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Abstract. Supergroups of some hyperbolic space groups are classified as a continuation of our former
works. Fundamental domains will be integer parts of truncated tetrahedra belonging to families F1 - F4,
for a while, by the notation of E. Molnár et al. in 2006. Our paper relies basically on this work. As an
application, optimal congruent hyperball packings and coverings to the truncation base planes with their
very good densities are computed. This covering density is better than the conjecture of L. Fejes Tóth for
balls and horoballs in 1964.

1. Introduction

1.1. Short history

Hyperbolic space groups are isometry groups, acting discontinuously on hyperbolic 3-space H3 with
compact fundamental domains. It will be investigated some series of such groups by looking for their
fundamental domains. Face pairing identifications on a given polyhedron give us generators and relations
for a space group by the algorithmically generalized Poincaré Theorem [4], [6], [11] (as in subsection 1.2).

The simplest fundamental domains are 3-simplices (tetrahedra) and their integer parts by inner sym-
metries. In the process of classifying the fundamental simplices, 64 combinatorially different face pairings
of fundamental simplices were determined [28], [8], and also 35 solid transitive non-fundamental simplex
identifications [10]. I. K. Zhuk [28] classified Euclidean and hyperbolic fundamental simplices of finite
volume. An algorithmic procedure was given by E. Molnár and I. Prok [7]. In [8–10] the authors sum-
marized all those results, arranging identified simplices into 32 families. Each of them is characterized by
the so-called maximal series of simplex tilings, i.e. maximal symmetry groups with smallest fundamental
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domains. The other members are derived by symmetry breaking of this maximal one. These principles are
also discussed by D-symbols in [10], see also 1.2.

Some complete cases of supergroups with fundamental truncated simplices (shortly trunc-simplices)
are discussed in [5, 14–19]. As a classification, supergroups of the groups with fundamental trunc-simplices
are given in [20]. Especially, supergroups of the groups with fundamental simplices belonging to families
F1-F4, by the notations given in [10], are investigated in [5, 15, 18, 19]. For that purpose, the stabilizer group
of the corresponding vertex figure is analyzed. The new method, for such analysis, established e.g. in the
summary works [19, 20], is also confirmed by the results given in [3].

We think that our systematic investigations on hyperbolic space groups have newer applications in
todays material sciences (e.g. fullerenes, nanomaterials). Extremal problems related to them (e.g. optimal
ball packing and covering, see [13] select these infinite series to choose models for optimal real materials.

Thus, the discovery of János Bolyai and Nikolai Ivanovich Lobachevsky gets new and new importances
and perspectives.

1.2. Preliminaries
Generators and relations for a space group G with a given polyhedron P as fundamental domain can

be obtained by the Poincarè theorem, applying Poincarè algorithm. In this paper such polyhedra will be
simplices and trunc-simplices, for overview see e.g. [19, 20], and here mainly their integer parts.

It is necessary to consider all face pairing identifications of such domains. These are isometries which
generate a group G and induce subdivision of faces and directed edge segments of P into equivalence classes,
such that an edge segment does not contain two G-equivalent points in its interior. The Poincarè algorithm
(see [4], [6]) gives us for each edge segment class one cycle transformation of the form c = 1r . . . 1211, where
1i, i = 1, 2, . . . r are face pairing identifications. Since each of these cycle transformations is a rotation of order
ν, the cycle relations are of the form

(
1r . . . 1211

)ν = 1. The Poincarè theorem guarantees that these cycle
relations, together with relations, 12

i = 1 to the occasional involutive generators 1i = 1
−1
i , form a complete

set of defining relations for G.

Remark 1. As an intuitive picture (e.g. from [6]) we shall use in the following, the space tiling PG by fundamental
domains (polyhedra) represents the space group G itself after having chosen an arbitrary identity domain P. For any
generator 1 ∈ G domain P will be adjacent with the 1-image domain P1 along face f1 denoted simply either by 1 on
the side (half space) of P1, or by 1−1 on the side of P (we prefer the first). Involutive generators 1 = 1−1 we write just
on the corresponding face. Thus for any γ ∈ G, domain Pγ will be adjacent with domain P1γ along an image face f γ1 ,
signed simply either by 1 on side of P1γ, or by 1−1 on the side of Pγ. So domain Pγ is obtained by γ = 1r . . . 1211
from P through the path in domains P, P11 , P1211 , . . . , Pγ entered finely through 1r. Imagine also the group graph
by coloured directed edges with so many colours as many generators we have. From 1 and 1−1 we use only 1, as to
direction of the corresponding graph edge.

Classification of all non-fundamental trunc-simplex tilings means the following finite process (7 steps
as a natural sketchy generalization of our earlier works by D−symbol method or barycentric subsimplex
orbits, see e.g. [10] and [11], you can skip this difficult part at the first read).

1. We consider a 3-simplex T (as tetrahedron) with its barycentric subdivision into 24 subsimplices.
Any subsimplex has a 3-centre (solid centre, first formally, later also metrically), a 2-centre in a
simplex face, a 1-centre in an edge of the previous face, a 0-centre as a vertex of the previous edge,
as usual. The simplex has first the piece-wise linear (PL) topology. Any subsimplex has a 3−face.
2−, 1−, 0−faces, opposite to the corresponding centres. Then 2−, 1−, 0− (involutive (involutory))
adjacency operations σi can be introduced. Then occasional symmetry operations come acting on
points, segments . . . , preserving the subsimplices and incidences with adjacency operations. E.g. we
can write by convention

σiC1 := (σiC)1 = σi(C1), (1.1)

that means for any subsimplex C: the adjacency operationσi (i ∈ {0, 1, 2}first) and mapping 1 commute.
So, σi’s act on left, symmetries act on right.
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2. The σi operation, as above (i ∈ {0, 1, 2} at the first considerations), can be considered as a local
reflection in the i−side face of any subsimplex C. Then any symmetry mapping 1 (if it exists) can be
given by a starting subsimplex and its image subsimplex and by simplex-wise extension, so that (1.1)
holds further step-by-step, as requirement. The axiomatically defined symmetric D−matrix function
(mi j = m ji) and the consequences for D−symbol “theory” (e.g. in [10], [11]) can guarantee the extension
of 1 first to the first simplex T, then – introducing σ3 operation for the tile adjacency in the next step –
onto the whole tiling T .

3. The face pairing generator symmetry mappings of T, i.e. 11, 12, . . . (may be involutive one as well),
introduce also σ3 adjacency operations and generate a simplex tilingT = TG under a symmetry group
G, finitely generated by the previous 11, 12, . . . . The D−matrix function has free parameters yet for
m23 = m32 entries, so we shall have infinite series of tilings for a given D−diagram with certain free
rotational orders. The D-matrix function kD 7→ mi j(kD) of the D-symbol says, by requirement, that
the i j−edge at the meeting of σi, σ j side faces of any subsimplex kC in the D−set of the D−symbol,
schould be surrounded by 2mi j(kD) subsimplices in the tiling T = TG. (Note, e.g. for the 3−simplex
tiling T that m01 = m12 = 3 constant, and m02 = m03 = m13 = 2 constant, because of the barycentric
subdivision of T .)

4. Around the half-edge G−equivalence classes we get subsimplices providing defining relations for G
(besides the involution relations), just in the sense of Poincaré. However, it is our main consideration,
we can take the D0 subsymbols, obtained by leaving σ0 operations from the D−diagram (and the
D−matrix entries), the components describing the fundamental domains of the vertex stabilizer
subgroups for the vertex equivalence classes induced, as a cutting 2−surface. The curvature formula
([10], [11]) says whether a vertex stabilizer (depending on the free parameters) is either a finite
spherical group (of positive curvature), or Euclidean group (of zero curvature), or hyperbolic one (of
negative curvature).

5. In this paper we concentrate on the last cases, where the parameters involve only outer vertices of
hyperbolic space H3. Than we cut (truncate) this vertex(ices) orthogonally by polar plane(s) in H3.
The vertex stabilizer group acts then, preserving the two half spaces of the polar plane(s). Introducing
half-space changing isometries to this H2

−stabilizer, preserving the original simplex tiling T , so
we get a space group with compact fundamental domain. The procedure induces face pairing at
truncating vertex polars as well.

6. This new face pairings can be formulated by a new adjacency operation σ0∗ commuting with other
σ j’s ( j ∈ {1, 2, 3}) but not with σ0. Computer can also help, but we have made careful case-by-case
discussions, first for later experiences.

7. A D−symbol isomorphism leads to equivariant group extension. Morphism does it onto a smaller
D−diagram, or opposite procedures, lead to symmetry breaking members in the same family, where
the free parameters need extra attention (see [10] and [11]).

1.3. Results
In Section 2 we illustrate our method with some cases from family F1, then the leading representative

group series will be detailed from each family (Sections 2-5), sometimes with characteristic examples, also
accompanied with figures. Finally we have proved the following summary

Theorem 1. For integer parts of the trunc-simplices of families F1 - F4 there are given the 73 group extensions all
together. Namely,
F1: Representing series ∗233Γ(u) = 4̄3m

24Γ(u) have 14 extensions,
F2: Representing series 2∗2Γ3(u, 2v) = 4̄2m

8 Γ(u, 2v) have 21 extensions,
F3: Representing series ∗33Γ(2u, v) = 3m

6Γ(2u, v) have 17 extensions,
F4: Representing series ∗22Γ1(u, 2v,w) = mm2

4Γ1(u, 2v,w) have 21 extensions.

There are given all the space group series in figures and by group presentations, namely, the face pairing
generators and defining relations to the edge-segment equivalence classes in Sections 2-5. These need
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standard but tedious work, of course. The analogous [10] other non-fundamental series for families F5 -
F12 will be published later. Then we get a huge list of hyperbolic space groups in infinite series, depending
on some parameters.

The truncation plane of a trunc-simplex will be a natural base plane for a hypersphere (constant distance
surface from the base plane in both sides), whose ball (the inner part of the hypersphere) with its images
under the symmetry group of the corresponding trunc-simplex tiling, can fil (pack) the whole space H3

without common interior point, or can coverH3 without gap, respectively.
As a by-product, we have determined the optimal, densest packing for each family from F1-F4, moreover,

the optimal thinnest (loosest) covering for families F1-F2. Now this is straightforward, because the Coxeter-
Schläfli (extended) reflection groups {u, v,w} occur for these families. See tables to Section 6. However, the
coverings for families F3-F4 deserve a separate publication with worser densities than the optimal covering
at F2.

Theorem 2. Among the hyperball packings and coverings to the truncation base planes of hyperballs in the trunc-
simplex tilings in our families F1-F4 there is a densest packing in F1 to group ∗233Γ (u = 7) (as complete Coxeter
group {3, 3, 7}) with density ≈ 0.82251 (in Fig. 1); and there is a loosest covering in F2 to group 2∗2Γ (u = 7, 2v = 6)
(extended {7, 3, 7}) with density ≈ 1.26829 (in Fig. 8 and Fig. 25).

We conjecture (see also investigations [21–26] of the third author in References) that we have found among
all arrangements of congruent hyperballs inH3 the densest hyperball packing with density≈ 0.82251 above
(related to Dirichlet-Voronoi cell subdivision) to the regular trunc-simplex group {3, 3, 7}; furthermore the
loosest hyperball covering with density ≈ 1.26829 above, to the extended trunc-orthoscheme group {7, 3, 7}.
This last result is published first time here (surprising a little bit). This covering density is less than that in
the conjecture of L. Fejes Tóth [1] for balls and horoballs.

2. Family F1

The maximal series of family F1 is characterized by the simplex tiling whose group series is 4̄3m
24Γ(u) with

previous (crystallographic) notation from [10], and now with the new (orbifold) notation ∗233Γ(u) (see [3]).
It has the trivial extension by the reflection a0 = m̄0 (Fig. 1: F1-1)

∗233Γ(u) = (m0,m1,m2,m3 − 1 = m2
0 = m2

1 = m2
2 = m2

3 = (m0m1)3 = (m0m2)2 =

= (m0m3)2 = (m1m2)3 = (m1m3)2 = (m2m3)u; 6 < u ∈N)

with extenion (a0 − 1 = a2
0

1
= (a0m1)2 2

= (a0m2)2 3
= (a0m3)2).

Other non-fundamental cases in F1:

•
233Γ1(2u) = (r, r2,m3 − 1 = r3 = r2

2 = m2
3 = m3rm3r−1 = (rr2)3 = (m3r2m3r2)u,

3 < u ∈N) = 23
12Γ1(2u), with 2 extensions

(1) (m̄0, m̄1 − 1 = m̄2
0 = m̄2

1
1
= m̄0r−1m̄1r 2

= m̄0r2m̄1r2
3
= (m̄0m3)2 4

= (m̄1m3)2)

(2) (s̄ − 1 1
= (s̄r)2 2

= (s̄r2)2 3
= m3s̄m3s̄−1).

The pictures are given in Fig. 1: F1-2 with Γ0(A0,A1) = 3 ∗ u asH2 group with half-turn extension.

•
233Γ2(u) = (r, r2, r3 − 1 = r3 = r2

2 = r2
3 = (rr2)3 = (rr3)2 = (r2r3)u, 6 < u ∈N) = 23

12Γ2(u), with 2 extensions

(1) (m̄0, m̄1 − 1 = m̄2
0 = m̄2

1
1
= m̄0r−1m̄1r 2

= m̄0r2m̄1r2
3
= m̄0r3m̄1r3)

(2) (s̄ − 1 1
= (s̄r)2 2

= (s̄r2)2 3
= (s̄r3)2).

In Fig. 2: F1-3 the pictures are given with Γ0 = 23u asH2 group with half-turn extension.

•
2×Γ3(3u) = (z, r1, r3 − 1 = r2

1 = r2
3 = zzr1 = (r1r3zr3z−1r3)u, 2 < u ∈N) = 4̄

4Γ3(3u), with 2 extensions
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(1) (m̄0, m̄1, m̄2 − 1 = m̄2
0 = m̄2

1 = m̄2
2

1
= m̄0r1m̄2r1

2
= m̄0z−1m̄1z 3

= m̄0r3m̄1r3
4
= m̄1z−1m̄2z 5

= (m̄2r3)2)

(2) (1̄, h̄2 − 1 = h̄2
2

1
= 1̄z−1h̄2r1

2
= (1̄z)2 3

= (1̄r3)2 5
= (h̄2r3)2).

The pictures are given in Fig. 2: F1-4 with Γ0 = 2u× asH2 group with half-turn extension.

•
33Γ5(4u) = (r, r2, r3 − 1 = r3 = r2

2 = r2
3 = (rr2)2 = (r3rr3r−1r3r2)u, 3

2 < u ∈N) = 3
3Γ5(4u), with 2 extensions

(1) (m̄0, m̄1, m̄2 − 1 = m̄2
0 = m̄2

1 = m̄2
2

1
= m̄0r−1m̄1r 2

= m̄0r2m̄1r2
3
=

m̄0r3m̄2r3
4
= (m̄1r3)2 5

= m̄2rm̄2r−1)
(2) (h̄0, h̄1, h̄2 − 1 = h̄2

0 = h̄2
1 = h̄2

2
1
= h̄0r2h̄1r 3

= h̄0r3h̄2r3
4
= (h̄1r3)2 5

= (h̄2r)2).
The pictures with Γ0 = 223 asH2 group with two half-turn extensions are given in Fig. 3: F1-5.

•
33Γ6(8u) = (r,m2, r3 − 1 = r3 = m2

2 = r2
3 = m2rm2r−1 = (m2r3rr3r−1r3)2u, 3

4 < u ∈ N) = 3
3Γ6(8u), with trivial

extension
(1) (m̄0, m̄1, m̄2 − 1 = m̄2

0 = m̄2
1 = m̄2

2
1
= m̄0r−1m̄1r 2

= (m̄0m2)2 3
= m̄0r3m̄2r3

4
= (m̄1m2)2 5

= (m̄1r3)2 6
= m̄2rm̄2r−1).

See Fig. 3: F1-6 for the pictures with Γ0 = 23 ∗ u.

•
22Γ11(6u) = (z, h − 1 = h2 = (hzzhzhz−1hz−1z−1)u, 1 < u ∈N) = 2

2Γ11(6u),
with 4 extensions, each in two variants, given in Fig. 4 - 6 to F1-7. These so-called Gieseking orbifolds are
derived from the famous non-orientable manifold with an infinite vertex class, originally if u = 1 (cusp, but
1 < u now). The half-turn extension h allows various half simplices and fundamental domains, e.g. for the
trivial extension as follows (Fig. 4: F1-71).

(1) (m̄0, m̄1, m̄2, m̄3 − 1 = m̄2
0 = m̄2

1 = m̄2
2 = m̄2

3
1
= m̄0hm̄1h 2

= m̄0z−1m̄1z 3
= m̄1z−1m̄2z 4

= m̄2hm̄3h 5
= m̄3zm̄3z−1).

Fig. 5: F1-72 to 22Γ11(6u) show the first version of extensions (2)-(4) symbolically.
Fig. 6: F1-73 show the simpler version of extensions (2)-(4) by (additional) presentations:

(2) (h̄0, h̄2 − 1 = h̄2
0 = h̄2

2
2
= (h̄0z−1h)2 3

= h̄0hz−1h̄2zh 5
= (h̄2hzh)2),

(3) (1̄ − 1 2
= 1̄hzh1̄−1z−1h 3

= (1̄zh)2),

(4) (ŝ − 1 2
= ŝhzhŝ−1hz 3

= (ŝzh)2).

2.1. The 4 extensions to Gieseking orbifolds as fundamental trunc-simplex tilings
Our Fig. 7: F1-7+ to Γ62(6u) shows this famous simplex face pairing, as repetition from [20], with

orientation reversing transforms

z1 : z−1
1 → z1 fixing vertex A3 and z2 : z−1

2 → z2 fixing A0

All vertices lie at the infinity (absolute) ofH3, iff the “rotation order” parameter at the edge equivalence
class is u = 1. At the polar plane of A0 (say, e.g.) we look the fundamental domain F0 of the vertex class
stabilizer subgroup Γ0 = uu×× that is the Euclidean Klein bottle group 4.pg (with two cross caps ×, or
projective planes), iff u = 1. Moreover, we get interesting “surgery effects” that lead e.g. to the famous
Fomenko-Matveev-Weeks hyperbolic space form of minimal volume [27].

Otherwise, iff 1 < u ∈ N we getH2 plane group (area of F0 is 4π
u less than 4π [3]). Then the generators,

reversing the half-spaces of the polar plane a0, but preserving the original simplex tiling T , lead to 4 group
extensions with compact fundamental domains as trunc-simplices (or octahedra O1

62, . . .O
4
62).

Presentation of the original simplex tiling group is

Γ62(6u) = (z1, z2 − 1 = (z1z2z2z−1
1 z−1

2 z1)u; 1 < u ∈N).

(1) Then comes the trivial extension with plane reflections:

(m0,m1,m2,m3 − 1 = m2
0 = m2

1 = m2
2 = m2

3
1
= m0z−1

1 m2z1
2
= m0z2m0z−1

2
3
=

3
= m1z1m2z−1

1
4
= m1z2m2z−1

2
5
= m1z−1

2 m3z2
6
= m3z1m3z−1

1 ).
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(2) The half turns extension, changing the half spaces at F0 (inducing point reflections at edges 2, 6,
moreover, a 2−knot u−segment combination):

(h0, h1, h2, h3 − 1 = h
2
0 = h

2
1 = h

2
2 = h

2
3

1
= h0z−1

1 h2z1
2
= (h0z1)2 3

=

3
= h1z1h2z−1

2
5
= h1z−1

2 h3z2
6
= (h3z1)2.

(3) The most interesting half-screw extension, changing the half-spaces at F0 yields a “non-orientable
u−knot” (by glide reflections 11, 12):

(11, 12 − 1 1
= 11z21

−1
2 z1

2
= 11z11

−1
1 z2

3
= 12z112z2).

(4) The 4th extension is a point reflection at edges 3, 4 of F0 (inducing screw motions s1, s2 and u−knot):

(s1, s2 − 1 1
= s1z2s−1

2 z1
2
= s1z1s−1

1 z−1
2

3
= (s2z1)2 4

= (s2z2)2).

We think that these phenomena are remarkable!

3. Family 2

In family F2 the maximal series is characterized by the simplex tiling whose group series is 2∗2Γ(u, 2v) (or
4̄2m

8 Γ(u, 2v) by notations in [10]). Remember that in case u = 2v we order this tiling (and similarly the later
ones) to family F1 with parameter u = u = 2v, since so many simplices (i.e. 2u barycentric subsimplices)
surround every simplex edge.

2∗2Γ(u, 2v) = (m0,m2,m3, r1 − 1 = m2
0 = m2

2 = m2
3 = r2

1 = (m0m2)2 = (m0m3)2 =

= m0r1m2r1 = (m2m3)u = (m3r1m3r1)v, u , 2v ∈N,
1
u
+

1
v
<

1
2

)

with the trivial extension
(m̄0, m̄2 − 1 = m̄2

0 = m̄2
2

1
= m̄0r1m̄2r1

2
= (m̄0m2)2 3

= (m̄0m3)2 4
= (m̄2m0)2 5

= (m̄2m3)2).

Pictures are given in Fig. 8: F2-1 with Γ0(A0,A2) = ∗2uv asH2 group.

Other non-fundamental cases in F2

•
∗22Γ2(2u, 2v) = (m0,m2, z − 1 = m2

0 = m2
2 = (m0m2)2 = m2zm0z−1 =

(m0zm2z−1)u = (zz)v, u , v ∈N,
1
u
+

2
v
< 1) = mm2

4Γ2(2u, 2v)
with 2 extensions in Fig. 8: F2-2

(1) (m̄0, m̄2 − 1 = m̄2
0 = m̄2

2
1
= m̄0zm̄2z−1 2

= (m̄0m2)2 3
= m̄0z−1m̄2z 4

= (m̄2m0)2)

(2) (1̄ − 1 1
= (1̄z−1)2 2

= m21̄m01̄
−1 3
= (1̄z)2).

Γ0 = v ∗ u is aH2 group with half-turn extension yielding glide reflection 1̄.

•
2×Γ1(2u, 2v) = (r2,m3, z − 1 = r2

2 = m2
3 = zzr2 = (m3r2m3r2)u = (m3zm3z−1)v, u , v ∈ N,

1
u
+

2
v
< 1) =

4̄
4Γ1(2u, 2v) with 2 extensions

(1) (m̄0, m̄1, m̄2 − 1 = m̄2
0 = m̄2

1 = m̄2
2

1
= m̄0z−1m̄2z 2

= m̄0r2m̄1r2
3
= (m̄0m3)2 4

= m̄1zm̄2z−1 5
= (m̄1m3)2 6

= (m̄2m3)2)

(2) (h̄2, s̄ − 1 = h̄2
2

1
= s̄zh̄2z 2

= (s̄r2)2 3
= m3s̄m3s̄−1 6

= (m3h̄2)2).
Pictures are given in Fig. 9: F2-3 with Γ0 = ∗uvv asH2 group with half-turn extension.
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•
2×Γ2(u, 2v) = (r2, r3, z − 1 = r2

2 = r2
3 = zzr2 = (r2r3)u = (zr3zr3)v, u , 2v ∈ N,

1
u
+

1
v
<

1
2

) = 4̄
4Γ2(u, 2v) with 2

extensions
(1) (m̄0, m̄1, m̄2 − 1 = m̄2

0 = m̄2
1 = m̄2

2
1
= m̄0z−1m̄2z 2

= m̄0r2m̄1r2
3
= m̄0r3m̄1r3

4
= m̄1zm̄2z−1 5

= (m̄2r3)2)

(2) (h̄2, s̄ − 1 = h̄2
2

1
= s̄zh̄2z 2

= (s̄r2)2 3
= (s̄r3)2 5

= (h̄2r3)2).
Pictures are given in Fig. 9: F2-4 with Γ0 = 2uv asH2 group with half-turn extension.

•
222Γ2(u, 2v) = (r0, r1r2, r3 − 1 = r2

0 = r2
1 = r2

2 = r2
3 = r0r1r2 = (r2r3)u = (r0r3r1r3)v, u , 2v ∈ N,

1
u
+

1
v
<

1
2

) =
222

4Γ2(u, 2v) with 2 extensions

(1) (m̄0, m̄1, m̄2 − 1 = m̄2
0 = m̄2

1 = m̄2
2

1
= m̄0r1m̄2r1

2
= m̄0r2m̄1r2

3
=

m̄0r3m̄1r3
4
= m̄1r0m̄2r1

5
= (m̄2r3)2)

(2) (h̄2, s̄ − 1 = h̄2
2

1
= s̄r0h̄2r1

2
= (s̄r2)2 3

= (s̄r3)2 5
= (h̄2r3)2).

See Fig. 10: F2-5 with Γ0 = 2uv asH2 group with half-turn extension.

3.1. Truncated half-simplices from F2

•
22Γ7(2u, 4v) = (r2, r3, h − 1 = r2

2 = r2
3 = h2 = (r2r3)u = (r2hr3hr3hr2h)v,

u , 2v ∈N,
1
u
+

1
v
< 1) =2

2 Γ7(2u, 4v) with 4 extensions

(1) (m̄0, m̄1, m̄2, m̄3−1 = m̄2
0 = m̄2

1 = m̄2
2 = m̄2

3
1
= m̄0hm̄3h 2

= m̄0r2m̄1r2
3
= m̄0r3m̄1r3

4
= m̄1hm̄2h 5

= (m̄2r3)2 6
= (m̄3r2)2)

(2) (1̄1, 1̄2 = 1 1
= 1̄1h1̄2h 2

= 1̄1r31̄1r2
5
= r31̄2r21̄

−1
2 )

(3) (s̄1, s̄2 = 1 1
= s̄1hs̄2h 2

= (s̄1r2)2 3
= (s̄1r3)2 5

= r3s̄2r2s̄−1
2 )

(4) (h̄0, h̄1, h̄2, h̄3 − 1 = h̄2
0 = h̄2

1 = h̄2
2 = h̄2

3
1
= h̄0hh̄3h 2

= h̄0r2h̄1r3
4
= h̄1hh̄2h 5

= (h̄2r3)2 6
= (h̄3r2)2).

Look at Fig. 10: F2-61 for these presentations with Γ0 = 22uv as H2 group. At Fig. 11 : F2-62 you look
pictures for the simpler versions. E.g. for the third extension (by a half-turn about edge 3, so 2 as well,
yielding screw motion s̄) we get in addition:

(3) (s̄ − 1 2
= (s̄r2)2 3

= (s̄r3)2 5
= s̄hr3hs̄−1hr2h).

•
22Γ8(u, 4v) = (r, h− 1 = h2 = ru = (hrhrhr−1hr−1)v, 2 < u , 4v ∈N,

2
u
+

1
v
< 1) =2

2 Γ8(u, 4v) with 4 extensions

(1) (m̄0, m̄1, m̄2, m̄3 − 1 = m̄2
0 = m̄2

1 = m̄2
2 = m̄2

3
1
= m̄0hm̄3h 2

= m̄0rm̄0r−1 3
= m̄1hm̄2h 4

= m̄1rm̄1r−1 5
= m̄2r−1m̄3r)

(2) (s̄1, s̄2 = 1 1
= s̄1hs̄2h 2

= s̄1rs̄−1
1 r−1 5

= (rs̄2)2)

(3) (h̄0, h̄1, h̄2, h̄3 − 1 = h̄2
0 = h̄2

1 = h̄2
2 = h̄2

3
1
= h̄0hh̄3h 2

= (h̄0r)2 3
= h̄1hh̄2h 4

= (h̄1r)2 5
= h̄2r−1h̄3r)

(4) (1̄1, 1̄2 = 1 1
= 1̄1h1̄2h 2

= 1̄1r1̄−1
1 r 5
= (r1̄2)2).

Look at Fig. 12: F2-7 with Γ0 = uuv asH2 group. Simpler presentation is not pictured.

•
22Γ9(2u, 2v) = (s, h − 1 = h2 = (shs−1h)u = (ssh)v = 1, 1 < u ∈ N, 1 < v ∈ N,

1
u
+

2
v
< 1) =2

2 Γ9(2u, 2v) with 2
extensions
(1) (m̄0, m̄1, m̄2, m̄3 − 1 = m̄2

0 = m̄2
1 = m̄2

2 = m̄2
3

1
= m̄0hm̄1h 2

= m̄0s−1m̄3s 3
= m̄1sm̄2s−1 4

= m̄1s−1m̄2s 5
= m̄2hm̄3h)

(2) (1̄1, 1̄2 = 1 1
= 1̄1h1̄−1

2 h 2
= 1̄1s1̄2s 3

= (1̄2s)2).
Look at Fig. 13: F2-81 for these presentations with Γ0 = uvv asH2 group. For the simpler second version

look at Fig. 14 F2-82. For instance the second extension occurs with point reflection at edge 3, yielding glide
reflection 1̄ as follows in addition:

(2) (1̄ − 1 2
= 1̄sh1̄hs 3

= (1̄hs−1h)2).
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3.2. The 8 extensions for fundamental trunc-simplex tiling and group Γ58(2u, 4v)
These top number extensions are pictured in Fig. 15 and 16 as to F2-8+. Maybe, the numbered edges at

truncation are more convenient than in the original publication [19]. The stabilizer subgroup Γ0 = uuvv of
the vertex class are pictured in Fig. 15, where every vertex triangle has one u-point (u+ or u−) and v+-,v−-
point as vertices to the spatial rotation axes, respectively. Thus the 8 possible correspondences are upper
bound, indeed, that can be realized.

Γ58(2u, 4v) = (s1, s2 − 1 = (s1s−1
2 )u = (s1s1s2s2)v, u , 2v ∈N,

1
u
+

1
v
< 1).

(1) The trivial extension is for O1
58 as octahedron:

(m0,m1,m2,m3 − 1 = m2
0 = m2

1 = m2
2 = m2

3
1
= m0s2m2s−1

2
2
= m0s−1

1 m3s1
3
=

3
= m0s−1

2 m3s2
4
= m1s1m3s−1

1
5
= m1s−1

1 m2s1
6
= m1s−1

2 m2s2).

(2) The second extension will be derived from the two half-turns at u+ and u− that fix the vertex triangles
by h0, . . . , h3 as follows for O2

58 in addition:

(h0, h1, h2, h3 − 1 = h
2
0 = h

2
1 = h

2
2 = h

2
3

1
= h0s2h2s−1

2
2
= h0s−1

1 h3s2
4
=

4
= h1s1h3s−1

1
5
= h1s−1

1 h2s2).

(3) The 3rd extension will be by rotatory reflection at v− (and v+ as well) rotating As1
3 → As−1

2
2 , A0 → As−2

2
1

and changing the half-spaces at F0. This leads to glide reflection 11, 12 and additional presentation:

(11, 12 − 1 1
= 11s11

−1
2 s−1

2
2
= 11s−1

2 12s1
3
= 11s−1

1 12s2).

(4) The 4th extension is derived by a half screw motions through 5O and 5’OAs−1
2

2 → As1
3 , A0 → As2

1
1 changing

the half-spaces at F0. This leads to screw motions s1, s2 and additional presentation:

(s1, s2 − 1 1
= s1s1s−1

2 s−1
2

2
= s1s−1

1 s2s1
3
= s1s−1

2 s2s2)2).

Here we meet with fixed-point-free actions beyond the u− and v− rotations whose axes close. Thus
we found a double (u, v) link as an interesting topological phenomenon. (The previous and next ones
are also remarkable). E.g. the case u = 3, v = 2 leads to hyperbolic metric.
The case u = 2 = v leads to ideal vertices at the absolute (with E2 metric to F0 domain, Fig. 15), i.e. we
getH3 realization with so-called cusp phenomenon. Imagine a fundamental tetrahedron inH3 with
two rectangles at opposite u = 2 rotational edges and π/4 angles at the remaining four v = 2 rotational
edges. We also cite from [10] the (u, 1) link cases with spherical S3 realization. The ”pure topological”
(1, 1) link, as manifold with ”lens realization”, moreover, the 4−truncated lens as S3 manifold are
extremely remarkable, also to our context and Fig. 16.

(5) The 5th extension is obtained by point-reflection in 5O at edge 1 (or in 5’O at 4): As−2
2

1 → As2
3 , A0 → As−1

2
2 .

These lead 1̂1, 1̂2 pairings:

(1̂1, 1̂2 − 1 1
= (1̂1s−1

2 )2 2
= 1̂1s11̂2s1

3
= 1̂1s21̂2s2) 4

= (1̂2s−1
1 )2).

(6) The 6th extension is by half turn about edge 1 (also about 4) As1
3 → As−2

2
1 , A0 → As−1

2
2 , leading to screw

motions ŝ1, ŝ2:

(̂s1, ŝ2 − 1 1
= (̂s1s−1

2 )2 2
= ŝ1s2̂s2s1

3
= ŝ1s1̂s2s2) 4

= (̂s2s−1
1 )2).
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(7) The 7th extension will be A0 → A∗3, A∗1 → A∗2 by rotatory reflection at u− and u+ (1↔ 4, 2↔ 3, 5↔ 6)
yielding glide reflections 1̃1, 1̃2:

(1̃1, 1̃2 − 1 1
= 1̃1s−1

1 1̃2s−1
2

2
= 1̃1s21̃1s1

5
= 1̃2s11̃2s2).

(8) The 8th extension is again A0 → A∗3, A∗1 → A∗2, but by half turns about edges 2, 3, 5, 6 with 1 ↔ 4
inducing screw motions s̃1, s̃2:

(̃s1, s̃2 − 1 1
= s̃1s−1

1 s̃2s−1
2

2
= (̃s1s1)2 3

= (̃s1s2)2 5
= (̃s2s1)2 6

= (̃s2s2)2).

4. Family F3

This family is also characterized by a Coxeter reflection group {ū, v̄, 3} with Coxeter Schläfli diagram in
Fig. 17: F3-1 with doubly truncated simplex (trunc-orthoscheme).
•
∗33Γ(2u, v) = (m0,m1,m2,m3 − 1 = m2

0 = m2
1 = m2

2 = m2
3 = (m0m1)3 =

= (m0m2)2 = (m0m3)2 = (m1m2)2 = (m1m3)v = (m2m3)u; 2u , v ∈N,
1
u
+

1
v
<

1
2
,

1
v
+

1
3
+

1
2
< 1) = 3m

6Γ(2u, v),
with trivial extensions both for vertices A0 and A2

(1) for A0: (m̄0 − 1 = m̄2
0

1
= (m̄0m1)2 2

= (m̄0m2)2 3
= (m̄0m3)2).

(1) for A2: (m̄2 − 1 = m̄2
2

4
= (m̄2m0)2 5

= (m̄2m1)2 6
= (m̄2m3)2).

The pictures are given in Fig. 17: F3-1 with Γ0(A0) = ∗2uv and Γ0(A2) = ∗23v asH2 groups.

•
33Γ1(2u, 2v) = (r,m2,m3 − 1 = m2

2 = m2
3 = r3 = (m2m3)u = (m3rm3r−1)v = m2rm2r−1, u , v ∈ N,

2
u
+

1
v
<

1,
2
3
+

1
v
< 1) = 3

3Γ1(2u, 2v), with 2 extensions both for vertices A0, A1 and A2

(1) for A0, A1: (m̄0, m̄1 − 1 = m̄2
0 = m̄2

1
1
= m̄1rm̄0r−1 2

= (m̄0m2)2 3
= (m̄0m3)2 4

= (m̄1m2)2 5
= (m̄1m3)2)

(1) for A2: (m̄2 − 1 = m̄2
2

6
= m̄2rm̄2r−1 7

= (m̄2m3)2)

(2) for A0, A1: (s̄ − 1 1
= (sr)2 2

= s̄m2s̄−1m2
3
= s̄m3s̄−1m3)

(2) for A2: (h̄2 − 1 = h̄2
2

6
= (h̄2r)2 7

= h̄2m3h̄2m3).
The pictures are given in Fig. 17: F3-2 with Γ0(A0,A1) = ∗uuv and Γ0(A2) = 3 ∗ v asH2 groups.

•
33Γ2(4u, 2v) = (r, r2,m3 − 1 = r2

2 = m2
3 = r3 = (m3r2m3r2)u = (m3rm3r−1)v = (r2r)2, 2u , v ∈ N,

1
u
+

1
v
<

1,
2
3
+

1
v
< 1) = 3

3Γ2(4u, 2v), with 2 extensions both for vertices A0, A1 and A2

(1) for A0, A1: (m̄0, m̄1 − 1 = m̄2
0 = m̄2

1
1
= m̄1rm̄0r−1 2

= m̄0r2m̄1r2
3
= (m̄0m3)2 4

= (m̄1m3)2)

(1) for A2: (m̄2 − 1 = m̄2
2

5
= m̄2rm̄2r−1 6

= (m̄2m3)2)

(2) for A0, A1: (s̄ − 1 1
= (sr)2 2

= (sr2)2 3
= s̄m3s̄−1m3)

(2) for A2: (h̄2 − 1 = h̄2
2

5
= (h̄2r)2 7

= h̄2m3h̄2m3).
The pictures are given in Fig. 18: F3-3 with Γ0(A0,A1) = 2 ∗ uv and Γ0(A2) = 3 ∗ v asH2 groups.

•
33Γ3(4u, v) = (r,m2, r3−1 = m2

2 = r2
3 = r3 = (m2r3m2r3)u = (r3r)v = m2rm2r−1, 4u , v ∈N,

1
u
+

2
v
< 1,

2
3
+

2
v
<

1) = 3
3Γ3(4u, v), with 2 extensions both for vertices A0, A1 and A2

(1) for A0, A1: (m̄0, m̄1 − 1 = m̄2
0 = m̄2

1
1
= m̄1rm̄0r−1 2

= (m̄0m2)2 3
= m̄0r3m̄1r3

4
= (m̄1m2)2)

(1) for A2: (m̄2 − 1 = m̄2
2

5
= m̄2rm̄2r−1 6

= m̄2r3m̄2r3)

(2) for A0, A1: (s̄ − 1 1
= (sr)2 2

= s̄m2s̄−1m2
3
= (s̄r3)2)

(2) for A2: (h̄2 − 1 = h̄2
2

5
= (h̄2r)2 6

= (h̄2r3)2).
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Figure 13: F2-81 to 22Γ9(2u, 2v) first version
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Figure 14: F2-82 to 22Γ9(2u, 2v) second simpler version
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Figure 19: F3-5 to 33Γ4(2u, v)

The pictures are given in Fig. 18: F3-4 with Γ0(A0,A1) = v ∗ u and Γ0(A2) = 23v asH2 groups.

•
33Γ4(2u, v) = (r, r2, r3 − 1 = r2

2 = r2
3 = r3 = (r2r3)u = (r3r)v = (rr2)2, 2u , v ∈ N,

2
u
+

2
v
< 1,

2
3
+

2
v
< 1) =

3
3Γ4(2u, v), with 2 extensions both for vertices A0, A1 and A2

(1) for A0, A1: (m̄0, m̄1 − 1 = m̄2
0 = m̄2

1
1
= m̄1rm̄0r−1 2

= m̄0r2m̄1r2
3
= m̄0r3m̄1r3)

(1) for A2: (m̄2 − 1 = m̄2
2

4
= m̄2rm̄2r−1 5

= m̄2r3m̄2r3)

(2) for A0, A1: (s̄ − 1 1
= (sr)2 2

= (s̄r2)2 3
= (s̄r3)2)

(2) for A2: (h̄2 − 1 = h̄2
2

4
= (h̄2r)2 5

= (h̄2r3)2).
The pictures are given in Fig. 19: F3-5 with Γ0(A0,A1) = 2uv and Γ0(A2) = 23v asH2 groups.

5. Family F4

The family F4 is characterized by
∗22Γ1(u, 2v,w) = (m0,m1,m2,m3 − 1 = m2

0 = m2
1 = m2

2 = m2
3 = (m0m1)w =

= (m0m2)2 = (m0m3)2 = (m1m2)2 = (m1m3)v = (m2m3)u; u , w, v ∈ N,
1
u
+

1
v
<

1
2
,

1
v
+

1
w
<

1
2

) =
mm2

4Γ1(u, 2v,w), with trivial extensions both for vertices A0 and A2

(1) for A0: (m̄0 − 1 = m̄2
0

1
= (m̄0m1)2 2

= (m̄0m2)2 3
= (m̄0m3)2).

(1) for A2: (m̄2 − 1 = m̄2
2

4
= (m̄2m0)2 5

= (m̄2m1)2 6
= (m̄2m3)2).

The pictures are given in Fig. 20: F4-1 with Γ0(A0) = ∗2uv and Γ0(A2) = ∗2vw asH2 groups.
Other non-fundamental cases from F4

•
∗Γ2(u, 4v,w) = (r,m0,m1 − 1 = m2

0 = m2
1 = ru = (m1rm1r−1)v = (m0m1)w = m0rm0r−1, u , w, v ∈ N,

2
u
+

1
v
<

1,
2
w
+

1
v
< 1) = m

2 Γ2(u, 4v,w), with 2 extensions both for vertices A0 and A2, A3

(1) for A0: (m̄0 − 1 = m̄2
0

1
= (m̄0m1)2 2

= m̄0rm̄0r−1)



E. Molnár et al. / Filomat 37:5 (2023), 1409–1448 1437

(1) for A2, A3: (m̄2, m̄3 − 1 = m̄2
2 = m̄2

3
3
= (m̄2m0)2 4

= (m̄2m1)2 5
= m̄3rm̄2r−1 6

= (m̄3m0)2 7
= (m̄3m1)2)

(2) for A0: (h̄0 − 1 = h̄2
0

1
= (m1h̄0)2 2

= (h̄0r)2)

(2) for A2, A3: (s̄ − 1 3
= m0s̄m0s̄−1 4

= m1s̄m1s̄−1 5
= (rs̄)2).

The pictures are given in Fig. 20: F4-2 with Γ0(A0) = u ∗ v and Γ0(A2,A3) = ∗vww asH2 groups.

•
∗Γ3(2u, 4v, 2w) = (r1,m0,m2,m3 − 1 = r2

1 = m2
0 = m2

2 = m2
3 = (m0m2)2 = (m0m3)2 = (m2m3)u = (m2r1m3r1)v =

(m0r1m0r1)w, u , w, v ∈N,
1
u
+

1
v
< 1,

1
v
+

1
w
< 1) = m

2 Γ3(2u, 4v, 2w), with 2 extensions both for vertices A0

and A2, A3

(1) for A0: (m̄0 − 1 = m̄2
0

1
= (m̄0r1)2 2

= (m̄0m2)2 3
= (m̄0m3)2)

(1) for A2, A3: (m̄2, m̄3 − 1 = m̄2
2 = m̄2

3
4
= (m̄2m0)2 5

= m̄2r1m̄3r1
6
= (m̄2m3)2 7

= (m̄3m2)2 8
= (m̄3m0)2)

(2) for A0: (h̄0 − 1 = h̄2
0

1
= (r1h̄0)2 2

= m2h̄0m3h̄0)

(2) for A2, A3: (s̄ − 1 4
= m0s̄m0s̄−1 5

= (r1s̄)2 6
= m3s̄m2s̄−1).

The pictures are given in Fig. 21: F4-3 with Γ0(A0) = 2 ∗ uv and Γ0(A2,A3) = ∗2v2w asH2 groups.

•
∗Γ5(u, 2v, 2w) = (m0, r1, r − 1 = m2

0 = r2
1 = ru = (r1r)v = (m0r1m0r1)w = m0rm0r−1, u , 2w, v ∈ N,

1
u
+

1
v
<

1
2
,

2
v
+

1
w
< 1) = m

2 Γ5(u, 2v, 2w), with 2 extensions both for vertices A0 and A2, A3

(1) for A0: (m̄0 − 1 = m̄2
0

1
= (m̄0r1)2 2

= m̄0rm̄0r−1)

(1) for A2, A3: (m̄2, m̄3 − 1 = m̄2
2 = m̄2

3
3
= m̄2r1m̄3r1

4
= m̄3rm̄2r−1 5

= (m̄2m0)2 6
= (m̄3m0)2)

(2) for A0: (h̄0 − 1 = h̄2
0

1
= (h̄0r1)2 2

= (h̄0r)2)

(2) for A2, A3: (s̄ − 1 3
= (r1s̄)2 4

= (rs̄)2 5
= m0s̄m0s̄−1).

The pictures are given in Fig. 21: F4-4 with Γ0(A0) = 2uv and Γ0(A2,A3) = v ∗ w asH2 groups.

5.1. Truncated half-simplices from F4

•
22Γ3(u, 4v, 2w) = (m1, r3, h−1 = m2

1 = r2
3 = h2 = (r3h)u = (m1r3hm1hr3)v = (m1hm1h)w, u , 2w, v ∈N,

2
u
+

1
v
<

1,
1
v
+

1
w
< 1) =2

2 Γ3(u, 4v, 2w), with 2 extensions both for vertices A0, A1 and A2, A3

(1) for A0, A1: (m̄0, m̄1 − 1 = m̄2
0 = m̄2

1
1
= (m1m̄0)2 2

= m̄0hm̄1h 3
= m̄0r3m̄1r3)

(1) for A2, A3: (m̄2, m̄3 − 1 = m̄2
2 = m̄2

3
4
= (m̄2r3)2 5

= m̄2hm̄3h 6
= (m̄2m1)2 7

= (m̄3m1)2)

(2) for A0, A1 by half-turn h̄0: (h̄0 − 1 = h̄2
0

1
= (m1h̄0)2 3

= (h̄0hr3)2)

(2) for A2, A3 by half-turn h̄2: (h̄2 − 1 4
= (h̄2r3)2 6

= m1h̄2hm1hh̄2).
The pictures are given in Fig. 22: F4-5 with Γ0(A0,A1) = u ∗ v and Γ0(A2,A3) = 2 ∗ vw asH2 groups.

•
22Γ4(u, 2v,w) = (r1, r3, h − 1 = r2

1 = r2
3 = h2 = (r3h)u = (r1r3h)v = (r1h)w, u , w, v ∈ N,

1
u
+

1
v
<

1
2
,

1
v
+

1
w
<

1
2

) =2
2 Γ4(u, 2v,w), with 2 extensions both for vertices A0, A1 and A2, A3

(1) for A0, A1: (m̄0, m̄1 − 1 = m̄2
0 = m̄2

1
1
= (m̄0r1)2 2

= m̄0hm̄1h 3
= m̄0r3m̄1r3)

(1) for A2, A3: (m̄2, m̄3 − 1 = m̄2
2 = m̄2

3
4
= (m̄2r3)2 5

= m̄2hm̄3h 6
= m̄2r1m̄3r1)

(2) for A0, A1 by half-turn h̄0: (h̄0 − 1 = h̄2
0

1
= (h̄0r1)2 3

= (h̄0hr3)2)

(2) for A2, A3 by half-turn h̄2: (h̄2 − 1 = h̄2
2

4
= (h̄2r3)2 6

= (h̄2hr1)2).
The pictures are given in Fig. 23: F4-6 with Γ0(A0,A1) = 2uv and Γ0(A2,A3) = 2vw asH2 groups.
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6. On packings and coverings with congruent hyperballs in Family 1-4

In this section we consider congruent hyperball packings and coverings for families F1-F2 and congruent
hyperball packings for families F3-F4. The base planes of the hyperballs are always the truncation planes
of the trunc-simplices.

1. First we consider Family 1, with a simple truncated orthoscheme (e.g. CHLA1A2A3 in Fig. 24.a and
Fig. 1:F1-1) with Schläfli symbols {u, v,w} = {3, 3,u} 6 < u ∈ N). This simple truncated orthoscheme
can be derived also by truncation from orthoscheme A0A1A2A3 = b0b1b2b3 with outer essential vertex
A0. The truncating plane a0(a0) = CLH is the polar plane of A0, that is the (ultraparallel to b0) base plane
of hyperballHh

0 with height hp for packing or hc for covering.
2. For families F2-F4 (see Fig. 24.b and Fig. 8: F2-1, Fig. 17: F3-1, Fig. 20: F4-1, respectively) we consider a

tilingT (O(u, v,w)) with Schläfli symbol {u, v,w}, ( 1
u +

1
v <

1
2 ,

1
v +

1
w <

1
2 , u, v,w ∈N) whose fundamental

domain is doubly truncated orthoscheme O(u, v,w) = CHLA1A2EJQ in Fig. 24.b.
Let a truncated orthoschemeO(u, v,w) ⊂ H3 be a tile from the above tiling. This can be derived also by
truncation from A0A1A2A3 = b0b1b2b3 with essential outer vertices A0 and A3. The truncating planes
a0(a0) = CLH and a3(a3) = JEQ are the polar planes of A0 and A3, respectively, that will be (ultraparallel
to b0 and b3) base planes of hyperballs Hh

i with height h (i = 0, 3). The distance between the two base
planes d(a0(a0), a3(a3)) = d(H, J) (d is the hyperbolic distance function) will be double of the height of
packing hyperball at most.
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Figure 24: Simple and double truncated complete orthoschemes (without the absolute) in standard coordinate simplex b0b1b2b3 =

A0A1A2A3, (Aib j) = δ j
i with parameters β01 = πu , β12 = πv , β23 = πw . Sketchy pictures also with half-turn axis F03F12 in case u = w

The Coxeter-Schläfli symbol of the complete orthoscheme tiling T is generated by reflections in the planes
bi (i ∈ {0, 1, 2, 3}) and a j ( j = 0, 3) of a complete orthoscheme O. To every scheme there is a corresponding
symmetric 4× 4 matrix (bi j) where bii = 1 and, for i , j ∈ {0, 1, 2, 3}, bi j equals to cos(π− βi j) = − cos βi j for all
dihedral angles βi j between the faces bi,b j of O.

For example, in formula (6.1) we see the Coxeter-Schläfli matrix with parameters (u, v,w), i.e. β01 = πu ,
β12 = πv , β23 = πw .

(bi j) = (⟨bi, b j
⟩) :=


1 − cos πu 0 0

− cos πu 1 − cos πv 0
0 − cos πv 1 − cos πw
0 0 − cos πw 1

 . (6.1)

This 3-dimensional complete (truncated or frustum) orthoschemeO = O(u, v,w) and its reflection group
Gūv̄w̄ will be described in Fig. 24,1,8,17,20 and by the symmetric Coxeter-Schläfli matrix (bi j) in formula
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(6.1), furthermore by its inverse matrix (ai j) in formula (6.2).

(ai j) = (bi j)−1 = ⟨ai, a j⟩ :=

=
1
B


sin2 π

w − cos2 π
v cos πu sin2 π

w cos πu cos πv cos πu cos πv cos πw
cos πu sin2 π

w sin2 π
w cos πv cos πw cos πv

cos πu cos πv cos πv sin2 π
u cos πw sin2 π

u
cos πu cos πv cos πw cos πw cos πv cos πw sin2 π

u sin2 π
u − cos2 π

v

 ,
(6.2)

where
B = det(bi j) = sin2 π

u
sin2 π

w
− cos2 π

v
< 0, i.e. sin

π

u
sin
π

w
− cos

π

v
< 0.

In the following the volume of O(u, v,w) is derived by the next Theorem of R. Kellerhals ([2], by the ideas
of N. I. Lobachevsky):

Theorem 3. (R. Kellerhals) The volume of a three-dimensional hyperbolic complete orthoscheme O = O(u, v,w) ⊂
H3 can be expressed with the essential angles β01 = πu , β12 = πv , β23 = πw , (0 ≤ βi j

≤
π
2 ) in the following form:

Vol(O) =
1
4
{L(β01 + θ) − L(β01

− θ) +L(
π
2
+ β12

− θ)+

+L(
π
2
− β12

− θ) +L(β23 + θ) − L(β23
− θ) + 2L(

π
2
− θ)},

where θ ∈ (0, π2 ) is defined by:

tanθ =

√
cos2 β12 − sin2 β01 sin2 β23

cos β01 cos β23 ,

and where L(x) := −
x∫

0
log |2 sin t|dt denotes the Lobachevsky function (in J. Milnor’s interpretation).

The hypersphere (or equidistant surface) is a quadratic surface at a constant distance from a plane (base
plane) in both halfspaces. The infinite body of the hypersphere, containing the base plane, is called hyperball.

The half hyperball (i.e., the part of the hyperball lying on one side of its base plane) with distance h to a
base plane β is denoted by Hh

+. The volume of the intersection of Hh
+(A) and the right prism with base a

2-polygonA ⊂ β, can be determined by the classical formula of J. Bolyai.

Vol(Hh
+(A)) =

1
4

Area(A)
[
k sinh

2h
k
+ 2h
]
. (6.3)

The constant k =
√
−1
K is the natural length unit in H3, where K denotes the constant negative sectional

curvature. In the following we may assume that k = 1. The distance d of two proper points X(x) and Y(y)
is calculated by the formula

cosh d =
−⟨ x, y⟩√
⟨ x, x⟩⟨ y, y⟩

. (6.4)

6.1. Congruent hyperballs to a simply truncated orthoscheme, Family 1
The maximal series of family F1 is characterized by the simplex tiling whose group series is 4̄3m

24Γ(u) with
previous crystallographic notation from [10], and now with the new orbifold notation ∗233Γ(u). It has the
trivial extension by the reflection a0 = m̄0, as in Sect. 2.

The corresponding unique fundamental simplex with parameters (u, v,w)=(3, 3,u) is determined by its
Coxeter-Schläfli matrix which is derived by (6.1). Its determinant is B = det(bi j) = 3

4 sin2 π
u −

1
4 < 0 now

6 < u ∈N.



E. Molnár et al. / Filomat 37:5 (2023), 1409–1448 1444

So, the signature is (+ + +−) and the simplex is realizable in hyperbolic space H3. The inverse (ai j)
of the Coxeter-Schläfli matrix (bi j) follows by (6.2) providing the distance metric (by the general theory of
projective metrics [13]).

The optimal hyperball height is hp = d(a0,m0) = d(C,A1) for packings and hc = d(H,A3) is the optimal
covering distance where

hp = cosh d(C,A1) =
−a00a11 + a2

01√
a00a11

(
−a2

01 + a00a11

) =
√

1
4 −

3
4 sin2 π

u
1
4 − sin2 π

u

,

hc = cosh d(H,A3) =
−a00a33 + a2

03√
a00a33

(
−a2

03 + a00a33

) =
√√√√ 1

2

(
1
4 − sin2 π

w

)
+ 1

16 cos2 π
u

1
2

(
1
4 − sin2 π

u

)
equivalent to sinh d(C,A1) =

1
2 sin πu√
1
4 − sin2 π

u

and sinh d(H,A3) =
1
4 cos πu√

1
2

(
1
4 − sin2 π

u

) .
Then we get the densities δ (packing), ∆ (covering), respectively. E.g.

δ(O(3, 3,u)) =
Area(A) 1

4

[
sinh 2hp + 2hp

]
Vol(O)

,

where Area(A) =
(
π
2
−
π
3
−
π
u

)
.

The Vol(O) can be calculated by Theorem 3.
In this case the maximal packing density is ≈ 0.82251 with u = 7 (see in Table 1p). The optimal covering

density of Family 1 is ≈ 1.33093 for u = 7 in Table 1c.

Table 1p, (3, 3,u), 6 < u ∈N

u h Vol(O) Vol(Hh
+(A)) δ

7 0.78871 0.08856 0.07284 0.82251
8 0.56419 0.10721 0.08220 0.76673
9 0.45320 0.11825 0.08474 0.71663
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

20 0.16397 0.14636 0.06064 0.41431
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

50 0.06325 0.15167 0.02918 0.19240
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

100 0.03147 0.15241 0.01549 0.10165
u→∞ 0 0.15266 0 0

Table 1c, (3, 3,u) 6 < u ∈N

u h Vol(O) Vol(Hh
+(A)) ∆

7 1.06739 0.08856 0.11787 1.33093
8 0.89198 0.10721 0.15304 1.42747
9 0.81696 0.11825 0.17882 1.51225
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

20 0.68136 0.14636 0.29213 1.99596
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

50 0.66193 0.15167 0.35361 2.33146
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

100 0.65934 0.15241 0.37580 2.46566
u→∞ 0.65848 0.15266 0.39911 2.61438
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By completing Tables 1p and 1c we can read the optimal hyperball packings and coverings with their
densities for other extensions in F1 as well. E.g. to 233Γ(2u) we get these for 2u = 8 with δ =≈ 0.76673,
∆ ≈ 1.42747. To 2×Γ3(3u) we get these for 3u = 9 with δ ≈ 0.71663, ∆ ≈ 1.51225. To 33Γ5(4u) we get these for
4u = 8 again with δ ≈ 0.76673, ∆ ≈ 1.42747.

The argument is by our convention that the parameters of groups above in parentheses are just the m23

entries of the D−matrix function, 2m23 is the number of subsimplices around simplex edges. Mostow’s
rigidity principle for co-compact hyperbolic space groups are also used (see e.g. [27]).

6.2. On hyperball packings and coverings in a doubly truncated orthoscheme, Family 2
In this case we consider a doubly truncated orthoscheme with Schläfli symbol {u, v,w = u}, ( 1

u +
1
v <

1
2 ,

3 ≤ u, v ∈ N) whose fundamental domain is CHLA1A2EJQ in Fig. 24.b. Its Coxeter Schläfli matrix (bi j) and
its inverse (ai j) can be derived by formulas (6.1) and (6.2).

Volume formula of half hyperball Hh
+(Ai) (i = 0, 3) of height h can be calculated by (6.3) where Area(A0) =

Area(A3) = π
(1

2
−

1
ū
−

1
v̄

)
according to the above orthoscheme.

Both polar planes assigne hyperspheres that are congruent with each other therefore the heights h0 = h3

of optimal hyperballsHhi

i (i = 0, 3) can be computed by Fig. 24.b.
The maximal height for optimal congruent hyperball packing is hp = min {d(A2, a3), d(F03, a3)}.
In the above doubly truncated orthoscheme d(A2, a3) = d(A2,Q ∼ a23a3 − a33a2), d(F03, a3) = d(a0 +

a3, a33a0 − a03a3 ∼ J), (as in [13]). Thus,

cosh (d(A2, a3)) =
−a33a22 + a2

23√
a22

(
a2

33a23 − a2
23a33

) =
√

1 −
a2

23

a22a33
,

and

cosh (d(F03, a3)) =
√

a33 − a03

2a33
=

√
1
2

1 + cos2 π
ū cos πv̄

cos2 π
v̄ − sin2 π

ū

.
The density of optimal hyperball packing will be determined, by the following formula:

δ(O(u, v,u)) =
Area(A)(sinh 2hp + 2hp)

2Vol(O)
=
π
(

1
2 −

1
ū −

1
v̄

) (
sinh 2hp + 2hp

)
2Vol(O)

. (6.5)

For the minimal covering hyperball height:

hc = d(F12, a0) = d(F12, a3) = d(a1 + a2, a1 + a2 + ca3),

where a13 + a23 + ca33 = 0, i.e. c =
−(a13 + a23)

a33
. Thus, by a11 = a22, we get

cosh (d(F12, a3) =
−

(
2 (a22 + a12) − 1

a33
(a13 + a23)2

)
√

2 (a22 + a12)
(
2a22 + 2a12 −

1
a33

(a13 + a23)2
) .

The covering density ∆(O(u, v,u)) can be defined similarly to the packing density (see (6.5)).
Vol(O(u, v,u)) can be calculated by Theorem 3. The maximal volume sum of the hyperball pieces lying

in O(u, v,u) can be computed by the formulas (6.1-4) and by the above described computation method for
each given possible parameters u, v,u. Therefore, the maximal packing density and the thinnest covering
density of the congruent hyperball packings and coverings can be computed for each possible parameters.

We see the optimal packing density for F2 is ≈ 0, 81335 with u = w = 7, v = 3 in Table 2p and the top
minimal covering density is ≈ 1, 26869 with u = w = 7, (as before) v = 3 in Table 2c. See Fig. 8: F2–1 and
Fig. 25.
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Table 2p, (u, v,u)

{u, v,u} hp Vol(O(u, v,u))
∑

i=0,3 Vol(Hh(Ai)) δ(O(u, v,u))
{7, 3, 7} 1.23469 0.38325 0.31172 0.81335
{6, 4, 6} 0.69217; 0.55557 0.42610 0.76696
{8, 3, 8} 0.94946 0.44383 0.33794 0.76143
{8, 4, 8} 0.56419 0.64328 0.49322 0.76673
{5, 4, 5} 0.88055 0.46190 0.36007 0.77955
{4, 5, 4} 0.80846 0.43062 0.31702 0.73620
{4, 6, 4} 0.57311 0.50192 0.33516 0.66775
{3, 7, 3} 0.98399 0.27899 0.20481 0.73411

Table 2c, (u, v,u)

{u, v,u} hc Vol(O(u, v,u))
∑

i=0,3 Vol(Hh(Ai)) δ(O(u, v,u))
{7, 3, 7} 1.49903 0.38325 0.48607 1.26829
{6, 4, 6} 1.01481 0.55557 0.75523 1.35938
{8, 3, 8} 1.26595 0.44383 0.57470 1.29487
{5, 4, 5} 1.19095 0.46190 0.60856 1.31751
{8, 4, 8} 0.89198 0.64328 0.91826 1.42747
{4, 5, 4} 1.16974 0.43062 0.58741 1.36411
{4, 6, 4} 0.99583 0.50192 0.73137 1.45714
{3, 7, 3} 1.36406 0.27899 0.38699 1.38713

By completing Tables 2p and 2c we can determine the other densities in Family 2. E.g. to ∗22Γ2(2u, 2v)
(i.e. u = 4, v = 3) we get δ ≈ 0.76143. ∆ ≈ 1.29487. Or to Γ58(2u, 4v) we get {u, v,w} = {6, 4, 6} for optimal
arrangement, δ ≈ 0.76696. ∆ ≈ 1.35938.

6.3. Packings with congruent hyperballs in doubly truncated orthoscheme, Family 3-4

In this subsection we consider congruent hyperball packings to truncated orthoscheme tilings. Both
polar planes assign hyperballs with equal height (see Fig. 24.b). It is clear, that the height of optimal
hyperballsHhi

i (i = 0, 3) is

hp(u, v,w) = min{d(H, J)/2, d(Q,A2), d(C,A1)},

where u, v,w are integer parameters. In this case the volume sum of the hyperball pieces lying in the
orthoscheme has to divide with the volume of trunc-orthoscheme O(u, v,w) as usual. Segments A1C, A2Q
and JH can be determined by the machinery of the projective metrics (see subsection 6.1 or [13]).

The volume of the orthoscheme O(u, v,w) can be determined by Theorem 3. We note here, that the role
of the parameters u and w is symmetrical, therefore we can assume that u > w in F3 or u < w in F4.

Table 3p, (u, v,w = 3), congruent hyperballs

{u, v,w} h Vol(O(u, v,w))
∑

i=0,3 Vol(Hh(Ai)) δ1(O(u, v,w))
{4, 7, 3} 0.59710 0.39274 0.27700 0.70529
{5, 7, 3} 0.41812; 0.43216 0.25203 0.58320
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

{50, 7, 3} 0.03492 0.49140 0.03962 0.08062
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

{4, 8, 3} 0.56419 0.42885 0.32881 0.76673
{5, 8, 3} 0.67409 0.47536 0.26747 0.56266
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

{50, 8, 3} 0.03405 0.52378 0.04245 0.08105
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

{4, 9, 3} 0.46841 0.45130 0.30800 0.68247
{5, 9, 3} 0.39083 0.48771 0.31589 0.64771
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

{50, 9, 3} 0.03348 0.54384 0.04466 0.08212
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Table 4p, (u, v,w), congruent hyperballs

{u, v,w} h Vol(O(u, v,w))
∑

i=0,3 Vol(Hh(Ai)) δ1(O(u, v,w))
{7, 3, 8} 0.93100 0.41326 0.25726 0.62251
{7, 3, 9} 0.76734 0.43171 0.23355 0.54099
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

{7, 3, 50} 0.11380 0.49016 0.06121 0.12488
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

{8, 3, 9} 0.78366 0.46266 0.29474 0.63704
{8, 3, 10} 0.67409 0.47536 0.26747 0.56266
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

{8, 3, 50} 0.11668 0.52248 0.06935 0.13274
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

{5, 4, 6} 0.73969 0.50747 0.37287 0.73476
{5, 4, 7} 0.59326 0.53230 0.32974 0.61947
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

{5, 4, 50} 0.07206 0.59291 0.06350 0.10710
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

{4, 5, 5} 0.69129 0.49789 0.38284 0.76893
{4, 5, 6} 0.53064 0.52971 0.33597 0.63426
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

{4, 5, 50} 0.05502 0.59318 0.05710 0.096256
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

{4, 6, 5} 0.50625 0.55992 0.37558 0.67078
{4, 6, 6} 0.48121 0.58850 0.40850 0.69414
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

{4, 6, 50} 0.05138 0.64697 0.06409 0.09906

Figure 25: The least dense congruent hyperball covering arrangement to parameters {7, 3, 7} with density ≈ 1.26829 and the corre-
sponding Coxeter orthoscheme with half-turn axis in Euclidean B-C-K model. Compare also with Fig. 8: F2–1.
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