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Available at: http://www.pmf.ni.ac.rs/filomat

Some applications of p-(DPL) sets
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Abstract. In this paper, we introduce a new class of subsets of class bounded linear operators between
Banach spaces which is called p-(DPL) sets. Then, the relationship between these sets with equicompact sets
is investigated. Moreover, we define p-version of Right sequentially continuous differentiable mappings
and get some characterizations of these mappings. Finally, we prove that a mapping f : X → Y between
real Banach spaces is Fréchet differentiable and f ′ takes bounded sets into p-(DPL) sets if and only if f may
be written in the form f = 1◦S where the intermediate space is normed, S is a Dunford-Pettis p-convergent
operator, and g is a Gáteaux differentiable mapping with some additional properties.

1. Introduction

The study localized properties in the geometry of Banach spaces, e.g., p-(V) sets and p-Right sets show
how these notions can be used to study more global structure properties. For instance, it is well known [14],
that a bounded linear operator T ∈ L(X,Y) between Banach spaces is Dunford-Pettis p-convergent iff it’s
adjoint T∗ ∈ L(Y∗,X∗) takes bounded subsets of Y∗ into p-Right subsets of X∗. Motivated by this work and
the research works of Cilia et al. [9–11], we give similar results for differentiable mappings. In this paper,
we introduce the notions p-(DPL) sets and p-Right sequentially continuous differentiable mappings. Then,
we answer to the following interesting questions:

• For given a differentiable mapping f : U → Y whose it’s derivative f ′ : U → L(X,Y) is uniformly
continuous on the U-bounded subsets of U,under which conditions does f ′ takes U-bounded Dunford-
Pettis weakly p-precompact subsets of U into p-(DPL) subsets of L(X,Y)?

• If f : X → Y is a differentiable mapping between real Banach spaces, then under which conditions
does f ′ takes bounded sets into p-(DPL) sets?

The present paper is organized as follows:
Section 2 of this article provides a wide range of definitions and concepts in Banach spaces. In Section
3, we introduce the concepts of p-(DPL) sets in L(X,Y) and p-Right sequentially continuous differentiable
mappings. In Section 4, we obtain a factorization result for differentiable mappings through Dunford-Pettis
p-convergent operators.
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2. Notions and Definitions

Throughout this paper X,Y and Z will always denote real Banach spaces and U is an open convex subset
of X.We denote the class of all bounded linear operators and weakly compact operators from X into Y by
L(X,Y) and W(X,Y), respectively. The topological dual of X is denoted by X∗ and the adjoint of an operator
T is denoted by T∗. Also, we use ⟨x∗, x⟩ or x∗(x) for the duality between x ∈ X and x∗ ∈ X∗. We denote the
closed unit ball of X and the identity operator on X by BX and idX respectively. p∗ will always denote the
conjugate number of p for 1 ≤ p < ∞; if p = 1, ℓp∗ plays the role of c0. In this paper 1 ≤ p ≤ ∞, except for the
cases where we consider other assumptions.
A sequence (xn)n in X is called weakly p-summable, if (x∗(xn))n ∈ ℓp for each x∗ ∈ X∗.We denote the space of
all weakly p-summable sequences in X by ℓwp (X); see [12]. The weakly∞-summable sequences are precisely
the weakly null sequences. A sequence (xn)n in X is called weakly p-convergent to x ∈ X if (xn − x)n ∈ ℓwp (X).
A bounded subset K of X is said to be relatively weakly p-compact, if every sequence in K has a weakly
p-convergent subsequence with limit in X; see [6]. A sequence (xn)n in X is called weakly p-Cauchy, provided
that (xmk − xnk )k ∈ ℓwp (X) for any increasing sequences (mk)k and (nk)k of positive integers; see [8]. A subset
K of X is said to be weakly p-precompact, provided that every sequence from K has a weakly p-Cauchy
subsequence; see [8]. The weakly∞-precompact sets are precisely the weakly precompact sets or Rosenthal
sets. An operator T ∈ L(X,Y) is said to be weakly p-precompact if T(BX) is weakly p-precompact. An operator
T ∈ L(X,Y) is called p-convergent if lim

n→∞
∥ T(xn) ∥= 0 for all (xn)n ∈ ℓwp (X); see [6]. We denote the space of all

p-convergent operators from X into Y, by Cp(X,Y). If the identity operator on X is p-convergent (in short,
idX ∈ Cp), we say that a Banach space X has the p-Schur property, which is equivalent to every weakly
p-compact subset of X is norm compact. A Banach space X is said to have the Dunford-Pettis property of
p (in short, X ∈ (DPPp)), provided that for any Banach space Y, every weakly compact operator T : X → Y
is p-convergent; see [6]. A bounded subset K of X is a p-(V∗) set if lim

n→∞
sup
x∈K
|x∗n(x)| = 0, for every weakly

p-summable sequence (x∗n)n in X∗; see [17]. A bounded subset K of X is Dunford-Pettis, if every weakly
null sequence (x∗n)n in X∗, converges uniformly to zero on the set K [3]. For convenience, we apply the
notions p-Right null and p-Right Cauchy sequences instead of weakly p-summable and weakly p-Cauchy
sequences which are Dunford-Pettis sets, respectively. An operator T ∈ L(X,Y) is said to be Dunford-Pettis
p-convergent if it takes p-Right null sequences to norm null sequences; see [14]. The space of all Dunford-
Pettis p-convergent operators from X into Y is denoted by DPCp(X,Y).
Given x, y ∈ X, the segment with bounds x and y denoted by I(x, y). A subset B of U is U-bounded if
it is bounded and the distance between B and the boundary of U is strictly positive; see [10]. The space
of all differentiable mappings f : U → Y whose derivative f ′ : U → L(X,Y) is uniformly continuous on
U-bounded subsets of U will be denoted by C1u(U,Y); see [9]. For given a mapping f : U → Y and a class
M of subsets of U such that every singleton belongs toM, the mapping f isM-differentiable at x ∈ U if
there exists an operator f ′(x) ∈ L(X,Y) such that

lim
ε→0

f (x + εy) − f (x) − f ′(x)(εy)
ε

= 0

uniformly to y on each member ofM. In this case, we write f ∈ DM(x,Y); see [16]. We say that a mapping
f is Gâteaux differentiable at x if f ∈ DM(x,Y) whereM is the class of all single-point subsets of X.We also,
say that f is Fréchet differentiable at x if f ∈ DM(x,Y),whereM is the class of all bounded subsets of X.

3. p-Right sequentially continuous differentiable mappings

In this Section, we find some equivalent conditions for all differentiable mappings f : U → Y whose
derivative f ′ : U → L(X,Y) is uniformly continuous on U-bounded subsets of U such that f ′ takes U-
bounded Dunford-Pettis and weakly p-precompact subsets of U into p-(DPL) subsets of L(X,Y).

Definition 3.1. Let K ⊂ L(X,Y) and 1 ≤ p ≤ ∞.We say that K is a p-(DPL) set if for every p-Right null sequence
(xn)n in X, it follows:

lim
n

sup
T∈K
∥T(xn)∥ = 0.
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Note that the definition of a p-(DPL) set in X∗ coincides with the definition of a p-Right set introduced by
Ghenciu [14]. Recall that a subset K of X∗ is said to be a p-Right set provided that each p-Right null sequence
(xn)n in X tends to 0 uniformly on K.
The following Proposition gives some additional properties of p-(DPL) sets.

Proposition 3.2. (i) If K ⊂ DPCp(X,Y) is a relatively compact set, then K is a p-(DPL) set in L(X,Y);
(ii) Absolutely closed convex hull of a p-(DPL) set in L(X,Y) is p-(DPL);
(iii) If K ⊂ L(X,Y) is a p-(DPL) set, then every T ∈ K is a Dunford-Pettis p-convergent operator;

(iv) If K1, · · ·,Kn are p-(DPL) sets in L(X,Y), then
n⋃

i=1

Ki and
n∑

i=1

Ki are p-(DPL) sets in L(X,Y).

Remark 3.3. (i) It is clear that every q-(DPL) subset of L(X,Y) is p-(DPL), whenever 1 ≤ p < q ≤ ∞. Also, it is
interesting to obtain conditions under which every p-(DPL) set in the space L(X,Y) is q-(DPL). In my opinion, this
is very interesting but, it’s a difficult question. In particular if K ⊂ X∗, we answer to this question. Indeed, we obtain
a characterization for those Banach spaces in which p-(DPL) sets are q-(DPL) (see Definition 4.1 and Theorem 4.4 in
[2]).
(ii) Every relatively weakly compact subset of a topological dual Banach space is p-(DPL), while the converse of this
implication is false. For instance, the unit ball of ℓ∞ is a p-(DPL) set, but it is not weakly compact.
(iii) There is a relatively weakly compact set in K(c0, c0) so that is not a p-(DPL) set. In fact, consider the operator
T : ℓ2 → K(c0, c0) given by T(α)(x) = (αnxn), α = (αn) ∈ ℓ2, x = (xn) ∈ c0. It is clear that T(Bℓ2 ) is relatively
weakly compact, while it is not a p-(DPL) set in K(c0, c0), since T(e2

n)(en) = en.

A subsets M of K(X,Y) is said to be equicompact if for every bounded sequence (xn)n in X, there exists a
subsequence (xkn )n such that (Txkn )n is uniformly convergent for T ∈M; see [18].

Theorem 3.4. Let X be a Banach space and 1 ≤ p ≤ ∞. If there exists a non-zero Banach space Y so that every
p-(DPL) subset of K(X,Y) is equicompact, then DPCp(X,Y) = K(X,Y).

Proof. Since the p-Right sets in X∗ coincides with the p-(DPL) subsets of X∗, it is enough to show that every
p-(DPL) subset M of X∗ is relatively compact; see ([2, Theorem 3.15]). For this purpose, consider y0 ∈ SY and
put H =M ⊗ {y0}. Obviously, H is a p-(DPL) subset of K(X,Y).Hence, by the hypothesis, H is equicompact,
which yields the equicompactness of M as a subset of K(X,R). Hence, an application of Lemma 2.1 in [19]
shows that, M is relatively compact.

A subset M of K(X,Y) is said to be collectively compact, if
⋃

T∈M T(BX) is a relatively compact set. Recall
that M ⊂ K(X,Y) is equicompact if and only if M∗ = {T∗ : T ∈M} is collectively compact; see [18].

Proposition 3.5. If S : X → Z is a weakly p-precompact operator, then for any Banach space Y and any N ⊂
DPCp(Z,Y) which is p-(DPL), the set N ◦ S := {T ◦ S : T ∈ N} is equicompact.

Proof. . We prove that S∗ ◦N∗ is collectively compact. Consider a sequence ((S∗ ◦ T∗n)y∗n)n in
⋃

T∈N S∗ ◦ T∗(BY)
and put A := {T∗ny∗n : n ∈N}. It is easy to verify that, A is a p-(DPL) set in Z∗. Indeed, if (zn)n is a p-Right null
sequence in Z,we have

lim
n→∞

sup
m
|⟨zn,T∗m(y∗m)⟩| ≤ lim

n→∞
sup

m
∥ Tm(zn) ∥= 0.

Let (z∗n)n ⊂ A and let be a p-Right null sequence in Z, Consider an operator S1 : Z → ℓ∞ defined by
S1(z) := (z∗n(z)). Since A is a p-(DPL) set in Z∗, limn ∥ S1(zn) ∥= limn supi |z

∗

i (zn)| = 0, and so S1 is Dunford-
Pettis p-convergent. Hence, the operator S1S : X→ ℓ∞ is compact, since S : X→ Z is a weakly p-precompact
operator. Thus S∗ ◦ S∗1 is compact and so, S∗(z∗n)n = (S∗(S∗1(e1

n))n is relatively compact, where (e1
n) is the unit

basis of ℓ1.Hence, S∗(A) is a relatively compact set and so, ((S∗ ◦ T∗n)y∗n)n has a convergent subsequence.

Recall that, a subset K of W(X,Y) is weakly equicompact if for every bounded sequence (xn)nvin X, there
exists a subsequence (xkn )n such that (T(xkn ))n is weakly uniformly convergent for T ∈ K; see [19].
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Proposition 3.6. Let X be a Banach space and 1 ≤ p ≤ ∞. If there exists a non-zero Banach space Y such that every
p-(DPL) set of W(X,Y) is weakly equicompact, then DPCp(X,Y) = K(X,Y).

Proof. Let K be a p-(DPL) set in X∗.We show K is relatively compact. For this purpose, choose y0 ∈ Y and
y∗0 ∈ Y∗ so that ⟨y∗0, y0⟩ = 1. It is easy to verify that M = K

⊗
{y0} is a p-(DPL) set in W(X,Y) and so, by the

hypothesis, M is weakly equicompact. Hence, by using Proposition 2.2 of [19], K = ⟨y∗0, y0⟩K = M∗(y∗0) is
relatively compact.

Definition 3.7. Let U ⊂ X be an open convex and 1 ≤ p ≤ ∞. We say that the mapping f : U → Y is p-Right
sequentially continuous or Right-sequentially continuous of order p, if it takes p-Right Cauchy U-bounded sequences
of U into norm convergent sequences in Y.We denote the space of all such mappings by Cp

rsc(U,Y).

Note that, the mapping f : U → Y is∞-Right sequentially continuous or Right-sequentially continuous, if
it takes Right-Cauchy U-bounded sequences of U into norm convergent sequences in Y. It is easy to verify
that if f is compact and takes U-bounded p-Right Cauchy sequences into weakly Cauchy sequences, then
f ∈ Cp

rsc(U,Y). Also, it is easy to verify that Cq
rsc(U,Y) ⊆ Cp

rsc(U,Y) whenever 1 ≤ p < q ≤ ∞. But, we do not
have any example of a mapping f ∈ C1u(U,Y) ∩ Cp

rsc(U,Y) which does not belong to Cq
rsc(U,Y). Hence, it

would be interesting to get conditions under which every p-Right sequentially continuous map is q-Right
sequentially continuous. In my opinion, this is very interesting, but it is a difficult question?

Proposition 3.8. Let U be an open convex subset of X and let 1 ≤ p ≤ ∞. If f ∈ C1u(U,Y) so that f ′ : U →
DPCp(X,Y) is Right-sequentially continuous on U-bounded sets, then f ′ takes Dunford-Pettis U-bounded sets into
p-(DPL) sets.

Proof. Let K be a U-bounded and Dunford-Pettis set. It is well known that, K is a Rosenthal set (see,([13,
Corollary 17])). So, by the hypothesis, f ′(K) is relatively norm compact in DPCp(X,Y).Hence, by the part (i)
of Proposition 3.2, f ′(K) is a p-(DPL) set.

Proposition 3.9. If f : U→ Y is a differentiable mapping such that f ′ ∈ Cp
rsc(U,DPCp(X,Y)), then f ∈ Cp

rsc(U,Y).

Proof. Let (xn)n be a U-bounded and p-Right Cauchy sequence. Therefore, for any increasing sequences
(mk)k and (nk)k of positive integers the sequence (xmk − xnk )k is weakly p-summable in X. By the Mean Value
Theorem ([7, Theorem 6.4]), we have

∥ f (xmk ) − f (xnk )∥ ≤ ∥ f ′(ck)(xmk − xnk )∥ (1)

for some ck ∈ I(xnk , xmk ). Since the sequence (ck) is U-bounded and p-Right Cauchy, the sequence ( f ′(ck))k is
norm convergent to some T ∈ DPCp(X,Y). So we have

lim
k→∞
∥ f ′(ck)(xmk − xnk )∥ = lim

k→∞
∥ f ′(ck)(xmk − xnk ) − T(xmk − xnk ) + T(xmk − xnk )∥

≤ lim
k→∞
∥ f ′(ck)(xmk − xnk ) − T(xmk − xnk ) ∥ + lim

k→∞
∥T(xmk − xnk )∥

≤ lim
k→∞
∥ f ′(ck) − T∥∥xmk − xnk∥ + lim

k→∞
∥T(xmk − xnk )∥ = 0.

As a consequence of inequality (1), we get lim
k→∞
∥ f (xmk ) − f (xnk )∥ = 0. Hence, the sequence ( f (xn))n is norm

convergent.

Theorem 3.10. If f : U → Y is a differentiable mapping such that for every U-bounded and Dunford-Pettis set
K, f ′(K) is a p-(DPL) set in L(X,Y), then f ∈ Cp

rsc(U,Y).
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Proof. Let (xn)n be a U-bounded and weakly p-Right Cauchy sequence. So for any increasing sequences
(mk)k and (nk)k of positive integers, (xmk −xnk )k is a p-Right null sequence in X. Since U is convex, the segment
I(xnk , xmk ) is contained in U for all k ∈N. Applying the Mean Value Theorem ([7, Theorem 6.4]), there exists
ck ∈ I(xnk , xmk ) so that

∥ f (xmk ) − f (xnk )∥ ≤ ∥ f ′(ck)(xmk − xnk )∥ ≤ sup
T∈ f ′(K)

∥T(xmk − xnk )∥ (2)

in which K := {ck : k ∈ N}. Obviously, the set K := {ck : k ∈ N} is contained in the convex hull of all xn and
then in U, since U is a convex set. Moreover K is still a U-bounded and Dunford-Pettis set. Therefore by the
hypothesis, f ′(K) is a p-(DPL) set in L(X,Y). Since (xmk − xnk )k is a p-Right null sequence in X, it follows that
lim
k→∞

sup
T∈ f ′(K)

∥T(xmk − xnk )∥ = 0. Hence, the inequality (2) implies that lim
k→∞
∥ f (xmk ) − f (xnk )∥ = 0.

In the sequel, we denote the space of all real-valued k-times continuously differentiable functions on X, by
Ck(X).

Example 3.11. Let h ∈ C1(R) and 1 < r < 2.We define f : ℓr∗ → R by f ((xn)n) =
∞∑

n=1

h(xn)
2n . The same argument

as in the ([11, Example 2.4]), shows that f is differentiable such that f ′((xn)n) = ( h′(xn)
2n )n ∈ ℓr. By Pitt’s Theorem

([1, Theorem 2.1.4]), f ′ : ℓr∗ → ℓr is compact and so, f ′(Bℓr∗ ) is a relatively compact set in L(ℓr∗ ,R) = Cp(ℓr∗ ,R).
Thus, the part (i) of Proposition 3.2, yields that f ′(Bℓr∗ ) is a p-(DPL) set in L(ℓr∗ ,R). Hence, Theorem 3.10 implies
that f ∈ Cp

rsc(U,Y).

In the following result, we find a method to get p-(DPL) subsets of L(X,Y).Note that we adapt the proof of
([9, Theorem 2.1]).

Theorem 3.12. Let U ⊆ X be an open convex subset and 1 ≤ p ≤ ∞. If f ∈ C1u(U,Y), then the following assertions
are equivalent:
(i) f ∈ Cp

rsc(U,Y);
(ii) For every U-bounded p-Right Cauchy sequence (xn) and every p-Right Cauchy sequence (hn) ⊂ X, the sequence
( f ′(xn)(hn))n is norm converges in Y;
(iii) For every U-bounded p-Right Cauchy sequence (xn)n and every p-Right null sequence (hn)n ⊂ X, we have

lim
n

sup
m
∥ f ′(xm)(hn) ∥= 0;

(iv) For every U-bounded p-Right Cauchy sequence (xn)n and every p-Right null sequence (hn)n ⊂ X, we have

lim
n

f ′(xn)(hn) = 0;

(v) f ′ takes U-bounded, Dunford-Pettis and weakly p-precompact subsets of U into p-(DPL) subsets of L(X,Y).

Proof. (i) ⇒ (ii) Let (xn)n be a U-bounded p-Right Cauchy sequence and let (hn)n be a p-Right Cauchy
sequence in X.Without loss of generality, we assume that sup

n
∥ hn ∥< 1. Consider B := {xn : n ∈ N} and let

d := min{1, dist(B, ∂U)}. It is easy to show that the set

B′ := B +
d
2

BX ⊂ U

is also U-bounded. Since f ∈ C1u(U,Y), f ′ is uniformly continuous on B′.Hence, for given ε > 0, there exists
0 < δ < d

4 such that if t1, t2 ∈ B′ satisfy ∥ t1 − t2 ∥< 2δ, then

∥ f ′(t1) − f ′(t2) ∥<
ε
4
. (3)
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If c ∈ I(xn, xn + δhn) for some n ∈N, then

∥ c − xn ∥≤ δ ∥ hn ∥< δ < 2δ <
d
2

and so,

c = xn + (c − xn) ∈ B′ = B +
d
2

BX

As an immediate consequence of the Mean Value Theorem ([7, Theorem 6.4]), and formula (3), we get

∥ f ′(xn)(δhn) − f (xn + δhn) + f (xn) ∥

≤ sup
c∈I(xn,xn+δhn)

∥ f ′(c) − f ′(xn) ∥∥ δhn ∥≤
εδ
4
.

Similarly,

∥ f (xm + δhm) − f (xm) − f ′(xm)(hm) ∥

≤ sup
c∈I(xm,xm+δhm)

∥ f ′(c) − f ′(xm) ∥∥ δhm ∥≤
εδ
4
.

On the other hand, the sequences (xn + δhn)n and (xn)n are U-bounded and p-Right Cauchy in U. Hence,
by the hypothesis the sequences ( f (xn + δhn))n and ( f (xn))n are norm convergent in Y. Hence, we can find
n0 ∈N so that for n,m > n0 :

∥ f (xn + δhn) − f (xm + δhm) ∥< εδ4 , ∥ f (xn) − f (xm) ∥< εδ4
So, for n,m > n0,we have

∥ f ′(xn)(hn) − f ′(xm)(hm) ∥< ε.

(ii)⇒ (iii) Let (xn)n be a U-bounded p-Right Cauchy sequence and let (hn)n be a p-Right null sequence in X.
By the part (ii), for every h ∈ X, the set { f ′(xn)(h) : n ∈N} is bounded in Y. On the other hand, there exists a
subsequence (xmk )k of (xm)m in U such that

∥ f ′(xmk )(hk) ∥≥ sup
m
∥ f ′(xm)(hk) ∥ −

1
k

(k ∈N).

Since the sequences (xmk )k in U and (h1, 0, h2, 0, h3, 0, · · ·) in X are p-Right Cauchy, the sequence

( f ′(xm1 )(h1), 0, f ′(xm2 )(h2), 0, f ′(xm3 )(h3), 0, · · ·)

norm convergent in Y. Therefore, lim
k
∥ f ′(xmk )(hk) ∥= 0. Hence, we have

lim
k

sup
m
∥ f ′(xm)(hk) ∥= 0.

(iii)⇒ (iv) is obvious.
(iv) ⇒ (v) Let K be a Dunford-Pettis, weakly p-precompact and U-bounded set. It is clear that, for every
h ∈ X, the set f ′(K)(h) is bounded in Y. Let (hn)n be a p-Right null sequence in X. If (hnk )k is a subsequence of
(hn)n, then for every k ∈N, there exists ak ∈ K such that

sup
a∈K
∥ f ′(a)(hnk ) ∥<∥ f ′(ak)(hnk ) ∥ +

1
k
.

Since K is a Dunford-Pettis and weakly p-precompact set, the sequence (ak)k admits a p-Right Cauchy
subsequence (akr )r. Hence, by the hypothesis we have

lim
r
∥ f ′(akr )(hnkr

) ∥= 0.
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So, every subsequence of (sup
a∈K
∥ f ′(a)(hn) ∥)n has a subsequence converging to 0. Hence, the sequence itself

converges to 0, that is, lim
n

sup
a∈K
∥ f ′(a)(hn) ∥= 0.

(v)⇒ (i) Since the proof is similar to the proof of Proposition 3.15, its proof is omitted.

Let us recall from [2], that a bounded subset K of X is a p-Right∗ set, if lim
n→∞

sup
x∈K
|x∗n(x)| = 0, for every

p-Right null sequence (x∗n)n in X∗.

Proposition 3.13. Let K ⊂ L(X,Y) be a p-(DPL) set and X∗ ∈ (DPPp), whenever 2 < p ≤ ∞. If S ∈ L(G,X) is a
bounded linear operator with Dunford-Pettis p-convergent adjoint, then the set {S∗ ◦ T∗(BY∗ ) : T ∈ K} is relatively
compact in G∗.

Proof. Take a p-Right null sequence (xn)n in X. Since K is a p-(DPL) set in L(X,Y),we have

|⟨xn,T∗(y∗)⟩| ≤ |⟨T(xn), y∗⟩| ≤∥ T(xn) ∥→ 0

uniformly for T ∈ K and y∗ ∈ BY∗ . So, {T∗(BY∗ ) : T ∈ K} is a p-(DPL) set. Adapting of ([15, Proposition 3.5]),
there are a Banach space Z and an operator L, that takes Right Cauchy sequences into norm convergent
sequences, such that

{T∗(BY∗ ) : T ∈ K} ⊂ L∗(BZ∗ ).

Therefore, we have
{(S∗ ◦ T∗)(BY∗ ) : T ∈ K} = S∗({T∗(BY∗ ) : T ∈ K}) ⊂ S∗(L∗(BZ∗ )).

Since S∗ is Dunford-Pettis p-convergent, the part (iii) of ([2, Lemma 3.4]) implies that S(BG) is a p-Right∗ set
in X and so, an application of Proposition 3.5 of [2] shows that S(BG) is a p-(V∗) set in X. Thus, it is Rosenthal
set (see,([13, Corollary 17])). Hence, L ◦ S is compact and so, (S∗ ◦ L∗) is compact and we are done.

Recall from [14], that a Banach space X has the p-Dunford-Pettis relatively compact property ( in short,
p-(DPrcP)) if every p-Right null sequence (xn)n in X is norm null.

Corollary 3.14. Let 2 < p ≤ ∞ and K ⊂ L(X,Y) be a p-(DPL) set. If X∗ has both properties (DPPp) and p-(DPrcP),
then the set {T∗(BY∗ ) : T ∈ K} is relatively compact in X∗.

A Banach space X has the p-(SR) property if every p-Right subset of X∗ is relatively weakly compact; see
[14].

Proposition 3.15. Let X be a Banach space and let U be an open convex subset of X. If for every Banach space Y,
every mapping f ∈ C1u(U,Y) whose derivative f ′ takes U-bounded sets into p-(DPL) sets, is weakly compact, then X
has the p-(SR) property.

Proof. Let T : X→ c0 be a Dunford-Pettis p-convergent operator. We proved that T is weakly compact. Since

T′(x) = T, ∀x ∈ X,

for every U-bounded set B and for every p-Right null sequence (xn)n, it follows

lim
n→∞

sup
x∈B
∥ T′(x)(xn) ∥= lim

n→∞
∥ T(xn) ∥= 0.

So, T′ takes U-bounded sets into p-(DPL) sets. So, by the hypothesis, T is weakly compact. Hence, Theorem
3.10 of [14] implies that X has the p-(SR) property.
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4. Factorization theorem through a Dunford-Pettis p-convergent operator

Results on factorization through bounded linear operators of polynomials, holomorphic mappings and
differentiable mappings between Banach spaces obtained in recent years by several authors. For instance, a
factorization result for differentiable mappings through compact operators was obtained by Cilia et al.[11].
For more information in this area, we refer to [4, 5, 10, 16] and references therein.
In this section, for given a mapping f : X→ Y,we show that f is differentiable so that f ′ takes bounded sets
into p-(DPL) sets if and only if it happens f = 1 ◦S,where S is a Dunford-Pettis p-convergent operator from
X into a suitable normed space Z and 1 : Z→ Y is a Gâteaux differentiable mapping with some additional
properties.

Theorem 4.1. Let f : X→ Y be a mapping between real Banach spaces. Then the following assertions are equivalent:
(a) f is differentiable, f ′ takes U-bounded sets into p-(DPL) sets and f is p-Right sequentially continuous.
(b) There exist a normed space Z, a surjective operator S : X→ Z, and a mapping 1 : Z→ Y such that:
(i) f (x) = 1(S(x)) for all x ∈ X.
(ii) S is a Dunford-Pettis p-convergent.
(iii) 1 ∈ DM(S(x),Y) for every x ∈ X, where

M := {S(B) : B is a bounded subset of X}.

(iv) 1′ is bounded on S(B) for every bounded subset B ⊂ X.

Proof. (a)⇒ (b) Let K :=
∞⋃

r=1

f ′(rBX)
r∥ f ′∥rBX

. By hypothesis, for every r ∈N, f ′(rBX) is a p-(DPL) set. First of all we

cliam that K is a p-(DPL) set. For this purpose, for a fixed natural number N, we define AN :=
⋃
r≤N

f ′(rBX)
r∥ f ′∥rBX

and BN :=
⋃
r>N

f ′(rBX)
r∥ f ′∥rBX

. Proposition 3.2(i) implies that AN is a p-(DPL) set. Now let (xn)n be a p-Right null

sequence in X and M = sup
n
∥xn∥. Hence

lim sup
n→∞

sup
T∈K
∥T(xn)∥ = inf

N∈N
max{ lim

n→∞
sup
T∈AN

∥T(xn)∥, lim sup
n→∞

sup
T∈BN

∥T(xn)∥}

≤ inf
N∈N

max{0, lim sup
n→∞

sup
T∈BN

∥T(xn)∥}

≤ inf
N∈N

lim sup
n→∞

sup
T∈BN

∥T∥∥xn∥ ≤ inf
N∈N

M
N
= 0.

So, lim
n→∞

sup
T∈K
∥T(xn)∥ = 0 and hence, K is a p-(DPL) set. As in [10], we define a continuous seminorm on X by

∥x∥K := sup
ϕ∈K
∥ϕ(x)∥ for all x ∈ X. It is clear that the set VK := {x ∈ X : ∥x∥K = 0} is a closed linear subspace of

X. Let π be the canonical quotient map of X onto the quotient space X
VK
.We define a norm on X

VK
by

∥π(x)∥ := ∥x∥K (x ∈ X). (4)

Let Z := X
VK

be endowed with the norm introduced in (4), and denote by S : X → Z the quotient map π.
An easy verification shows that S : X → Z is a Dunford-Pettis p-convergent operator. Indeed, let (xn)n be a
p-Right null sequence in X. Since K is a p-(DPL) set, ∥ S(xn) ∥= sup

ϕ∈K
∥ ϕ(xn) ∥→ 0. Hence S is Dunford-Pettis

p-convergent, which proves (ii). Now we define 1 : Z → Y by 1(S(x)) = f (x), x ∈ X.We proved that 1 is
well defined. Suppose that ∥ S(x − y) ∥= 0. Since the span of K contains the range of f ′,we have

∥ f ′(c)(x − y) ∥= 0 (c ∈ X).
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By using the Mean Value Theorem ([7, Theorem 6.4]),

∥ f (x) − f (y) ∥≤ sup
c∈I(x,y)

∥ f (x) − f (y) ∥≤ sup
c∈I(x,y)

∥ f ′(c)(x − y) ∥= 0,

and so f (x) = f (y). Therefore 1 is well defined. Now, we show that 1 is Gáteaux differentiable. For given
x, y ∈ X, the following limit exists:

lim
t→0

1(S(x) + tS(y)) − 1(S(x))
t

= lim
t→0

f (x + ty) − f (x)
t

= f ′(x)(y). (5)

For x ∈ X fixed, the mapping 1′(S(x)) : Z→ Y given by 1′(S(x))(S(y)) = f ′(x)(y) (y ∈ X) is linear. Moreover,
choosing r ∈N so that x ∈ rBX,we have

∥1′(S(x))(S(y))∥ = ∥ f ′(x)(y)∥ ≤ r∥ f ′∥rBX sup
ϕ∈K
∥ϕ(y)∥ = r∥ f ′ ∥rBX ∥S(y)∥.

Consequently, 1′(S(x)) is continuous. Hence 1 is Gáteaux differentiable. Since f is Fréchet differentiable,
for every bounded set B, the limit in (5) exists uniformly for S(y) ∈ S(B). So, 1 ∈ DM(S(x),Y) for every
x ∈ X, where M = {S(B) : B is a bounded subset of X} and this implies (iii). On the other hand, we have
∥1′(S(x))∥ = sup

∥S(y)∥≤1
∥1′(S(x))(S(y))∥ ≤ r∥ f ′∥rBX , (x ∈ rBX) and this yields (iv).

(b)⇒ (a). Assume that there exist a normed space Z, an operator S from X onto Z, and a mapping 1 : Z→ Y
satisfying conditions (i)-(iv) of (b). It is clear that f is differentiable. We claim that f ′ takes bounded sets
into p-(DPL) sets. For this purpose, suppose that B is a bounded set and (xn)n is a p-Right null sequence in
X. Since S ∈ DPCp(X,Z),we obtain

sup
x∈B
∥ f ′(x)(xn)∥ = sup

x∈B
∥1′(S(x))(S(xn))∥ ≤ sup

x∈B
∥1′(S(x))∥∥S(xn)∥.

But the right-hand side of the above inequality approaches zero whenever n → ∞, since S ∈ DPCp(X,Z).
So, f ′(B) is a p-(DPL) subset of L(X,Y).

Finally, we conclude this paper by an application of Theorem 4.1.

Example 4.2. Let h ∈ C1(R). Define f : c0 → R by f ((xn)n) =
∞∑

n=1

h(xn)
2n . By using the same argument as in the

([11, Example 2.4]), one can show that f is differentiable such that f ′((xn)n) = ( h′(xn)
2n )n ∈ ℓ1. It is easy to verify

that f ′ : c0 → L(c0,R) is compact. So, f ′(Bc0 ) is a relatively compact set in DPCp(c0,R). Hence the part (i) of
Proposition 3.2, implies that f ′(Bc0 ) is a p-(DPL) set. Now, let K be an arbitrary U-bounded Dunford-Pettis set in Bc0 .
Clearly, f ′(K) is a p-(DPL) set in L(c0,R). Hence, Theorem 3.10, implies that f is p-Right sequentially continuous.
An application of Theorem 4.1, shows that there exists a Banach space Z, an operator S ∈ DPCp(c0,Z) and a Gâteaux
differentiable mapping 1 : Z→ R such that f = 1 ◦ S with some additional properties.

Acknowledgment

I would like to thank the reviewer for their careful and thorough reading of this manuscript and for the
thoughtful comments and constructive suggestions, which help to improve the quality of this manuscript.

References

[1] F. Albiac and N. J. Kalton, Topics in Banach Space Theory, Graduate Texts in Mathematics, 233, Springer, New York, 2006.
[2] M. Alikhani, Sequentially Right-Like Properties on Banach Spaces, Filomat 33 (2019) 4461-4474.
[3] K. T. Andrews, Dunford-Pettis sets in the space of Bochner integrable functions, Math. Ann. 241 (1979) 35-41.
[4] R. M. Aron, Weakly uniformly continuous and weakly sequentially continuous entire functions, in: J. A. Barroso (ed.), Advances

in Holomorphy, Math. Studies 34 (1979) 47-66.



M. Alikhani / Filomat 37:5 (2023), 1367–1376 1376

[5] F. Bombal, J. M. Gutiérrez, I. Villanueva, Derivative and factorization of holomorphic functions, J. Math. Anal. Appl. 348 (2008)
444-453.

[6] J. M. F. Castillo and F. Sánchez, Dunford-Pettis-like properties of continuous function vector spaces, Rev. Mat. Univ. Complut.
Madrid 6 (1993) 43-59.

[7] S. B. Chae, Holomorphy and Calculus in Normed Spaces, Monogr. Textbooks Pure Appl. Math. 92, Dekker, New York, 1985.
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