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Abstract. In the present paper we prove a fixed point theorem for a one parameter family of contractive
self-mappings, of a complete metric space or a complete b-metric space, each member of which has a
unique fixed point that is also the unique common fixed point of the family; the mappings may be con-
tinuous or discontinuous at the fixed point. We also prove that under the assumption of a weaker form
of continuity the fixed point property for mappings satisfying the contractive conditions employed by us
implies completeness of the underlying space. The characterization of completeness obtained by us not
only contains Subrahmanyam’s theorem on characterization of completeness as a particular case but also
extends it to b-metric spaces. Results on contractive mappings with discontinuity at the fixed point have
found applications in neural networks with discontinuous activation function (e.g. Ozgur and Tas [19, 20]).

1. Introduction

Kannan [11, 12] proved that a self-mapping f of a complete metric space (X, d) satisfying the condition

d( f x, f y) ≤ a[d(x, f x) + d(y, f y)], for all x, y in X, 0 ≤ a <
1
2

(1)

possesses a unique fixed point. Kannan’s theorem is remarkable for two reasons: (a) it characterizes metric
completeness [24], and (b) it was the genesis of the once open question on the existence of contractive map-
pings which are discontinuous at fixed point [23]. Several researchers have studied metric completeness
(e.g. Kirk [13], Liu [14], Subrahmanayam [24], Suzuki [25]. Kirk [13] proved that Caristi’s fixed theo-
rem characterizes metric completeness. Subrahmanayam [24] proved that Kannan’s theorem characterizes
metric completeness. Suzuki [25] proved a fixed point theorem that generalizes the Banach contraction
theorem and characterizes metric completeness. The Banach contraction mapping theorem [1] itself does
not characterize metric completeness [4].

The problem of continuity of contractive mappings at fixed points was resolved by Pant [21] in 1999 by
giving a contractive condition which ensures the existence of a fixed point but does not imply continuity
at the fixed point. While continuity is a nice and desirable property of functions, discontinuities occur
naturally in diverse biological, industrial and economic phenomena and many of these phenomena involve
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threshold operations which are discontinuous. For example, a neuron in a neural network either fires or
does not fire depending on whether the input crosses a certain threshold or not. Various industrial censors,
band pass filters and the diode also work in this manner. Cromme and Diener [5] and Cromme [6] have
proved results on approximate fixed points for such functions and have given applications of their results
to neural nets, economic equilibria and analysis. We show that many functions representing threshold
operations satisfy weaker forms of continuity and various contractive conditions; and possess fixed point.
Fixed point theorems for discontinuous mappings have found wide applications, for example application
of such theorems in the study of neural networks with discontinuous activation functions is presently a
very active area of research (e. g. Ding et al [8], Forti and Nistri [9], Nie and Zheng [16–18], Wu and Shan
[26]). Recently Ozgur and Tas [19, 20] have obtained application of the results on discontinuity at the fixed
point by Pant [21] and Bisht and Pant [2, 3] in neural networks with discontinuous activation functions.
We now give some relevant definitions.

Definition 1.1 ([7, 10]). Let X be a nonempty set and s ≥ 1 be a given real number. A function d : X ×X→ [0,∞)
is called a b-metric if and only if for all x, y, z ∈ X, the following conditions are satisfied:

(1). d(x, y) = 0 if and only if x = y
(2). d(x, y) = d(y, x)
(3). d(x, z) ≤ s[d(x, y) + d(y, z)]. The triplet (X, d, s) is called a b-metric space.

Definition 1.2 ([7, 10]). Let (X, d, s) be a b-metric space. The sequence {xn} in X is called convergent if and only if
for all ϵ > 0, there exists k ∈ N such that d(xn, x) < ϵ for all n ≥ k. In this case, we write limn→∞ d(xn, x) = 0.

Definition 1.3 ([7, 10]). Let (X, d, s) be a b-metric space. The sequence {xn} in X is called a Cauchy sequence if and
only if for all ϵ > 0, there exists k ∈ N such that d(xm, xn) < ϵ for all m,n ≥ k.

Definition 1.4 ([7, 10]). The b-metric space (X, d, s) is said to be complete if and only if every Cauchy sequence
converges to some x in X.

In a recent work Pant and Pant [22] introduced the following weaker form of continuity for a mapping:

Definition 1.5. A self-mapping f of a metric space X will be called k-continuous, k = 1, 2, 3, . . . if f kxn → f t
whenever {xn} is a sequence in X such that f k−1xn → t.

Example 1.6. Let X = [0, 2] equipped with the usual metric and f : X→ X be defined by

f x = 1 if 0 ≤ x ≤ 1, f x = 0 if x > 1.

Then f xn → t =⇒ f 2xn → t since f xn → t implies t = 0 or t = 1 and f 2xn = 1 for all n, that is, f 2xn → 1 = f t.
Hence f is 2-continuous. However f is discontinuous at x = 1.

Example 1.7. Let X = [0, 2] and d be the usual metric. Define f : X→ X by

f x =
(1 + x)

2
if 0 ≤ x ≤ 1, f x = 0 if x > 1.

Then it can be verified that f is 2-continuous but not continuous. It is also easy to see that f k is discontinuous for
each positive integer k. Thus 2-continuity of f does not imply continuity of f 2. In general, k-continuity of f does not
imply continuity of f n. It can be shown that continuity of f k and k-continuity of f are independent conditions when
k > 1 (see [22]).

It is easy to see that 1- continuity is equivalent to continuity; and continuity =⇒ 2 − continuity =⇒
3 − continuity =⇒ . . ., but not conversely.
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2. Results

Theorem 2.1. Let { fr : 0 ≤ r ≤ 1} be a family self-mapping of a complete metric space (X, d) such that for any given
mapping fr the following conditions are satisfied:

(i) d( frx, fry) < max{d(x, frx), d(y, fry)}, whenever max{d(x, frx), d(y, fry)} > 0,
(ii) given ϵ > 0 there exists a δ > 0 such that ϵ < max{d(x, frx), d(y, fry)} ≤ ϵ + δ =⇒ d( frx, fry) ≤ ϵ.

If fr is k-continuous or if f k
r is continuous for some integer k ≥ 1 then fr has a unique fixed point, say tr, and

limn→∞ f n
r x0 = tr for each x0 in X. Moreover, if every pair of mappings ( fr, fs) satisfies the condition

(iii) d( frx, fsy) ≤ max{d(x, frx), d(y, fsy)},

then the mappings { fr} have a unique common fixed point which is also the unique fixed of each fr.

Proof. Select any mapping fr. Let x0 be any point in X. Define a sequence {xn} in X recursively by xn = frxn−1.
If xn = xn+1 for some n then xn is a fixed point of fr. If xn , xn+1 for each n, then using (i) we get

d(xn, xn+1) = d( frxn−1, frxn) < max{d(xn−1, frxn−1), d(xn, frxn)}
= max{d(xn−1, xn), d(xn, xn+1)} = d(xn−1, xn).

Thus {d(xn, xn+1)}is a strictly decreasing sequence of positive real numbers and, hence, tends to a limit l ≥ 0.
Suppose l > 0. Then there exists a positive integer N such that

n ≥ N =⇒ l < d(xn, xn+1) < l + δ(l). (2)

This yields l < max{d(xn, xn+1), d(xn+1, xn+2)} = max{d(xn, frxn), d(xn+1, frxn+1)} < l + δ(l) which by virtue of (ii)
yields d( frxn, frxn+1) = d(xn+1, xn+2) ≤ l. This contradicts (2). Hence d(xn, xn+1) → 0 as n → ∞. Now if p is
any positive integer then

d(xn, xn+p) = d( frxn−1, frxn+p−1)
< max{d(xn−1, frxn−1), d(xn+p−1, frxn+p−1)}
= max{d(xn−1, xn), d(xn+p−1, xn+p)} = d(xn−1, xn).

This implies that d(xn, xn+p)→ 0 as n→∞. Therefore, {xn} is a Cauchy sequence. Since X is complete, there
exists tr in X such that

lim
n→∞

xn = lim
n→∞

frxn = tr. (3)

Now suppose that fr is k-continuous. Since f k−1
r xn → tr for each k ≥ 1, k-continuity of fr implies that

f k
r xn → frtr. Hence tr = frtr as f k

r xn → tr. Therefore, tr is fixed point of fr.
Next suppose that f k

r is continuous for some positive integer k. Then, limn→∞ f k
r xn = f k

r tr. This yields
f k
r tr = tr as f k

r xn → tr. If tr , frtr we get

d(tr, frtr) = d( f k
r tr, f k+1

r tr) < max{d( f k−1
r tr, f k

r tr), d( f k
r tr, f k+1

r tr)}

= d( f k−1
r tr, f k

r tr) < d( f k−2
r tr, f k−1

r tr) < . . . < d(tr, frtr),

a contradiction. Hence tr = frtr and tr is a fixed point of fr. Uniqueness of the fixed point follows from (i).
Moreover, if ur and us are the fixed points of fr and fs respectively then by (iii) we get

d(ur,us) = d( frur, fsus) ≤ max{d(ur, frur), d(us, fsus)} = 0.

Hence ur = us and each mapping fr has a unique fixed point which is also the unique common fixed point
of the family of mappings.

The next example illustrates the above theorem.
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Example 2.2. Let X = [0, 3] and d be the usual metric. Define fr : X→ X, 0 ≤ r ≤ 1, by

frx = 1 if 0 ≤ x ≤ 1, frx = r[3 − x] if 1 < x ≤ 3,

where [a] denotes the greatest integer not greater than the nonnegative real number a.
Then the mappings fr satisfy all the conditions of the above theorem and have a unique common fixed point x = 1
which is also the unique fixed point of each mapping. The mapping fr is discontinuous at the fixed point if r < 1 while
fr is continuous at the fixed point if r = 1. However, f 2

r is continuous for each r and fr is 2-continuous for each r. To
see that fr is 2-continuous, consider a sequence {xn} such that frxn → t for some t in X. Then t = 0 or t = r or t = 1
and f 2

r xn = 1 = fr0 = frr = fr1. Therefore fr is 2-continuous. It can be easily verified that if 0 < r < 1 then

d( frx, fry) = 0, 0 < max{d(x, frx), d(y, fry)} ≤ 1 if x, y ≤ 1,
d( frx, fry) = 1 − r, 1 − r < max{d(x, frx), d(y, fry)} ≤ 2 − r if x ≤ 1, 1 < y ≤ 2,
d( frx, fry) = 1, 2 < max{d(x, frx), d(y, fry)} ≤ 3 if x ≤ 1, 2 < y ≤ 3,
d( frx, fry) = 0, 1 − r < max{d(x, frx), d(y, fry)} ≤ 2 − r if 1 < x, y ≤ 2,
d( frx, fry) = r, 2 < max{d(x, frx), d(y, fry)} ≤ 3 if 1 < x ≤ 2, 2 < y ≤ 3,
d( frx, fry) = 0, 2 < max{d(x, frx), d(y, fry)} ≤ 3 if 2 < x, y ≤ 3.

Therefore, fr satisfies condition (ii) with δ(ϵ) = 1 − r − ϵ if ϵ < 1 − r, δ(ϵ) = 2 − ϵ if 1 − r ≤ ϵ < 2 and δ(ϵ) = 1
for ϵ ≥ 2. For r = 0, the function f0 satisfies (ii) with δ(ϵ) = 1 − ϵ if ϵ < 1 and δ(ϵ) = 1 if ϵ ≥ 1. The function f0
represents a threshold operation that can model the firing of a neuron, function of a diode, and also a low pass filter
that allows low voltages to pass but not higher voltages (e.g. noise in music systems). It may also be seen that for
r < 1 the functions fr in this example do not satisfy the Meir – Keeler [15] type (ϵ − δ) contractive condition:

ϵ ≤ max{d(x, f x), d(y, f y)} < ϵ + δ =⇒ d( f x, f y) < ϵ.

Remark 2.3. If we take r = 1 in the above example then the mapping f1 is continuous at the fixed point and satisfies
the stronger contractive condition

d( f1x, f1y) ≤
1
2

max{d(x, f1x), d(y, f1y)}.

We thus see that the mappings satisfying the assumptions of Theorem 2.1 may be continuous at fixed point or
discontinuous functions including threshold functions. Moreover, if f is any self-mapping of X satisfying the
conditions of Theorem 2.1 and if we denote:

m(x, y) = max{d(x, f x), d(y, f y)},

then f is continuous at its fixed point, say z, if and only if m(x, z)→ 0 as x→ z. If f is continuous at its fixed point
z then f x → f z and m(x, z) = max{d(x, f x), d(z, f z)} → 0 as x → z. On the other hand, if m(x, z) → 0 as x → z
then d(x, f x)→ 0 as x→ z, that is, f x→ z = f z. Hence f is continuous at the fixed point z.
The next example shows that the above theorem does not hold if neither fr is k-continuous nor f k

r is continuous for
some integer k ≥ 1.

Example 2.4. Let X = [0, 2] and d be the usual metric. Define f : X→ X by

f x =
(1 + x)

2
if 0 ≤ x < 1, f x = 0 if 1 ≤ x ≤ 2.

Then X is complete and f satisfies the contractive conditions (i) and (ii) with δ(ϵ) = (1−ϵ)
2 for ϵ < 1 and δ(ϵ) = 1 for

ϵ ≥ 1 but f does not have a fixed point. If we consider a sequence {xn} given by xn = 1 − 1
2n then limn→∞ f xn = 1,

limn→∞ f kx = 1 , f 1 for each integer k ≥ 1. The mapping f is, therefore, neither k-continuous nor is f k
r continuous

for some k ≥ 1.

We now extend Theorem 2.1 to b-metric spaces.
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Theorem 2.5. Let (X, d) be a complete b-metric space and { fr : 0 ≤ r ≤ 1} be a family self-mapping of X such that
for any given mapping fr the conditions (i) and (ii) are satisfied. If fr is k-continuous or if f k

r is continuous for some
integer k ≥ 1 then fr has a unique fixed point. Moreover, if every pair of mappings ( fr, fs) satisfies the condition (iii)
then the mappings have a unique common fixed point which is also the unique fixed of each fr.

Proof. The proof of this theorem is the same as that of Theorem 2.1 since the proof of Theorem 2.1 does not
involve the use of triangle inequality.

Theorem 2.6. Let (X, d) be a complete metric space or a complete b-metric space and { fr : 0 ≤ r ≤ 1} be a family of
asymptotically regular self-mappings of X satisfying

(iv) d( frx, fry) ≤ λmax{d(x, frx), d(y, fry)}, λ > 0, for each r.

If fr is k-continuous for some integer k ≥ 1 then fr has a unique fixed point. Moreover, if every pair of mappings
( fr, fs) satisfies the condition

(v) d( frx, fsy) ≤ λmax{d(x, frx), d(y, fsy)}, λ > 0,

then the mappings have a unique common fixed point which is also the unique fixed of each fr.

Proof. Select any mapping fr. Let x0 be any point in X. Define a sequence {xn} in X recursively by xn = frxn−1.
If xn = xn+1 for some n then xn is a fixed point of fr. If xn , xn+1 for each n, then using (iv), for each positive
integer p we get

d(xn, xn+p) = d( frxn−1, frxn+p−1)
≤ λmax{d(xn−1, frxn−1), d(xn+p−1, frxn+p−1)}
= λmax{d(xn−1, xn), d(xn+p−1, xn+p)}.

Asymptotic regularity of fr implies limn→∞ d(xn, xn+1) = 0. This further implies that limn→∞ d(xn, xn+p) = 0,
that is, {xn} is a Cauchy sequence. Since X is complete, there exists t in X such that

lim
n→∞

xn = lim
n→∞

f p
r xn = t, p = 1, 2, 3, . . .

Since fr is k-continuous and f k−1
r xn → t for each k ≥ 1, we get f k

r xn → f t. Hence t = f t as f k
r xn → t. Therefore,

t is fixed point of fr. Uniqueness of the fixed point of fr follows from (iv). Moreover, if u and v are the fixed
points of fr and fs respectively then using (v) we get

d(u, v) = d( fru, fsv) ≤ λmax{d(u, fru), d(v, fsv)} = 0.

Hence u = v and the family of mappings { fr} has a unique common fixed point which is also the unique
fixed point of each fr.

Remark 2.7. Theorems 2.1and 2.5 provide a new type of solution to the once open problem on the continuity of a
contractive mapping at the fixed point (see Rhoades ([23], p.242) in which either each member of a family of contractive
mappings has discontinuity at its fixed point or some members may be continuous at the fixed point; and the fixed
point is a unique common fixed point of the mappings. These results show that besides metric spaces the solution to
the problem of continuity of contractive mappings at fixed point exists in b-metric spaces also.

Remark 2.8. In Theorem 2.6 if we assume f k
r to be continuous for some k > 1 then we get f k

r t = t, that is, t turns out
to be a periodic point of fr which may not be a fixed point unless (iv) is replaced by a contractive type condition. This
shows that the notion of k-continuity is more useful than the notion of continuity of f k

r in fixed point considerations.
This difference in these weaker forms of continuity extends further and this will become evident in the following.
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If f is self-mapping of a metric space or a b-metric space (X, d) and satisfies (i) and (ii), Theorems 2.1
and 2.5 show that under the assumption of k-continuity of f or continuity of f k completeness of X implies
fixed point property for f . We now show that under the assumption of k-continuity fixed point property
for every self-mapping of X satisfying conditions (i) and (ii) implies completeness of X. The same may not
hold if f k is assumed continuous.

There is, however, an essential difference between the next theorem and similar theorems (e. g. Kirk [13],
Subrahmanyam [24], Suzuki [25]) giving characterization of completeness in terms of fixed point property
for contractive type mappings. In [13], [24] and [25] the contractive condition implies continuity at the fixed
point and completeness of the metric space X is equivalent to the existence of fixed point. On the other
hand, the next theorem establishes that completeness of the space is equivalent to fixed point property for
the larger class of k-continuous mappings satisfying contractive conditions (i) and (ii) of Theorems 2.1 and
2.5. In the next theorem, given two real numbers r and s, we shall use the notation r << s to mean that r is
much less than s.

Theorem 2.9. Let (X, d) be a metric space or a b-metric space. If every k-continuous self-mapping of X satisfying the
conditions (i) and (ii) has a fixed point, then X is complete.

Proof. Suppose that every k-continuous self-mapping of X satisfying conditions (i) and (ii) of Theorem 2.1
possesses a fixed point. We assert that X is complete. If possible, suppose X is not complete. Then there
exists a Cauchy sequence in X, say S = {u1,u2,u3, . . .}, consisting of distinct points which does not converge.
Let x ∈ X be given. Then, since x is not a limit point of the sequence S, d(x,S − {x}) > 0 and there exists a
least positive integer N(x) such that x , uN(x) and for each m ≥ N(x) we have

d(uN(x),um) << d(x,uN(x)). (4)

Let us define a mapping f : X→ X by f (x) = uN(x). Then, f (x) , x for each x and, using (4), for any x, y in X
we get

d( f x, f y) = d(uN(x),uN(y)) << d(x,uN(x)) = d(x, f x) if N(x) ≤ N(y)
or d( f x, f y) = d(uN(x),uN(y)) << d(y,uN(y)) = d(y, f y) if N(x) > N(y).

This implies that

d( f x, f y) << max{d(x, f x), d(y, f y)}. (5)

In other words, given ϵ > 0 we can select δ(ϵ) = ϵ such that

ϵ < max{d(x, f x), d(y, f y)} ≤ ϵ + δ =⇒ d( f x, f y) ≤ ϵ. (6)

It is clear from (5) and (6) that the mapping f satisfies conditions (i) and (ii) of Theorem 2.1. Moreover, f
is a fixed point free mapping whose range is contained in the non-convergent Cauchy sequence S = {un}.
Hence, there exists no sequence {xn} in X for which { f xn} converges, that is, there exists no sequence {xn}

in X for which the condition f xn → t =⇒ f 2xn → f t is violated. Therefore, f is a 2-continuous mapping.
Thus, we have a 2-continuous self-mapping f of X satisfying (i) and (ii) which does not possess a fixed
point. This contradicts our hypothesis. Hence X is complete.

Example 2.2 shows that a k-continuous self-mapping that satisfies conditions (i) and (ii) possesses a unique
fixed point if X is complete. The next example shows that a k-continuous self-mapping satisfying (i) and
(ii) may not possess a fixed point if X is not complete.

Example 2.10. Let X = [0, 1) ∪ (1, 2] and d be the usual metric. Define f : X→ X by

f x =
(1 + x)

2
if 0 ≤ x < 1, f x = 0 if 1 < x ≤ 2.

Then f satisfies the contractive conditions (i) and (ii) with δ(ϵ) = 1 − ϵ2 for ϵ < 1 and δ(ϵ) = 1 for ϵ ≥ 1 but f does
not have a fixed point. The mapping f is continuous and, hence, k- continuous for each k ≥ 1.
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Remark 2.11. In Theorem 2.9 if the mappings satisfy Kannan contractive condition then the contractive conditions
(i) and (ii) are obviously satisfied and Theorem 2.9 not only contains Subrahmanyam’s theorem as a particular case
but also extends it to b-metric spaces.

Remark 2.12. In a family of mappings containing both continuous and discontinuous mappings and satisfying the
conditions of Theorem 2.1 we may define a measure of discontinuity of a mapping fr in the following manner:
Measure of discontinuity of fr at z = [limn sup{d(z, frxn)} + limnin f {d(z, frxn)}]/[2sup{d(z, f x) : x ∈ X}], where {xn}

is any sequence such that limn→∞ xn = z. Thus
Measure of discontinuity of f0 at 1 = [1 + 0]/2 = 1/2,
Measure of discontinuity of fr, 0 < r < 1, at 1 = [(1 − r) + 0]/2 = (1 − r)/2,
Measure of discontinuity of fr, 0 < r < 1, at 2 = [2 + (2 − r)]/4 = (4 − r)/4,
Measure of discontinuity of f1 at 1 = [0 + 0]/2 = 0,
Measure of discontinuity of f1 at 2 = [2 + 1]/4 = 3/4.
The mapping f1 is obviously continuous at x = 1 and the measure of discontinuity at x = 1 is found to be 0.
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