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Abstract. In this work, the notion of extended eigenvalues of a 2 × 2 lower triangular operator matrix has
been researched. More precisely, the relations between the extended spectrum of a 2 × 2 lower triangular
operator matrix with the spectrum, the point spectrum, and the extended spectrum of its diagonal entries
have been investigated. The obtained results have been supplemented by examples. In addition, some
properties of the extended spectrum of 2 × 2 block operator matrices have been displayed.

1. Introduction

Operators which have a block operator matrix representation arise in different areas of mathematical
physics like ordinary differential equations [9, 12], theory of elasticity [15], quantum mechanics [13], and
optimal control [14]. The spectral properties of the corresponding block operator matrices are crucial, as
it opens up a new line of attack for various problems by describing the solvability and stability of the
underlying physical systems.

One of modern approaches that deals with spectral analysis is the extended spectrum of operators.
Recall that a complex scalar λ is an extended eigenvalue of a bounded linear operator A on a Banach Space
E, if there exists a nonzero bounded linear operator X acting on E, called extended eigenoperator associated
to A, and satisfying the following equation:

AX = λXA. (1)

The family of all the extended eigenvalues of an operator A is called the extended spectrum of A, and it
is denoted by σext(A). This notion is related to the simultaneous and independent works of Brown in [4]
and Kim, Moore and Pearcy in [7], as a mean of generalizing the well-known Lomonosov theorem on the
existence of nontrivial hyperinvariant subspace for the compact operators on Banach spaces. Particularly,
they asserted that if the non-zero operator X is a compact operator, then A has a nontrivial hyperinvariant
subspace for any number λ ∈ C. The special case, when λ = 1 in Eq. (1) for which A commutes with
a compact operator X, refers to Lomonosov’s theorem [8] that is the algebra {A}′ of the commutant of A
possesses a common nontrivial invariant subspace.

The structure of the set of extended eigenvalues in the complex plane for bounded linear operators has
various forms. One of the fundamental problems in the theory of extended spectrum is to represent the
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Email addresses: ammar_aymen84@yahoo.fr (Aymen Ammar), fatima.boutaf@gmail.com (Fatima Zohra Boutaf),

Aref.Jeribi@fss.rnu.tn (Aref Jeribi)



A. Ammar et al. / Filomat 37:5 (2023), 1377–1389 1378

structure of this set. On this way, Biswas, Lambert and Petrovic computed the set of extended eigenvalues
of the integral Volterra operator on the space L2(0, 1) (see [2]). In [3], Biswas and Petrovic applied the
Rosenblum theorem [10] leading to derive the following important inclusion:

σext(A) ⊂
{
λ ∈ C : σ(A) ∩ σ(λA) , ∅

}
,

where σ(A) is the spectrum of A. In the same paper, it was proved that this inclusion is an equality on
the finite dimensional spaces. It was revealed in [11] that there are compact quasinilpotent operators, for
which the set of extended eigenvalues is the one point set {1}. Important results in this subject was obtained
by Gürdal in [6], which gave extended eigenvalues and extended eigenoperator of integration operators
on the Winner algebra. In [1], Ammar, Boutaf and Jeribi generalized some obtained results of extended
eigenvalues of a bounded linear operator in Banach space to the closed case and investigated some results
of extended eigenvalues of a 2 × 2 upper triangular operator matrix.

The intrinsic objective of this work is to investigate some results of extended eigenvalues of a 2 × 2
lower triangular operator matrix.

The rest of this paper is organized as follows: In section 2, we display some notations and establish
some results from the theory of the extended spectrum of linear operators. Such results will be used in the
sequel. In section 3, we introduce and study the notion of extended eigenvalues of a 2 × 2 lower triangular
operator matrix. The basic goal of this section is to provide characterizations that describe the relationships
between the extended spectrum of a 2 × 2 lower triangular operator matrix with the spectrum, the point
spectrum, and the extended spectrum of its diagonal entries. The obtained results are illustrated by several
examples. We close this article by setting forward some properties of the extended eigenvalue of 2×2 block
operator matrices.

2. Preliminaries

Throughout this paper, let E and F be complex Banach spaces and denote by L(E,F) the set of all
bounded linear operators from E to F.We let L(E) denote L(E,E). The symbolsD(A), R(A) and N(A) stand
for the domain, the range and the kernel of a linear operator A, respectively. We will use the notation A∗

for the adjoint of A.

Definition 2.1. Let E and F be two Banach spaces and A be a linear operator from E into F.
(i) The point spectrum, σp(A), of A is the set of all eigenvalues of A. That is,

σp(A) = {λ ∈ C : (λI − A) is not injective}.

(ii) The spectrum, σ(A), of A is defined by

σ(A) = {λ ∈ C : A − λI has not a bounded inverse}.

(iii)The resolvent set, ρ(A), is the complement of the set σ(A) in C.
(iv) The Schechter essential spectrum is defined by

σs(A) =
⋂

K∈K (X)

σ(A + K),

whereK (X) stands for the ideal of all compact operators on X. ♢

Lemma 2.2. [2] Let V ∈ L(L2(0, 1)) be the integral Volterra operator. Hence, σext(V) =]0,∞[. ♢

Proposition 2.3. Let E be a Banach space and A ∈ L(E). Hence, A is injective if, and only if, 0 < σext(A).
♢
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Proof. To prove the “if ”part, let A be injective and suppose that 0 ∈ σext(A). Then, there exists 0 , X ∈ L(E)
such that

AX = 0. (2)

The fact that A is injective and X , 0,we infer that

AX , 0,

which contradicts Eq. (2). To prove the “only if ”part, claim that 0 < σext(A). It follows that

AX , 0, for all 0 , X ∈ L(E). (3)

Let X1 ∈ L(E) and X2 ∈ L(E) such that X1 , X2.We have X1 − X2 , 0, thus from Eq. (3), we deduce that
A(X1 − X2) , 0, and hence AX1 , AX2. That is, A is injective.

Proposition 2.4. [3] Let A be a bounded linear operator on a Hilbert space such that A and A∗ have nontrivial
kernels. Then, σext(A) = C. ♢

Lemma 2.5. [3] Suppose that A ∈ L(E). If σ(A) = {λ}, with λ , 0, then σext(A) = {1}. ♢

Lemma 2.6. [1] Let A be a closed linear operator on E. If 0 ∈ ρ(A), then we have

λ ∈ σext(A) if, and only if,
1
λ
∈ σext(A−1). ♢

Following the same reasoning of Biswas and Petrovic [3], in which it was demonstrated that the extended
spectrum is invariant under a quasisimilarity, we can set forward the next Lemma:

Lemma 2.7. Let R,S ∈ L(E) such that R has a dense range and S is injective. Then, we have
(i) σext(RS) ⊂ σext(SR).
(ii) If, further R is injective and S has a dense range, then σext(RS) = σext(SR). ♢

Proof. (i) Let us assume that λ ∈ σext(RS), then there exists a nonzero operator X such that

RSX = λXRS. (4)

Multiplying Eq. (4) by R on the left and by S on the right, we obtain

SRSXR = λSXRSR. (5)

In Eq. (5), we have X , 0. The fact that S is injective implies that SX , 0. Since R has a dense range, it
follows that SXR , 0, which assures that λ ∈ σext(SR).
(ii) The inverse inclusion follows by symmetry.

Using similar methods of Cvetković-Ilić [5], we can set forward the following Theorems

Theorem 2.8. Suppose that H and K are two Hilbert spaces. Let A ∈ L(H) such that A and A∗ have nontrivial
kernels and let B ∈ L(K) be an injective operator. Then, there exists D ∈ L(H,K) such that the operator matrix MD
is injective if, and only if, R(B) is not closed. ♢

Theorem 2.9. Let H, K be two Hilbert spaces. Let A ∈ L(H) and B ∈ L(K) be given operators. There exists
D ∈ L(H,K) such that R(MD) is not dense in H × K if, and only if, one of the following conditions is satisfied:
(i) R(B) is not dense in K.
(ii) R(A) is not dense in H. ♢
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3. Main results

Let E and F be two Banach spaces and consider the 2 × 2 lower triangular operator matrices defined
on E × F by

MD =

(
A 0
D B

)
(6)

and

M0 =

(
A 0
0 B

)
, (7)

where A ∈ L(E), B ∈ L(F) and D ∈ L(E,F).

Definition 3.1. Let MD be the 2 × 2 lower triangular operator matrix defined in Eq. (6). A complex number λ is an
extended eigenvalue of MD if there exists a nonzero 2 × 2 lower triangular operator matrix,

X =
(

X1 0
X3 X2

)
, (8)

where X1 ∈ L(E), X3 ∈ L(E,F) and X2 ∈ L(F) such that

MDX = λXMD. (9)

The operator X is called eigenoperator corresponding to λ. The set of extended eigenvalues and the set of eigenoperators
corresponding to λ are represented, respectively, by σext(MD) and Eext(MD, λ) ♢

Remark 3.2. (i) σext(MD) , ∅. Certainly, 1 ∈ σext(MD) due to

MDX = XMD,

for which X =
(

I1 0
0 I2

)
, where the I1 and I2 are identity operators on E and F, respectively.

(ii) If A = B = 0, then σext(MD) = C. In fact, we have for all X3 ∈ L(E,F) \ {0}(
0 0
D 0

) (
0 0

X3 0

)
= λ

(
0 0

X3 0

) (
0 0
D 0

)
,

for any λ ∈ C.
(iii) σext(M0) = σext(A) ∪ σext(B) ∪ {λ ∈ C : there exists 0 , X3 ∈ L(E,F), BX3 = λX3A}.
(iv)If X1, X2 and X3 are non zeros, then

σext(MD) = σext(A) ∩ σext(B) ∩ {λ ∈ C : DX1 + BX3 = λX3A + λX2D}. ♢

For an arbitrary 2 × 2 lower triangular operator matrix MD, a relation between σext(MD) and the spectrum
of its diagonal entries can be established as follows:

Proposition 3.3. Let MD be the 2 × 2 lower triangular operator matrix defined in Eq. (6). We have

σext(MD) ⊂
{
λ ∈ C : {σ(A) ∩ σ(λA)} ∪ {σ(A) ∩ σ(λB)} ∪ {σ(B) ∩ σ(λB)} ∪ {σ(B) ∩ σ(λA)} , ∅

}
. ♢

Proof. From the factorization formula:

MD =

(
A 0
0 I

) (
I 0
D I

) (
I 0
0 B

)
, (10)
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it is clear that for every D ∈ L(E,F),we have

σ(MD) ⊆ σ(A) ∪ σ(B).

By using [3, Proposition 2.2], it follows that

σext(MD) ⊂
{
λ ∈ C : σ(MD) ∩ σ(λMD) , ∅

}
.

Hence,

σext(MD) ⊂

{
λ ∈ C : {σ(A) ∪ σ(B)} ∩ {σ(λA) ∪ σ(λB)} , ∅

}
=

{
λ ∈ C : {σ(A) ∩ {σ(λA) ∪ σ(λB)}} ∪ {σ(B) ∩ {σ(λA) ∪ σ(λB)}} , ∅

}
=

{
λ ∈ C : {σ(A) ∩ σ(λA)} ∪ {σ(A) ∩ σ(λB)} ∪ {σ(B) ∩ σ(λB)} ∪ {σ(B) ∩ σ(λA)} , ∅

}
,

then we reach the desired result.

Remark 3.4. (i) The inclusion in Proposition 3.3 can be strict. Evidently, let E = F = L2(0, 1), A = B = V be the
Volterra operator on L2(0, 1) and D = 0 be the zero operator on L2(0, 1). We have that{

λ ∈ C : σ(V) ∩ σ(λV) , ∅
}
= C,

besides σext

( ( V 0
0 V

) )
=

{
λ ∈ C : there exists X1 ∈ L(L2(0, 1)) \ {0} such that VX1 = λX1V

}
⋃ {
λ ∈ C : there exists X2 ∈ L(L2(0, 1)) \ {0} such that VX2 = λX2V

}
⋃ {
λ ∈ C : there exists X3 ∈ L(L2(0, 1)) \ {0} such that VX3 = λX3V

}
⋃ {
λ ∈ C : there exist X1,X2 ∈ L(L2(0, 1)) \ {0} such that VX1 = λX1V

and VX2 = λX2V
}

⋃ {
λ ∈ C : there exist X1,X3 ∈ L(L2(0, 1)) \ {0} such that VX1 = λX1V

and VX3 = λX3V
}

⋃ {
λ ∈ C : there exist X2,X3 ∈ L(L2(0, 1)) \ {0} such that VX3 = λX3V

and VX2 = λX2V
}

⋃ {
λ ∈ C : there exist X1,X2,X3 ∈ L(L2(0, 1)) \ {0} such that VX1 = λX1V,

VX2 = λX2V, and VX3 = λX3V
}
.

It follows that σext

( ( V 0
0 V

) )
= σext(V). Using Lemma 2.2, we obtain

σext

( ( V 0
0 V

) )
=]0,∞[.

(ii)If σ(A) = σ(B) = {α}, with α , 0, then σext(MD) = {1}. Indeed, we have {1} ⊂ σext(MD) (see Remark 3.2 (i)).
Now,it remains to prove the converse inclusion. Accordingly, let us assume that σ(A) = σ(B) = {α}. There are four
possible cases: σ(A) ∩ σ(λA) , ∅, σ(A) ∩ σ(λB) , ∅, σ(B) ∩ σ(λB) , ∅ or σ(B) ∩ σ(λA)} , ∅, which imply that
α ∈ σ(λA) and α ∈ σ(λB). Thus,

α
λ
∈ σ(A) and

α
λ
∈ σ(B). That is, λ = 1. Therefore,{

λ ∈ C : {σ(A) ∩ σ(λA)} ∪ {σ(A) ∩ σ(λB)} ∪ {σ(B) ∩ σ(λB)} ∪ {σ(B) ∩ σ(λA)} , ∅
}
= {1}.

As a consequence, σext(MD) ⊂ {1}. ♢
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Proposition 3.5. Let E × F be a finite dimensional Banach space and MD be the 2 × 2 lower triangular operator
matrix defined in Eq. (6). We have

σext(MD) =
{
λ ∈ C : {σ(A) ∩ σ(λA)} ∪ {σ(A) ∩ σ(λB)} ∪ {σ(B) ∩ σ(λB)} ∪ {σ(B) ∩ σ(λA)} , ∅

}
.

Further, if MD is invertible, then

σext(MD) =
{λ
µ

: λ, µ ∈ σ(A) ∪ σ(B)
}
. ♢

Proof. Taking into account [3, Theorem 2.5], we obtain

σext(MD) =
{
λ ∈ C : σ(MD) ∩ σ(λMD) , ∅

}
.

The fact that E × F is a finite dimensional Banach space, we infer that

σ(MD) = σ(A) ∪ σ(B),

for every D ∈ L(E,F). So,

σext(MD) =
{
λ ∈ C : {σ(A) ∪ σ(B)} ∩ {σ(A) ∪ σ(B)} , ∅

}
=

{
λ ∈ C : {σ(A) ∩ σ(λA)} ∪ {σ(A) ∩ σ(λB)} ∪ {σ(B) ∩ σ(λB)} ∪ {σ(B) ∩ σ(λA)} , ∅

}
.

Furthermore, if MD is invertible, we deduce that

σext(MD) =
{λ
µ

: λ, µ ∈ σ(MD)
}
.

Hence,

σext(MD) =
{λ
µ

: λ, µ ∈ σ(A) ∪ σ(B)
}
.

The next proposition sets a connection between the extended spectrum of a 2× 2 lower triangular operator
matrix and the point spectrum of its diagonal elements.

Proposition 3.6. Let MD be the 2 × 2 lower triangular operator matrix defined in Eq. (6). Then,{α
β̄

: α ∈ σp(A) ∪ σp(B) and 0 , β ∈ σp(A∗) ∪ σp(B∗)
}
⊂ σext(MD). ♢

Proof. Using [1, Theorem 3.5],{α
β̄

: α ∈ σp(MD), and 0 , β ∈ σp(MD
∗)
}
⊂ σext(MD)

holds. Since σp(MD) = σp(A) ∪ σp(B), it follows that{α
β̄

: α ∈ σp(A) ∪ σp(B) and 0 , β ∈ σp(A∗) ∪ σp(B∗)
}
⊂ σext(MD).

As a direct consequence of Proposition 3.6, we infer the following result:

Corollary 3.7. Let MD be a 2 × 2 lower triangular operator matrix defined in Eq. (6).
(i) If 1 ∈ σp(A∗) ∪ σp(B∗), then σp(A) ∪ σp(B) ⊂ σext(MD).
(ii) If A and A∗ (or B and B∗) have nontrivial kernels, then σext(MD) = C.
(iii) Let λ ∈ R. If λ ∈ σp(A) ∩ σp(A∗) or λ ∈ σp(B) ∩ σp(B∗), then σext(λI −MD) = C. ♢
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Proof. (i) It is clear.
(ii) If A and A∗ (or B and B∗) have nontrivial kernels, then there exist 0 , x ∈ E and 0 , y ∈ E∗ (or 0 , u ∈ F
and 0 , v ∈ F∗, respectively) such that Ax = A∗y = 0 (or Bu = B∗v = 0, respectively). Hence, the operator

X =
(

x ⊗ y 0
0 0

)
(or X =

(
0 0
0 u ⊗ v

)
, respectively)

holds for all λ ∈ C
MDX = λXMD = 0.

Therefore, σext(MD) = C.
(iii) Supposing that λ ∈ R such that λ ∈ σp(A)∩ σp(A∗) (or λ ∈ σp(B)∩ σp(B∗)). It follows that 0 ∈ σp(λI −A)∩
σp((λ̄I−A)∗) (or 0 ∈ σp(λI−B)∩σp((λ̄I−B)∗), respectively).As λ is a real number, 0 ∈ σp(λI−A)∩σp((λI−A)∗)
(or 0 ∈ σp(λI − B)∩ σp((λI − B)∗), respectively). Departing from (ii), we conclude that σext(λI −MD) = C.

The reader could ask if there exists an inclusion between σext(MD) and σext(A) ∪ σext(B). In general case,
this question has a negative answer as shown by examples below.

Example 3.8. Let E = F = R2 and MD be the 2 × 2 lower triangular operator matrix defined on R2
×R2 by

MD =


1 0 0 0
3 5 0 0
9 7 4 0
8 10 11 3

 .
Put A =

(
1 0
3 5

)
, B =

(
4 0
11 3

)
and D =

(
9 7
8 10

)
.We have that σ(A) = {1, 5} and σ(B) = {3, 4}. Then,

{
λ ∈ C : σ(A) ∩ σ(λA) , ∅

}
=

{
1, 5,

1
5

}
,

{
λ ∈ C : σ(B) ∩ σ(λB) , ∅

}
=

{
1,

4
3
,

3
4

}
,{

λ ∈ C : σ(A) ∩ σ(λB) , ∅
}
=

{1
3
,

1
4
,

5
3
,

5
4

}
,

and {
λ ∈ C : σ(B) ∩ σ(λA) , ∅

}
=

{
3, 4,

3
5
,

4
5

}
.

Applying Proposition 3.5, it follows that

σext(MD) =
{
1, 3, 4, 5,

1
5
,

4
3
,

3
4
,

1
3
,

1
4
,

5
3
,

5
4
,

3
5
,

4
5

}
.

Besides,

σext(A) ∪ σext(B) =
{
1, 5,

1
5
,

4
3
,

3
4

}
.

That is,

σext(MD) 1 σext(A) ∪ σext(B). ♢

Example 3.9. Let H and K be two Hilbert spaces. Let A ∈ L(H) such that A and A∗ have nontrivial kernels and let
B ∈ L(K) be an injective operator with R(B) is not closed. Then, there exists D ∈ L(H,K) such that

σext(A) ∪ σext(B) 1 σext(MD).
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Absolutely, using Theorem 2.8 leads to MD being injective. According Proposition 2.3, we get

0 < σext(MD).

On the other side, relying on the fact that A and A∗ have nontrivial kernels together with Proposition 2.4, allows us
to deduce that

σext(A) = C.

Consequently,

σext(A) ∪ σext(B) = C. ♢

In the following lines, we show relations between the extended spectrum of a 2×2 lower triangular operator
matrix and the extended spectrum of its diagonal entries, respect to some conditions.

Theorem 3.10. Suppose that MD is the 2 × 2 lower triangular operator matrix defined in Eq. (6) and consider the
2 × 2 lower triangular operator matrix, X, defined in Eq. (8). We have the following assertions:
(i) Suppose that DX1 = λX2D, for any λ ∈ C.

If λ ∈ σext(A) ∪ σext(B), then λ ∈ σext(MD). (11)

(ii) If X1 , 0 or X2 , 0, then

σext(MD) ⊆ σext(A) ∪ σext(B). (12)

♢

Proof. (i) Assume that DX1 = λX2D, for any λ ∈ C and suppose that λ ∈ σext(A) ∪ σext(B). There are two
cases. If λ ∈ σext(A), then there exists X1 ∈ L(E) \ {0} such that AX1 = λX1A. In this case, we have

MDX = λXMD,

where

X =
(

X1 0
0 0

)
.

That is, λ ∈ σext(MD). If λ ∈ σext(B), then there exists X2 ∈ L(F) \ {0} satisfying BX2 = λX2B. In this case, X in
Eq. (8) can be chosen as

X =
(

0 0
0 X2

)
,

in such a way that
MDX = λXMD,

As a consequence, λ ∈ σext(MD).
(ii) Note that σext(A)∪σext(B) , ∅ as 1 ∈ σext(A)∪σext(B).Now, let λ ∈ σext(MD). Consider the following cases:
First case, if X1 , 0, then Eq. (9) implies, in particular, the existence of X1 ∈ L(E) \ {0} such that

AX1 = λX1A.

That is,
λ ∈ σext(A).

Therefore,
λ ∈ σext(A) ∪ σext(B).

Second case, if X2 , 0, the use of Eq. (9) leads, in particular, to the existence of X2 ∈ L(F) \ {0} such that

BX2 = λX2B.
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In other words,
λ ∈ σext(B).

Consequently,

λ ∈ σext(A) ∪ σext(B).

Remark 3.11. (i) The converse of implication (11) in Theorem 3.10 is not always true. In fact, let A = I be the
identity operator on E = L2(0, 1), B = V be the Volterra integral operator on F = L2(0, 1), and let D = 0 be the zero
operator on L2(0, 1). Obviously, we have that DX1 = λX2D, for any λ ∈ C. On the one hand, we have that

σext

( ( I 0
0 V

) )
=

{
λ ∈ C : there exists

(
X1 0
X3 X2

)
,

(
0 0
0 0

)
such that(

I 0
0 V

) (
X1 0
X3 X2

)
= λ

(
X1 0
X3 X2

) (
I 0
0 V

) }
,

which implies that

σext

( ( I 0
0 V

) )
=

{
λ ∈ C : there exists X1 ∈ L(L2(0, 1)) \ {0} such that X1 = λX1

}
⋃ {
λ ∈ C : there exists X2 ∈ L(L2(0, 1)) \ {0} such that VX2 = λX2V

}
⋃ {
λ ∈ C : there exists X3 ∈ L(L2(0, 1)) \ {0} such that VX3 = λX3

}
⋃ {
λ ∈ C : there exist X1,X2 ∈ L(L2(0, 1)) \ {0} such that X1 = λX1

and VX2 = λX2V
}

⋃ {
λ ∈ C : there exist X1,X3 ∈ L(L2(0, 1)) \ {0} such that X1 = λX1

and VX3 = λX3

}
⋃ {
λ ∈ C : there exist X2,X3 ∈ L(L2(0, 1)) \ {0} such that VX3 = λX3

and VX2 = λX2V
}

⋃ {
λ ∈ C : there exist X1,X2,X3 ∈ L(L2(0, 1)) \ {0} such that X1 = λX1,

VX2 = λX2V, and VX3 = λX3

}
.

We have that {
λ ∈ C : there exists X2 ∈ L(L2(0, 1)) \ {0} such that VX2 = λX2V

}
= σext(V),

and {
λ ∈ C : there exists X3 ∈ L(L2(0, 1)) \ {0} such that VX3 = λX3

}
= σ(V),

Since, σext(V) =]0,∞[ (see Lemma 2.2) and σ(V) = {0}, these allow us to deduce that

σext

( ( I 0
0 V

) )
= {1}∪]0,∞[∪{0} ∪ {1} ∪ ∅ ∪ ∅ ∪ ∅

= [0,∞[.

On the other hand, it is easy to check that σext(I) = {1}, so we get

σext(I) ∪ σext(V) =]0,∞[.

As a result, there exists λ = 0 ∈ σext

( ( I 0
0 V

) )
. However, λ = 0 < σext(I) ∪ σext(V).
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(ii) If X1 = X2 = 0, then there is no inclusion relation among σext(A) ∪ σext(B) and σext(MD). Indeed, let H be a
Hilbert space, A ∈ L(H) such that σ(A) = {λ} with λ , 0, B = I be the identity operator on H and D ∈ L(H). Then,
the use of Lemma 2.5 implies σext(A) = {1}. Thus, we obtain

σext(A) ∪ σext(I) = {1}.

On the other side, we have

σext

( ( A 0
D I

) )
=

{
λ ∈ C : there exists X3 ∈ L(H) \ {0} such that(

A 0
D I

) (
0 0

X3 0

)
= λ

(
0 0

X3 0

) (
A 0
D I

) }
=

{
λ ∈ C : there exists Y3 ∈ L(H) \ {0} such that (A −

1
λ

I)Y3 = 0
}

= {
1
λ
}.

That would be obvious if λ < {−1, 1}. ♢

Corollary 3.12. Suppose that A = B and DX1 = λX2D, for any λ ∈ C. Then,
λ ∈ σext(MD) if, and only if, λ ∈ σext(A). ♢

Proof. Let A = B and DX1 = λX2D, for every λ ∈ C. Assume that λ ∈ σext(A). From Theorem 3.10 (i),we get
λ ∈ σext(MD). Conversely, let λ ∈ σext(MD). Based on Theorem 3.10 (ii), it is sufficient to prove λ ∈ σext(A) if

X of Eq. (8) is equal to
(

0 0
X3 0

)
. In this case, Eq. (9) implies that there exists X3 ∈ L(E) \ {0} satisfying

AX3 = λX3A.

Consequently, we obtain λ ∈ σext(A).

The following theorem extends results obtained in Theorem 3.10 from bounded 2 × 2 lower triangular
block operator matrices to invertible closed ones.

Theorem 3.13. Let E and F two Banach spaces, we consider an unbounded 2 × 2 lower triangular block operator
matrix defined onD(MD) = D(A) ×D(B) ⊂ E × F by

MD =

(
A 0
D B

)
, (13)

where A and B are, respectively, two closed linear operators on E and F and D ∈ L(E,F) such that 0 ∈ ρ(A) ∩ ρ(B).
Consider the 2 × 2 lower triangular block operator matrices, X, defined in Eq. (8). Then, we have the following
assertions:
(i) Suppose that DX1 = λX2D, for any λ ∈ C. Hence,

if λ ∈ {σext(A) ∪ σext(B)} \ {0}, then λ ∈ σext(MD) \ {0}. (14)

(ii) If we have X1 , 0 or X2 , 0, then

σext(MD) \ {0} ⊆ {σext(A) ∪ σext(B)} \ {0}. (15)

Proof. First, if we claim that A and B are closed linear operators and D is a bounded linear operator, then
MD with its domain D(A) × D(B) is closed since it is the sum of a closed and a bounded operator. Since
0 ∈ ρ(A) ∩ ρ(B), we infer that 0 ∈ ρ(MD) such that

M−1
D =

(
A−1 0

−B−1DA−1 B−1

)
.
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(i) Again, relying on the fact that 0 ∈ ρ(A) ∩ ρ(B) together with Lemma 2.6 allows us to deduce that

λ ∈ {σext(A) ∪ σext(B)} \ {0} if, and only if,
1
λ
∈ {σext(A−1) ∪ σext(B−1)} \ {0}.

Based on Theorem 3.10 (i), we get
1
λ
∈ σext(M−1

D ) \ {0}.

Again, regarding to Lemma 2.6, we have

λ ∈ σext(MD) \ {0}.

(ii) The fact that 0 ∈ ρ(MD) together with Lemma 2.6 leads to

λ ∈ σext(MD) \ {0} if, and only if,
1
λ
∈ σext(M−1

D ) \ {0}.

Theorem 3.10 (ii) allows us to conclude that

1
λ
∈ {σext(A−1) ∪ σext(B−1)} \ {0}.

Using again Lemma 2.6, it follows that

λ ∈ {σext(A) ∪ σext(B)} \ {0}.

In the last part of this section, we give some sufficient conditions to obtain σext(MD) = σext(M0).

Theorem 3.14. Let A ∈ L(E) and B ∈ L(F). If σs(A) ∩ σs(B) = ∅, then for every D ∈ L(E,F)
σext(MD) = σext(M0). ♢

Proof. Let A ∈ L(E) and B ∈ L(F). If we suppose that σs(A) ∩ σs(B) = ∅, then the same reasoning as in the
proof of [1, Lemma 3.8] allows us to deduce that for every D ∈ L(E,F), the equation YA − BY = D has a
solution −Y. Hence,

MD =

(
I 0
Y I

)
M0

(
I 0
−Y I

)
,

where
(

I 0
−Y I

)
is the inverse of

(
I 0
Y I

)
.Now, if we claim that λ ∈ σext(MD), then there exists a nonzero

2 × 2 lower triangular operator matrix, X, such that

MDX = λXMD.

It follows that, (
I 0
Y I

)
M0

(
I 0
−Y I

)
X = λX

(
I 0
Y I

)
M0

(
I 0
−Y I

)
.

Thus, we obtain

M0

(
I 0
−Y I

)
X

(
I 0
Y I

)
= λ

(
I 0
−Y I

)
X

(
I 0
Y I

)
M0.

In other words, there exists a nonzero block operator matrix

Z =

(
I 0
−Y I

) (
X1 0
X3 X2

) (
I 0
Y I

)
=

(
X1 0

−YX1 + X3 + X2Y X2

)
,

satisfying
M0Z = λZ M0.

So, λ ∈ σext(M0). The proof of the opposite inclusion follows the same way.
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Theorem 3.15. Let MD be the 2 × 2 lower triangular operator matrix defined in Eq. (6). If one of the following
conditions is satisfied:

(i) 0 ∈ ρ(B) and
(

I 0
B−1D I

)
commutes with every X ∈ Eext(MD, λ).

(ii) 0 ∈ ρ(A) and
(

I 0
DA−1 I

)
commutes with every X ∈ Eext(MD, λ).

Then,
σext(MD) = σext(M0),

for every D ∈ L(E,F).

Proof. (i) The fact that 0 ∈ ρ(B) implies that

MD =

(
A 0
0 B

) (
I 0

B−1D I

)
.

Observe that
(

I 0
B−1D I

)
is invertible with

(
I 0

−B−1D I

)
is its inverse. Actually, let λ ∈ σext(MD) hence

there is a nonzero 2 × 2 lower triangular operator matrix, X, such that

MDX = λXMD.

Hence,

M0

(
I 0

B−1D I

)
X = λXM0

(
I 0

B−1D I

)
.

So, we have

M0

(
I 0

B−1D I

)
X

(
I 0

−B−1D I

)
= λXM0.

Since
(

I 0
B−1D I

)
commutes with every X ∈ Eext(MD, λ). It follows that

M0X = λXM0.

The proof of the inverse inclusion can be checked in a similar way.
(ii) The proof of the item (ii) follows by the same reasoning as (i).

Theorem 3.16. Let A ∈ L(H) and B ∈ L(K) be given injective operators such that R(A) dense in H and R(B) dense
in K. Then,

σext(MD) = σext(M0),

for every D ∈ L(H,K). ♢

Proof. We have the following formula

MD =

(
A 0
0 I

) (
I 0
D I

) (
I 0
0 B

)
.

Put R =
(

A 0
0 I

)
and S =

(
I 0
D I

) (
I 0
0 B

)
=

(
I 0
D B

)
. Since A, B and I are injective, one can check

easily that both R and S are injective. Moreover, A, B and I have dense ranges. According to Theorem 2.9,
we infer that both R and S have dense ranges. Now, applying Lemma 2.7 leads to

σext(MD) = σext(SR) = σext

( ( A 0
DA B

) )
, (16)
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for all D ∈ L(H,K). So, if D = 0,we get
σext(MD) = σext(M0),

which ends the proof.
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