from the Hilbert space Hp into the Hilbert
space Hn

p and

∥Cn
∥Hp,Hn

p =
Γ(n + 1)Γ(1/p∗)
Γ(n + 1/p∗)

.

In particular, the Cesàro operator C, is a bounded operator from the Hilbert space Hp into the Hilbert space H1
p and

∥C∥Hp,H1
p
= p∗.
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Proof. Since Hp and ℓp are isomorphic spaces, hence according to Lemma 4.2 we have

∥Cn
∥Hp,Hn

p = ∥C
n
∥ℓp =

Γ(n + 1)Γ(1/p∗)
Γ(n + 1/p∗)

.

4.2. Norm of Cesàro operator on the difference sequence space bvp

The idea of difference sequence spaces was introduced by Kizmaz [26]. The backward difference matrix
∆ = (δ j,k) and its inverse ∆−1 = (δ−1

j,k ) are

δ j,k =


1 k = j
−1 k = j − 1
0 otherwise,

and δ−1
j,k =

{
1 0 ≤ k ≤ j
0 otherwise,

and the matrix representation as follows

∆ =


1 0 0 · · ·

−1 1 0 · · ·

0 −1 1 · · ·

...
...

...
. . .

 , ∆−1 =


1 0 0 · · ·

1 1 0 · · ·

1 1 1 · · ·

...
...

...
. . .

 .
The sequence space associated with the matrix ∆ is called bvp, which is defined by

bvp =

 x = (xn) :
∞∑

n=1

|xn − xn−1|
p < ∞

 ,
and has the norm

∥x∥bvp =

 ∞∑
n=1

|xn − xn−1|
p


1
p

.

Note that, we use the notation ∥T∥bvp as the norm of operator T from the sequence space bvp into itself,
i,e: ∥T∥bvp = ∥T∥bvp,bvp .

We say that T = (t j,k) is a lower triangular, if t j,k = 0 for k > j. A non-negative lower triangular matrix is
called a summability matrix if

∑ j
k=0 t j,k = 1 for all j. In sequel, we need the Schur’s theorem which is

Theorem 4.4 ([23], Theorem 275). Let p > 1 and T = (tm,k) be a matrix operator with tm,k ≥ 0 for all m, k. Suppose
that C, R are two strictly positive numbers such that

∞∑
m=0

tm,k ≤ C f or all k,
∞∑

k=0

tm,k ≤ R f or all m,

(bounds for column and row sums respectively). Then

∥T∥ℓp→ℓp ≤ R1/p∗C1/p.

Lemma 4.5. Let T = (t j,k) be a summability matrix and R j =
∑ j

k=0(k + 1)t j,k. If sup j(R j −R j−1) ≤ 1 for all j, then T
is a bounded operator on bvp and

∥T∥bvp = 1.
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Proof. By letting A = B = ∆ in Lemma 4.1, we have ∥T∥bvp = ∥U∥ℓp , where U = ∆T∆−1. If S = T∆−1, by
assuming S = (si, j) and U = (ui, j), we have si, j =

∑i
k= j ti,k and ui, j = (∆S)i, j = si, j − si−1, j. Thus

k∑
i= j

ui, j =

k∑
i= j

(si, j − si−1, j) = sk, j =

k∑
t= j

tk,t = tk, j + · · · + tk,k ≤ 1 (k = 0, 1, · · · ),

hence
∑
∞

i=0 ui, j ≤ 1. Also

j∑
k=0

s j,k =

j∑
k=0

j∑
l=k

t j,l =

j∑
k=0

(k + 1)t j,k = R j,

and
∞∑

k=0

u j,k =

j∑
k=0

u j,k =

j∑
k=0

(s j,k − s j−1,k) = R j − R j−1.

Now since sup j(R j − R j−1) ≤ 1, we have that ∥T∥bvp ≤ 1. Also letting x = (1, 1, · · · ) result that Tx = x, and
therefore ∥T∥bvp = 1.

Lemma 4.6. For non-negative integers n, j and k we have

(a)
∑ j

k=0

(n+k−1
k

)
=

(n+ j
j

)
,

(b)
∑ j

k=0(k + 1)
(n+k−1

k
)
= ( j + 1)

(n+ j
j

)
−

(n+ j
j−1

)
.

Proof. Proof of part (a) is obvious. (b) Let
(n+k−1

k
)
= an

k and A = an
0 + an

1 + · · ·+ an
j . By the part (i) A =

(n+ j
j

)
. Now

j∑
k=0

(k + 1)
(
n + k − 1

k

)
=

j∑
k=0

(k + 1)an
k

= A + {A − an
0} + {A − (an

0 + an
1)} + · · · + {A − (an

0 + an
1 + · · · + an

j−1)}

= A + {A − an+1
0 } + {A − an+1

1 } + · · · + {A − an+1
j−1 }

= ( j + 1)A − {an+1
0 + an+1

1 + · · · + an+1
j−1 }

= ( j + 1)A − an+2
j−1 = ( j + 1)

(
n + j

j

)
−

(
n + j
j − 1

)
.

Theorem 4.7. The Cesàro operator of order n, Cn, is a bounded operator on the sequence space bvp and

∥Cn
∥bvp = 1.

In particular, the Cesàro operator is a bounded operator on the sequence space bvp and ∥C∥bvp = 1.

Proof. For the Cesàro matrix of order n let s = j − k, we have the following identity

j∑
k=0

(k + 1)
(
n + j − k − 1

j − k

)
=

j∑
s=0

( j − s + 1)
(
n + s − 1

s

)

=

j∑
s=0

[( j + 2) − (s + 1)]
(
n + s − 1

s

)

= ( j + 2)
j∑

s=0

(
n + s − 1

s

)
−

j∑
s=0

(s + 1)
(
n + s − 1

s

)
.
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Now by the notation of Lemma 4.5

R j =

j∑
k=0

(k + 1)cn
j,k =

1(n+ j
j

) j∑
k=0

(k + 1)
(
n + j − k − 1

j − k

)

= 1 +

(n+ j
j−1

)
(n+ j

j

) = 1 +
j

n + 1
,

and sup j(R j − R j−1) = 1
n+1 ≤ 1. Hence according to Lemma 4.5, ∥Cn

∥bvp = 1.

4.3. Norm of Cesàro operator on the Hausdorff matrix domains
Theorem 4.8 ([27], Theorem 9). Let p ≥ 1 and Hµ, Hω and Hν be Hausdorff matrices related by Hµ = HωHν.
Then Hµ is bounded on ℓp if and only if both Hω and Hν are bounded on ℓp. Moreover, we have

∥Hµ
∥ℓp = ∥H

ω
∥ℓp∥H

ν
∥ℓp .

Theorem 4.9. Let Cn be the Cesàro operator of order n. Then
(a) Cn is a bounded operator from ℓp into Hµ

p and

∥Cn
∥ℓp,H

µ
p
=
Γ(n + 1)Γ(1/p∗)
Γ(n + 1/p∗)

∫ 1

0
θ
−1
p dµ(θ),

(b) Cn is a bounded operator from Hµ
p into ℓp and

∥Cn
∥Hµ

p ,ℓp
=
Γ(n + 1/p∗)
Γ(n + 1)Γ(1/p∗)

(∫ 1

0
θ
−1
p dµ(θ)

)−1

,

(c) Cn is a bounded operator on Hµ
p and

∥Cn
∥Hµ

p
= ∥Cn

∥ℓp =
Γ(n + 1)Γ(1/p∗)
Γ(n + 1/p∗)

.

Proof. (a) By letting A = I in Lemma 4.1 part (a), applying Theorem 4.8 and Hardy’s formula we have

∥Cn
∥ℓp,H

µ
p
= ∥HµCn

∥ℓp = ∥H
µ
∥ℓp∥C

n
∥ℓp =

Γ(n + 1)Γ(1/p∗)
Γ(n + 1/p∗)

∫ 1

0
θ
−1
p dµ(θ),

(b) According to Bennett ([28], page 120), Cn has a factorization of the form Cn = HωHµ, where ω is a
quotient measure. So Lemma 4.1 part (b) implies that

∥Cn
∥Hµ

p ,ℓp
= ∥Hω

∥ℓp = ∥C
n
∥ℓp/∥H

µ
∥ℓp .

(c) Since two Hausdorffmatrices commute, hence Lemma 4.1 part (a) gives the result.
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